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Abstract 
The conserved sequences in gene regulatory regions 
dominate gene regulation. Discovering these sequences 
and their functions is important in post genome era. A 
novel model is constructed to represent conserved motifs 
of DNA sequences. This model is a combination of PWM 
and WAM models. The advantage is the new model not 
only can comprise individual base frequencies in the 
motifs, but also can embody relationship of neighbourhood 
bases. In addition, a varied Gibbs sampling algorithm is 
applied with consideration of the different motif 
occurrences in each sequence. This variation is more 
accordant with the true situation of gene transcription 
controlling mechanism. By combining the model and the 
discovery algorithm, a program is constructed. After 
analysed a set of DNA sequences of upstream regions of 
genes using this program, putative motifs are discovered 
and are compared to experimental verified regulatory 
sequences. Results showed that this combination is ideal 
for motif discovery and the practice is meaningful for gene 
regulation research.. 

Keywords:  gene regulatory elements; motif discovery; 
gene expression analysis; mixture motif model. 

1 Introduction 
Uncovering the hidden mechanism of gene transcription 
control is a huge work in post genome era. Various 
methods have been invented to decipher the information 
encoded in DNA sequences. The approaches come from 
two ways: the biological experimental way or 
computational biology way. Biology experiment is 
accurate to locate the functional DNA subsequence in the 
genome sequences, but it is time and labour consuming. 
Conversely, computational way is high throughput and 
time saving, but it needs large amount of DNA sequences 
as prerequisite and is not very accurate. Motif discovery by 
computer programs became feasible as the publicly 
available of biosequences databases and high performance 
computers appearance. Consequently, many 
fundamentally computational methods to discover 
functional biosequences have occurred. Those methods 
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include greedy algorithm developed by Hertz and 
Stormo(Hertz and Stormo, 1999a; Stormo and Hartzell, 
1989), Gibbs sampling method introduced by Lawrence 
(Lawrence et al., 1993), and EM method used by Elkan 
(Bailey and Elkan, 1995). These methods use relative 
entropy as criteria to evaluate the truthfulness of functional 
DNA sequences and to locate their locations. Recently, 
other novel or more complex methods for motif discovery 
have occurred (Bajic and Seah, 2003; Bajic et al., 2003; 
Brazma et al., 1998; Buhler and Tompa, 2001; Buhler and 
Tompa, 2002; Jonassen et al., 1995). They either use many 
sequence features to discover important transcription 
elements (Bajic and Seah, 2003), or use suffix tree to 
discover high frequent patterns (Vilo, 2002). Buhler use 
random projection to find conserved biosequences and 
also obtained a good result(Buhler and Tompa, 2002). Li 
presented an efficient approximation and give out a 
polynomial time approximation scheme to this problem, 
but most result would be the local optimal, though very 
similar but not equal  to the optima results (Li et al., 1999). 
Although these methods achieve certain success, and 
many computer programs have been developed based on 
them, the problem of motif discovery from DNA 
sequences still remains difficult because of its complex 
nature.  

Up to now, many algorithms and their variations use 
Position Weight Matrix (PWM) models to represent 
motifs, but new research shows that this model is not very 
accurate in some cases, since it do not consider the 
independence of neighbourhood bases (Bulyk et al., 2002). 
However, a Weight Array Model (WAM) model has the 
characteristic to embody the relation between consecutive 
bases (Zhang and Marr, 1993), but it requires prior 
information about which positions are non-independent 
(Stormo, 2000). In this article, we tried to combine the two 
wildly used models forming a mixture model to represent 
motifs and to search them from a DNA sequences set. 

In another aspect, the search strategy differs largely also. 
Some basic algorithms like consensus(Hertz and Stormo, 
1999b), EM (Lawrence and Reilly, 1990) and Gibbs 
sampler (Lawrence et al., 1993) brought solutions to this 
problem, but the result was not satisfactory enough. The 
enhanced computer programs based on them such as 
MEME (Bailey and Elkan, 1995), AlignAce (Hughes et al., 
2000), and Bioprospector (Liu et al., 2001) are more 
powerful in dealing with true data, since these programs 
are enhanced by using more complex models and 
considering more parameters. After considering the above 
algorithms, we found a varied Gibbs sampling method 



similar to Bioprospector used has some advantages, so we 
used it serving as the discovery algorithm.  

2 DNA Conserved Sequences and Models to 
Represent Them 

2.1 The Existence of Motifs 
The genome of organism can be looked as a long DNA 
sequence and each part of the sequence has its own 
functions and characters. The sequence is made up of 
coding areas called genes that encode proteins, as well as 
no-coding areas that hold important regulatory function. 
Each gene consists exon, intron and UTRs in both ends. In 
eukaryotic, regulatory sequences are special DNA 
sequences usually located in upstream of a gene, 
controlling the transcription of the gene. If the functions of 
a set of genes were similar to each other, the regulatory 
sequences would resemble each other also, since these 
genes are subject to same regulation. In organisms, the 
regulatory sequences are binding sites of special proteins 
that serve as transcription factors or promoters, or other 
enhancers. The common length of binding site is 6~10bp 
(Sinha and Tompa, 2002). Many methods have been used 
to represent the common sequences, including IUPAC 
code, regular expression, consensus sequences, HMM 
model, neural network and so on. In this study, we brought 
about a mixture model comprising two basic models: 
PWM and WAM. 

2.2  PWM Model 
PWM is a universal way to represent DNA motifs. In a 
PWM, there is a matrix element for all possible bases at 
every position in the motif, the score for any particular 
sequence is the sum of matrix values for the 
sequence(Stormo, 2000). PWM composes 4 rows to 
represent 4 types of nucleotides acids of DNA sequences, 
the length of the PWM equals the length of the motif. The 
score of a given sequence 1 2... lS s s s= matching the 
model can be calculated by: 
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of base is in the i th position of the motif. The score also 
means the probability of the sequence generated by the 
PWM model representing the motif. However, if the 
values in the matrix cells are bases frequencies of genome 
data, or user provided data, it can be used as background 
model parameters.  

A simplified way to calculate the score is to use the 
logarithm of the value, and the above formula can be 
written as log
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( ) log( )

iPWM si l
R S p

=
= ∑ . 

2.3  WAM Model 
In PWM, the scores for each position are added together to 
get the total score, which implies that each position 
contributes independently. (Stormo, 2000). Indeed, there 
are often strong local dependencies within short DNA 

motif and this dependence among positions could be 
important(Bulyk et al., 2002). WAM (Zhang and Marr, 
1993) incorporates dependencies between adjacent 
positions and can grasp features of some motifs.  

The probability of a particular sequence 1 2... lS s s s=  
being generated by WAM model is: 
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Here, 1,
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j kp − is the conditional probability of generating 

nucleotide ks at position i , given nucleotide js at 

position 1i − (Burge and Karlin, 1997). Also, if the data 
in WAM is counted from a complete genome sequence, or 
is uniformed, it can be served as a background model. 
Similarly, the logarithm of this probability can be 
calculated by 
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2.4  The Mixture Model 
The above two models are called base or ground models: 
each includes a probability estimate over the observed 
sequences. A mixture model is a combination of the two 
base models and can get better results (Eskin et al., 2001). 
In this study, we have combined PWM and WAM to form 
the mixture model. We considered the two parts not 
equally important and gave the PWM part more weight 
than WAM part, so we define the combined model as: 

a pwm b wam
mix

a b

w M w M
M

w w
+
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 in this equation, both 

model contribute one portion to the mix model, ,a bw w are 
weights of the two parts. It is also a normalized model of 
the two and can embodiment individual position as well as 
adjacent base frequencies of a motif. 

2.5  Evaluate a Sequence by Mixture Model 
The score that a sequence matches the mix model can be 
calculated from the scores of the same sequence matching 
the basic models. It is an addition of two log-odd ratios of 
the probability of the sequence generated by the models 
versus that generated by background models. The score 
can be calculated by: 
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In this equation, , ( )b PWMP S  is the probability of 

sequence S generated by a background PWM model, 
which is a 4 dimensional vector representing the 
occurrence likelihood of 4 bases. It also can be seen as a 
zero order Markov model(Thijs et al., 2001). Similarly, 

, ( )b WAMP S  is the probability of sequence S generated by 
a background WAM model, which can be initialised by 
random data. 



3  Motif Extracting Using Varied Gibbs 
Sampling 

3.1  Coexpressed Genes and Repetitive Motif 
Model 

In the progress of evolution, many related genes are 
derived from a common ancestor, also the regulatory 
sequences of the genes. The instances of a motif may vary 
because of different numbers of biology processes such as 
duplication or translocation. Some genes may have more 
copies of regulatory sequences, consequently have a 
strong response to the signal, while others would have 
little copies and as a result have a weak response to the 
same stimulate. Through biological experiments such as 
microarray or other methods like inter-species sequence 
comparison, those genes comprised motif instance can be 
identified and their upstream regions can be separated too. 

A more clearly description is: in the upstream of each gene, 
there would or would not exist a motif in each sequence, 
the location or the motif appearance is not known (Liu et 
al., 2001). In Figure 1, there are n  DNA sequences, each 
containing , ( 0)k k ≥ copies of a motif instance. 

Sequence 2S  has two copies of motif and 1nS − has no 
copy of motif. Motif discovery is to find out all the motif 
instances and their locations in each sequence. 

motif

...

1S

2S

nS

1,1a

2,1a 2,2a

,1na

 
Figure 1.  Repetitive motif model 

3.2  Algorithm Brief 

3.2.1  Model Initialise 
A mixture model with two matrices was constructed and 
initialised in the first place. The cells in PWM were filled 
by sampling a 4 parameter Dirichlet distribution 
(Sjolander et al., 1996) described by: 
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factor of the distribution. As to PWM model, α  is a 4 
dimensional vector representing the different base 
occurrence probability of each position. The means of the 
distribution is equal to the normalized parameter, and the 
value of α is inversely proportional to the distribution 
variance (Durbin et al., 1998). This step provided the prior 
information of PWM model. 

WAM part is composed of 16 rows and 1l − columns. 
Similarly, sampling a Dirichlet distribution of 16 
parameters provided the prior information of the WAM 
model. The final model is a mixture of the two preceding 
basic models.  

3.2.2  Motif Discovery Principle 
After the initial model was built, it can be used for the 
sequences discovery. Above all, a set of DNA sequences 
believed to contain common binding site pattern were 
provided, in these sequences, most similar and most 
frequent sub-sequences would be the instances of the 
regulatory motif, since only regulatory element has high 
number copies of instances in given sequences, and similar 
to each other because of same biological functions. As a 
result, from the given data set, there is a high chance to 
produce a motif model to represent the instances. The 
more similarity the finding sub-sequences are, the more 
conserved the model to describe the motif is. The 
probability of a model generated from observed sequence 
can be calculated by Bayesian inference: 

  ( | ) ( )( | ) ( | )
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Here, S is the sequence set, M is the mixture model. This 
formula means the probability of a model generated from a 
given data set, proportion to the probability of the model 
generating the sequence. If a model is conserved, it would 
have a high chance to generate sub-sequences that are 
instances of a motif, therefore, have a high chance to 
generate the given sequences set, so has a high score of 

( | )P S M . A varied Gibbs sampling method in this study 
can be used to discover the model which can maximized 
the probability. 

3.3 Specific Steps 
The steps are similar to the original Gibbs sampling 
methods, but differ in some specific manipulations. This 
new method also includes a sampling step and a model 
update step. The steps are given below. 

1) According to the mixture model with prior 
information, search each given DNA sequence, and 
find out corresponding motif instances in each 
sequence. Altogether there are n piece of 
subsequence to form a multi alignment matrix.  

2) Randomly select an integer i , [1, ]i n∈ remove the 
i th motif instance from the alignment, and obtain a 
new alignment. Use the new alignment to update the 
mixture model. Since the mixture model comprises 
two parts, the update step includes two parts also. As 
to the PWM we update each element according to a 

relation ,b jp = ,
,0.8 0.2b j

b j

c
p

K
+ , here, ,b jp is the 

data in b th row and j th column, ,b jc is the total 

number of base , { , , , }b b A C G T∈ in position j of 
the alignment. K is the total subsequence number of 
the alignment. This operate can be regarded as adding 



a maximum likelihood (ML) estimate of observed 
data into the original value. 

As to the step of WAM update, the new value of each 
matrix element was calculated by: 

,
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i th dinucleotide bases 
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of the alignment, K  is the total number of 
dinucleotide bases in this position. This is also a 
revising of origin value by adding a maximum 
likelihood estimation of consecutive bases. Since the 
ML estimation would bias from the true value because 
of lack of data, only 20%  was updated and 80%  was 
retained of the value. 

3) Searching new motif instance from the i th DNA 
sequence according to the updated model, and 
constructing new alignment matrix. This step would 
discover multiple or no motif instance from a DNA 
sequence. Particularly, each length l subsequence is 
extracted and scored according to the mixture model; 
the ratio of the score to the average is then calculated. 
If all the ratios are less than a threshold, we then 
regard that this sequence has no copy of the motif. 
Otherwise, if some ratios are above the threshold, the 
corresponding sub-sequences are regarded as motif 
instance and are selected to construct the alignment. 
The threshold is adjusted in each cycle by criteria: if 

above 20% sequences are found no copies of the motif, 
the threshold is decreased in the next cycle. 

4) Repeat step 2, until the model converge. 

Finally, a mixture model and motif instances in each 
sequences would be obtained. 

4 Data and Result 
According to the above steps, a motif discovery program 
was developed. The test data used was a set of DNA 
sequences comprising CRP binding site. CRP is a protein 
of E.coli; it takes an important role in metabolism by 
combining to special DNA sequences and forming 
DNA-protein complex which regulates some gene 
transcription. Stormo has collected 18 pieces of DNA 
sequence; all of them have the ability to combine to CRP. 
The location of the binding site in each DNA sequences 
was validated by experiments (Stormo and Hartzell, 1989). 
The consensus sequence is TGTGAnnnnnnTCACA; the 
length is 16. 

In order to simulate the true situation that some sequences 
have no motif instance, we have added two computer 
generated sequences according to a background base 
distribution. Altogether there are 20 sequences to form the 
data set, and each sequence is at the length of 105bp. Then 
we used these data serving as input data to perform the 
discovery. After running the program, results were 
obtained and were listed in table 1. 

 

Table1: Putative binding sites obtained from 20 DNA sequences  

Motif locations by different method Gene names Motif 
copies 

MEME Bioprospector This 
method

Experiment 
verified 

Discovered motifs Scores

CE1CG     1 64 64,71 64 20,64 TTTGATCGTTTTCACA 64.72
ECOARABOP 1 58 58 58 20,58 TTTGCACGGCGTCACA 63.08

ECOBGLR1  1 79 79 79 79 TGTGAGCATGGTCATA 62.5

ECOCRP    1 66 66 66 66 TGCAAAGGACGTCACA 63.53

ECOCYA    1 53 38 53 53 TGTTAAATTGATCACG 62.64

ECODEOP2  1 10,63 63 10 10,63 TTTGAACCAGATCGCA 64.26

ECOGALE   2 27,45 27,45 45,54 45 TGTCACACTTTTCGCA 61.44

ECOILVBPR 2 42 42 25,42 42 TCTGCAATTCAGTACA 59.75

ECOLAC    2 12 12,15 12,83 12,83 TGTGAGTTAGCTCACT 64.73

ECOMALE  1 17 17 17 17 TGTAACAGAGATCACA 66.15

ECOMALK  2 51 59 64,32 32,64 CGTGATGTTGCTTGCA 60.96

ECOMALT   1 44 47 44 44 TGTGACACAGTGCAAA 64.47

ECOOMPA   1 51 51 51 51 CCTGACGGAGTTCACA 64.14

ECOTNAA   1 74 74 74 74 TGTGATTCGATTCACA 64.76

ECOUXU1   1 20 71 20 20 TGTGATGTGGTTAACC 62.49

PBR322    1 56 35 56 56 TGTGAAATACCGCACA 64.44



TRN9CAT   2 90 4 3,87 3,87 TGAGACGTTGATCGGC 56.04
TDC       1 81 81 81 81 TGTGAGTGGTCGCACA 64.35

RNDSEQ1 0 24 34   

RNDSEQ2 0 49 56   
 

The table listed the locations and the found motifs in each 
sequence, altogether there are 18 sequences identified 
motifs. The program did not found any motif instances 
from the two artificial sequences. Actually, there are 24 
motifs in this data set, and the program found out 23 copies 
where of which 21 copies are true motif. There are also 2 
false positives and 3 true negatives. The 

Sensitivity
TP

Se
TP FN

=
+

 is 0.87, Specificity 

TP
Sp

TP FP
=

+
 is 0.91.  

To make comparison, we used other programs to discover 
motifs from the same data set. The first program used is 
Bioprospector (Liu et al., 2001), the service is at 
http://bioprospector.stanford.edu. This program 
discovered 23 motifs, of which 12 motifs are exactly 
matches and 12 are missed. The sensitivity and specificity 
of this program are 0.5 and 0.52. 

Another program we used is MEME(Bailey and Elkan, 
1994), the service is available at the web site 
http://meme.sdsc.edu/. The discovered motif instance 
locations are listed in the third column of table 1. This 
program discovered 22 motifs in which 17 of them exactly 
match the experiment verified data. 8 sites were not found. 
The sensitivity and specificity are 0.71 and 0.77. The 
above comparison of this method to other two methods 
showed some superiority. 

Another test is plant promoter sequence discovery. 
PlantProm (Shahmuradov et al., 2003) is a DNA sequence 
database including 130 tata-less promoter and 175 tata 
promoter sequences of monocot and dicot plant genes. 
Some important regulatory sequences have annotated and 
the features of them have obtained. We used this method 
and other two methods to make discovery. The result 
consensus sequences of the three methods listed in table 2. 
Table 3 and table 4 are nucleotide frequencies matrices of 
two identified regulatory elements. 

 

Table 2. Discovered motif by 3 methods 

Discovered motifs of two data sets Method 

Tata promoters Tata-less promoter 

This method TATAAATA CACAATA 

Bioprospector CTATAAAT CCAAAACC 

MEME TATCTTCCG CCAAACC 
 
 
 
 

Table 3. Nucleotide Frequencies Matrix for TATA box  
1 2 3 4 5 6 7 8 

A 0.03 0.95 0.00 1.00 0.62 0.97 0.38 0.73
C 0.01 0.00 0.04 0.00 0.00 0.00 0.01 0.08
G 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.10
T 0.96 0.05 0.96 0.00 0.38 0.01 0.61 0.09

T A T A A/T A T/A A 
 
Table 4. Nucleotide Frequencies Matrix for CCAAT box 

 1 2 3 4 5 
A 0.40 0.02 1.00 1.00 0.00
C 0.18 0.98 0.00 0.00 0.00
G 0.15 0.00 0.00 0.00 0.00
T 0.27 0.00 0.00 0.00 1.00
 a/t C A A T 

 
In this experiment, the discovered motifs match the 
promoter elements matrix very well, so they can be 
considered as the true motifs. The other two programs also 
obtained motifs, but their matches to the matrices were less 
nice comparing to our method. 

5 Conclusion 
This article brought out a combined model to represent 
conserved motif of functional DNA sequences. The 
combined model is a mixture of two basic models: PWM 
and WAM. It gets over the defect that the basic model only 
contained either single position information or just 
neighbourhood base information. In addition, a varied 
Gibbs sampling algorithm was employed to the discover 
algorithm. This algorithm suits the situation of DNA 
sequence comprised no copy or multiple copies of motif. 
Through the analysis of a set of CRP binding gene 
sequences, the algorithm found out most motif instances of 
the binding site. The results excel that obtained by MEME 
or Bioprospector algorithm using default parameters. We 
also used the program to discover two sets of plant 
promoter sequences, and the motifs found accorded with 
the reported matrices. Results of the two study cases 
indicate that this method is feasible in motif discovery. 
Therefore the new model with the varied Gibbs sampling 
algorithm can be further applied in the field such as motif 
discovery or co-expressed gene analysis. 
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