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Abstract

In this paper we introduce efficient parallel algorithms
for finding the girth in a graph or digraph, where girth
is the length of a shortest cycle. We empirically com-
pare our algorithms by using two common APIs for
parallel programming in C++, which are OpenMP
for multiple CPUs and CUDA for multi-core GPUs.
We conclude that both hardware platforms and pro-
gramming models have their benefits.

1 Introduction

Graphs are models widely used in science and engi-
neering, and graph algorithms are the basic blocks of
many algorithmic solutions to real world problems. In
this paper we study the problem of efficiently finding
the girth in a graph or digraph on today’s common
workstations or servers, which often have several pro-
cessing units (CPUs and GPUs). Modern graph ap-
plications require us to find fast algorithms capable of
processing large volume of data. In such cases even a
low-order polynomial time algorithm may not be able
to accomplish a computational task in an acceptable
time limit on a single CPU. As a common solution,
one can deploy a large number of processors to do the
task concurrently. We will discuss how to design and
implement parallel girth algorithms and will present
actual timing results for classes of hard test graphs.

1.1 Background on parallel programming

Designing parallel PRAM algorithms for graph prob-
lems has been the topic of a lot of research; see [3, 18,
19]. Several popular textbooks on parallel computing,
such as [9], now address commonly-used shared mem-
ory parallel models like Pthreads (POSIX Thread
API) and OpenMP (the standard directive-based par-
allel [17]). In addition to utilizing multiple CPU pro-
cessors, recently there are more interests in the re-
search community to explore the power of Graphics
Processing Units (GPU) for solving graph problems.
GPUs are high performance many-core processor de-
vices that were originally designed to handle compu-
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tation in image processing. General-Purpose compu-
tation on Graphics Processing Units (GPGPU) is the
technique to use GPUs for solving a wider range of
problems.

Among the first concrete results, Harish and
Narayanin [10] introduced some parallel GPU algo-
rithms for various graph problems. In [14], Katz and
Kider presented an algorithm using GPUs for solving
the all-pairs shortest path problem. Checking graph
connectivity was the topic of the paper [20] by So-
man, Kishore and Narayanan. As a final example,
Leist and Playne [11] gave a GPU parallel algorithm
for graph component labeling.

Despite the fact that designing and implement-
ing parallel algorithms have been a major research
topic, there are a few results on comparative stud-
ies of different APIs and architectures. Comparing
CUDA and OpenMP for implementing various par-
allel girth algorithms is another focus of this paper.
With respect to restrictions imposed by the architec-
ture of GPUs, designing and implementing efficient
parallel GPU algorithms for irregular data types is
a challenging task. When one tries to implement a
parallel algorithm for irregular data types on GPUs,
there is a large gap between the theoretical and the
actual results. Since GPGPU follows the Single In-
struction Multiple Data (SIMD) paradigm, as an al-
ternative benchmark, we use the OpenMP API stan-
dard, which supports multi-CPU shared-memory par-
allel programming. It supports C/C++, and Fortran
programming languages on many architectures and
operating systems. We note that CUDA is (currently)
restricted to only NVIDIA graphic cards. However,
OpenCL may also be easily used as an implementa-
tion choice for many other platforms (e.g. ATI Radeon
GPUs) and usually with very little (if any) perfor-
mance loss [6].

1.2 The girth problem

Girth is defined to be the length of a shortest cycle in
a graph if one exists. Generating random graphs with
large girth has applications in modelling and testing
software systems and coding theory. Producing Tan-
ner graphs with large girths is a main step in con-
struction a Low-Density Parity-Check (LDPC) code;
see [2, 12, 15]. A Tanner graph is a bipartite graph
whose adjacency matrix is the parity-check matrix of
a binary code.

Girth and diameter of a graph are related parame-
ters. The diameter of a biconnected graph with girth
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Figure 1: The process of detecting a short cycle via BFS.

2d is at least d. The degree-diameter problem is the
well-known problem of finding the largest possible
graph with a given degree and diameter [5], and each
best-known case usually has a large girth [8]. A large
graph with bounded degree and diameter is a good
model for an interconnection network topology that
has some restrictions on the number of connections
between hubs or routers and its maximum communi-
cation time between any two nodes.

There is an O(mn) sequential algorithm for find-
ing the girth of a graph G, where n is the order and
m is the size of G (see [4]). One basically repeats
a Breadth-First Search (BFS) algorithm from each
node of a graph while tracking the cycles that are
encountered. By imposing some restrictions on the
input graph or relaxing the exactness of the solution,
one can find a faster solution for the girth problem.
For example, Itai and Rodeh [13] presented an O(n2)
algorithm that finds a cycle which may have one edge
more than the minimum. When a graph is restricted
to be planar or has bounded genus, there is a linear
time algorithm for the girth problem; see Djidjev [7].
Recently, Lingas and Lundell [16] presented a new
approximation algorithm for the girth problem.

To our knowledge, this is the first study on parallel
CPU and GPU implementations of the girth problem.
One of our parallel algorithm uses parallel BFS, while
the other algorithm is based on adjacency matrix mul-
tiplication. For each case we tailor our implementa-
tions to fit the hardware constraints (e.g. number and
speed of processors; memory size and latency) of the
selected platform.

1.3 Organization of the paper

The structure of this paper is as follows. In the next
section, we introduce two parallel algorithms for com-
puting the girth of a graph. Then in Section 3, we
explain how those algorithms have been implemented
by CUDA and OpenMP APIs. This section also de-
scribes a couple of potential optimizations. In Sec-
tion 4, we describe the methods of generating four
different sets of test graph data, specifically designed
to strain our girth algorithms. A discussion on the
results of testing our algorithms is the topic of Sec-
tion 5. At the end of the paper we summarize our
results and suggest topics for further study.

2 Two Parallel Algorithms

In this section we explain formally our parallel algo-
rithms, including sample pseudo-code, for computing
the girth.

Our first algorithm uses a slightly-modified paral-
lel implementation of BFS, starting from each node.
The algorithm (running in parallel from all roots)
stops when the length of the first cycle is found. The
approaches of detecting the girth in undirected or di-
rected graphs are different.

1. For an undirected graph, a cycle is detected when
a node in the frontier of the BFS has two parents
already visited, or if it finds two nodes at the
same distance (level) that are joined by an edge.

2. For a directed graph, a cycle containing the root
is detected when the root node first appears in a
frontier level of the BFS.

Figure 1 shows how an upper-bound of a smallest
cycle is obtained via BFS. For undirected graphs we
need to finish the current frontier for the two-parent
case (left subfigure; even-length cycle); however, we
can terminate immediately the search for the cross-
edge case (middle subfigure; odd-length cycle). For
directed graphs we can terminate the search when
the root is first revisited (right subfigure; first cycle).
The smallest upper-bound found over all BFSs is the
actual girth of the graph and inter-process synchro-
nization is needed to stop all parallel BFSs whenever
the first cycle is found. See Algorithm 1.

Algorithm 1: Parallel girth algorithm via BFS.

Input: A Graph G = (V,E)
Output: The girth of G
girth = |V |+ 1;
foreach node v ∈ G in parallel do

Run BFS algorithm rooted at v;
Let c be the length of first circuit detected;
girth = min(girth, c);

Our second algorithm is based on doing repeated
matrix multiplications of the adjacency matrix of a
digraph. Let M be the adjacency matrix of a digraph
G. It is well-known from graph theory, that the value
of each entry ai,j of Mk represents the number of
walks of length k from nodes i to j. Specially, the
value on the diagonal entry ai,i shows the number of
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directed circuits (closed walks) that start and end at i.
This is easily adapted for our directed girth algorithm
(Algorithm 2).

Algorithm 2: Girth via matrix multiplication.

Input: A Directed Graph G = (V,E) as
Adjacency Matrix M

Output: The girth of G
M0 = I;
M1 = M ;
i = 1;

while Trace(M i) = 0 do
Compute in parallel (binary matrix
multiplication): M i+1 = M i ×M ;
i = i + 1;

girth = i;

To use this approach for undirected graphs, we
need to adapt the aforementioned property of the
powers of adjacency matrices to detect the smallest
undirected cycle. First we need to ignore the cir-
cuits of length 2 (e.g. any edge (u, v) implies a circuit
(u, v, u)). Secondly, note that any other smallest cir-
cuit of length at least 3 that we detected is, in fact, a
cycle corresponding to the girth. Furthermore, we are
only interested in knowing that the number of walks
between i and j, i 6= j, is at least 2, so a possible op-
timization technique is to restrict to Boolean entries
instead of integer entries.

Let the entry bki,j of matrix Nk denote the num-
ber of walks between i and j that do not traverse the
same edge consecutively; clearly bki,j ≤ aki,j where aki,j
is the entry of Mk. We can calculate Nk from ma-
trices Nk−1, Nk−2, and N1 = M1, using a simple
recurrence (modified vector products with respect to
Nk−2 where a row of Nk−1 times a column of M yield
an entry of Nk).

bki,j =
∨

∀s : a1
s,j=1

bk−1i,s ∧ bk−2i,s

We parallelize by data partitioning the output
rows of the matrix Nk; rows assigned to the avail-
able processors. The undirected graph version of Al-
gorithm 2 also uses the two-path idea as illustrated
in Figure 1, where we stop computing when k is half
of the actual girth. The process is to first test if the
following odd-length cycle condition is met:

∃{r, u, v} : a1u,v ∧ bkr,u ∧ bkr,v

Then (if the previous condition is not met) test if the
following even-length cycle condition is satisfied:

∃{r, u, v, w} : a1u,w ∧ a1v,w ∧ bkr,u ∧ bkr,v

Note that all the values of the existential variables
are distinct and both these conditions may be tested
during the generation using the recurrence for Nk+1.
Thus, the seemingly extra intra-level detection time
of O(n3) is not required.

We end this section by mentioning the expected
running times of our two algorithms for sparse
graphs—those graphs with m = O(n) edges. Sparse

int undirectedGirth(const Graph &G)
{
int n = G.order();
int level[n];
int smallest = n+1; // value for infinity

for (int r=0; r<n-2; r++) // minimum is 3-cycle
{
fill(level,level+n,-1); // unseen flags as -1
level[r]=0;

queue<int> toGrow; // sequential FIFO queue
toGrow.push(r);

while ( !toGrow.empty() )
{
int grow = toGrow.front(); toGrow.pop();

// try next r if this BFS is too deep
if ( level[grow]*2+1 >= smallest ) break;

const vector<int> nbrs = G.neighbors(grow);
for (int i=0; i<nbrs.size(); i++)
{

int u = nbrs[i];
if ( u < r ) continue; // optimization

if ( level[u] < 0 )
{
level[u]=level[grow]+1; // now seen
toGrow.push(u);

}
else if ( level[u]==level[grow] )
{
if ( level[u]*2+1<smallest )

smallest=level[u]*2+1;
break; // try next r

}
else if ( level[u]==level[grow]+1 )
{
if ( level[u]*2 < smallest )

smallest = level[u]*2;
}

}
} // while BFS queue not empty

}
return smallest;
}

Figure 2: Sequential C++ girth function.

graphs are usually those graphs with large girth and
will be prominent in the test cases for our algorithms.
Also note that sparse n×n matrix multiplication can
be done in time O(n2) if one uses the appropriate
data representation [1, 6].

Theorem 1. Given a sparse input graph G, Algo-
rithm 1 runs on a machine with p processors in time
O(n2/p).

Theorem 2. Given a sparse input graph G, Algo-
rithm 2 runs on a machine with p processors in time
O(gn2/p), where g is the girth of G.

Note that the girth g is usually much smaller than
the order n. Thus, both algorithms may be more
practical than the other for different types of input
cases.

3 Parallel Implementations

As noted in Section 2, BFS and adjacency matrix
multiplication are the building blocks of our parallel
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girth algorithms. Each program is a modified version
of one of those basic algorithms. The program names
that we introduce in this section correspond to the
column headings of our final timing results of Tables 1
and 2 (at the end of the paper). Note the suffix p
on a program name denotes a “preprocessed” version,
which is explained at the end of this section.

3.1 Cuda BFS program

In our programs cuda BFS and cudaBFS p we assign
one CUDA block of threads (also known as workgroup
in OpenCL) to each node. Each block is responsible
to run one BFS in parallel using inter-block shared
memory in addition to the GPU global memory. Fur-
thermore, different blocks will run in parallel. Since
our device memory size is limited, for large graphs we
have to divide the nodes into separate groups.

The following proposition gives an optimization to
save memory when searching for the girth in sparse
undirected graphs.

Proposition 3. When implementing the BFS-based
algorithm for computing the undirected girth, it only
needs to remember the nodes visited in the last three
levels.

Proof. Suppose we are exploring neighbors at level
i ≥ 1, where the root node is at level 0. By defini-
tion, the frontier level i+1 should only contain nodes
not placed at any level 0 ≤ j ≤ i, as depicted in Fig-
ure 1. Furthermore, a node x at level i can not have
a neighbor y at distance j < i− 1 from the root since
that would imply x should be at level j+1 < i. Thus,
we only need to remember nodes at levels i−1, i, and
i + 1 when doing the BFS search.

Our CUDA programs implement Algorithm 1 by
using three arrays to represent the last three levels
of the BFS search tree: one for parent (of the grow)
level, one for the grow level, and one for the frontier
level. The algorithm initializes the arrays with the
root node as the only item in the parent level and the
neighbors of the root as the grow level. The frontier
level is processed by finding the neighbors of the ele-
ments of the grow level that are not already in either
the parent or grow levels.

All threads are intra-block synchronized at the end
of each level. At this time, we change the roles of the
arrays by doing pointer exchanges to save time by
not having to copy the grow level to the new parent
level and the frontier level to the new grow level. The
old parent level is emptied and becomes the target
for the new frontier. As soon as the first cycle is
detected by one thread, its length is compared (and
atomic exchanged) with the length of the shortest-
known cycle that is stored in shared memory.

We also save the value of the shortest cycle from
shared memory to global memory (inter-block com-
munication) for determining the minimization of all
BFS searches. This allows for early termination of
deep BFS trees and reduces the overall running time
of the implementation.

3.2 Cuda matrix-based algorithms

As explained earlier in Section 2, the programs
cudaMAT and cudaMAT p use the powers of the adja-
cency matrix for finding a smallest cycle originating
from any node. We have only one thread being as-
signed sole ownership in writing the values of the i-th
row of the output matrix of paths of length k. Since,
for large graphs, we have more rows than the total
number of available threads. Thus, we assign a con-
tiguous group of rows to a particular thread. In our
implementation, we have to do block synchronization
(unlike our BFS implementation). This is done by re-
peated kernel launches, as illustrated in the following
CUDA snippet.

for (int dist=1; dist <= order/2; dist++)
{
Girth_Kernel<<<NUM_BLOCKS, NUM_THREADS>>>
(graph, girth_D, DistMAT, DistLens, dist);

cudaMemcpy(&girth_H, girth_D, sizeof(int),
cudaMemcpyDeviceToHost);

if (girth_H <= order) break;
}

3.3 OpenMP implementations

Our OpenMP implementations (ompBFS, openBFS p,
openMAT and openMAT p) of the algorithms follow the
same logic as explained for CUDA implementations.
These were developed by adding #pragma omp direc-
tives to our sequential C++ code (e.g. add one above
the first C++ for loop of Figure 2).

3.4 Final implementation remarks

In some of the implementations (denoted with a suf-
fix p), we first apply a preprocessing procedure to
eliminate all nodes that are not clearly involved in
any cycle of the graph. In other words, we iteratively
delete all nodes of degree at most one. For the digraph
input cases, we iteratively delete all sinks and sources.
Note that the preprocessing times are included in the
reported computational elapsed times.

The speed-up of this procedure is the result of re-
ducing the order of the input graph. If the graph is
not reduced significantly, then the preprocessing pro-
cedure may increase the running time. To explicitly
display the impact of this procedure, we use it for all
our parallel implementations.

The algorithms for finding girth in directed graphs
are implemented by applying proper changes to the
algorithms for the undirected ones. In d cudaBFS and
d ompBFS we discover the directed cycles as soon as a
back edge to the root is detected (see Figure 1).

In d cudaMAT and d ompMAT we use the paral-
lel version of adjacency matrix multiplication as ex-
plained in Algorithm 2.

While processing graphs, we ignore those nodes
that have larger index than the current root. This
helps shrink the search space with no change in the
correctness of the algorithm. Consider a cycle C of
shortest length. If we start a BFS at the node with
smallest index of C we will detect this cycle since
no nodes of C are ignored. This pruning method is
applied for both BFS and adjacency matrix multipli-
cation approaches.
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4 Generating Girth Test Data

The standard random graph generators are not de-
sirable because they either produce graphs with no
cycles or very small girth (e.g. dense graphs). To test
the performance and correctness of our algorithms,
we produced several classes of graphs of large order
and large girth.

We have four test suites for undirected graphs:

big cycles We construct random trees in which each
node is replaced by a big cycle. Then we choose
one node from each cycle that represent two
neighboring nodes and connect them by an edge.

Cayley graphs Let S be a set of generator for a
finite group (H, ·). The nodes of a Cayley graph
is the set H and S ⊆ H is used to define edges.
We connect a node h to a node h′ if there is
an element s ∈ S such that h′ = h · s. The
graph is undirected if S is closed under inverses
(e.g. s ∈ S implies s−1 ∈ S). We used the semi-
direct product procedure given in [5] to generate
large sparse graphs.

cycle graphs These graphs are generated by con-
necting a sequence of large cycles on a path and
adding a few extra edges randomly. These ex-
tra edges may span the length of the connected
cycles or may be a chord of one cycle.

sparse graphs These graphs are produced by taking
random trees, generated by using Prüfer codes,
and then randomly connecting pairs of nodes.

We also have three test suites for directed graphs:

directed big cycles These are generated using the
same procedure as big cycles but with each cy-
cle being a directed cycle.

cycle digraphs Each of these digraphs was created
by generating a union of large random directed
cycles.

sparse digraphs These digraphs are created by first
generating a rooted random tree (all arcs di-
rected from parent to children). Then several
random directed edges are added from a descen-
dant node to an ancestor to form directed cycles.

Each test suite1 consists of eight subsets of
[di]graphs, indexed from 0 to 7. Each subset, labeled
by i, consists of 25 [di]graphs with the number of
nodes ranging between 2i · 1000 and 2i+1 · 1000. So
the overall range of our test graphs varies from graphs
with 1000 nodes up to graphs with 256000 nodes.

5 Comparative Study

We implemented our parallel algorithms using C++
(gcc 4.4) with the two APIs: CUDA 3.2 and
OpenMP 3.0. To run our CUDA programs, we used
an Nvidia Tesla C2050 series (Fermi class) graphics
card. The C2050 has Nvidia compute capability 2.0
and consists of 14 multiprocessors (MPs). Each MP

1These test suites are available by request.

has 32 cores and 3Gb cache (global memory). Each
of the 448 cores operates at 1.15 GHz frequency. For
our graphics card, each block (of threads) supports up
to 1024 threads. For running our OpenMP programs,
we used two hyper-threaded quad-core 2.5 GHz In-
tel CPUs which provides at least 8 and up to 16 in-
dependent Pthreads. Due to the hardware available
to us, we are restricted to using a smaller number
of OpenMP threads compared to what our GPU de-
vice has. However, one benefit of using OpenMP over
CUDA is that the memory available is larger (48Gb
vs 3Gb DRAM) and much faster (data transfer rate).

We provide in Table 1 and Table 2 a summary
of our programs. These tables contain the average
running times for each of the 25 graphs per subset
of a test suite, then the average of all 200 graphs in
each test suite, and finally the overall average running
times. These times are wall clock times in seconds.
For the CUDA implementation we do not include the
I/O time for loading the graphs into device memory.
We also do not include any disk I/O time for any
program.

To have a better evaluation of our algorithms, we
also use two sequential algorithms for computing the
girth of a graph. One of them is the Sage’s (Mathe-
matics Software2) algorithm for finding the girth of
undirected graphs [21]. Our other sequential pro-
gram, girthseq, for undirected graphs use the BFS
algorithm that was presented earlier (and listed in
Figure 2). We also have a similar C++ implementa-
tion, d girthseq, for directed graphs.

In general, as expected, the overall average perfor-
mance (the last row in the two tables) of the sequen-
tial algorithms (girthsage and girthseq in Table 1
and d girthseq in Table 2) are much slower than our
parallel implementations.

Our two parallel algorithms running on OpenMP
(ompBFS and ompMAT) perform about the same, which
is about eight times faster than girthseq. On the
other hand, our two parallel implementations run-
ning on the GPU (cudaBFS and cudaMAT) have perfor-
mances that vary for undirected graphs and directed
graphs. Our cudaBFS has the best overall perfor-
mance for undirected graphs (18.6 times speed-up),
and cudaMAT has the best overall performance for di-
rected graphs (31.5 times speed-up).

Even though CUDA programs have the best over-
all performance in both undirected and directed
graphs, the OpenMP still have advantages for solving
small graphs. More specifically, OpenMP programs
always outperform on the smaller graphs (subset 0)
in the four test suites of undirected graphs and (sub-
sets 0–2) in the three test suites of directed graphs.
When the graph orders increase, the CUDA programs
show their advantages.

For both CUDA and OpenMP, we find that the
pre-processed versions are faster for the graphs in
sparse graphs, but increases the computation time
for all other test classes. This is expected because
only the class of sparse graphs contains many nodes
that are not on any cycle. We note that for digraphs,
we could not gain better performance with our chosen

2Note we selected this open-source platform for our base-line

benchmark since it seems to out-perform our commercial software

such as Mathematica 7.
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preprocessing implementations.

6 Conclusions and Future Work

In conclusion, both OpenMP and CUDA based paral-
lel programs improve the computation time of detect-
ing the girth in undirected and directed graphs for
our extensive test data. For small graphs/digraphs
OpenMP seems to be faster (can’t exploit multiple
threads) than larger graphs. Both algorithm design
approaches and both implementation APIs are valu-
able.

We note that the amount of human effort for
CUDA is clearly expensive—we are waiting for
higher-level programming tools (like OpenMP but for
GPUs).

For the future we would like to try C# Parallel
Task Library, CUDA 4.0 Thrust Library and new
C++ Patterns Library (PPL). Also, we want to try
other parallel hardware and possible different graph
test cases for the girth problem. Also, we would
like to consider performing performance evaluations
on emerging, virtualized computing models (cloud re-
sources) such as Amazon EC2 or Google AppEngine.
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Table 1: Timings in seconds of girth algorithms on undirected graphs.

Subset girth sage girthseq cudaBFS cudaBFS p cudaMAT cudaMAT p ompBFS ompBFS p ompMAT ompMAT p

big 0 0.0212 0.0018 0.0006 0.0007 0.0048 0.0043 0.0003 0.0003 0.0012 0.0023

cycles 1 0.1312 0.0089 0.0017 0.0019 0.0193 0.0141 0.0010 0.0010 0.0057 0.0044

2 0.5884 0.0373 0.0061 0.0065 0.0488 0.0387 0.0036 0.0036 0.0219 0.0196

3 2.2220 0.1516 0.0218 0.0251 0.1202 0.0895 0.0147 0.0144 0.0770 0.0738

4 11.6868 0.7531 0.1144 0.1203 0.3557 0.2623 0.0710 0.0710 0.3720 0.3727

5 49.4324 3.2966 0.4731 0.4977 0.9750 0.7130 0.3387 0.3593 1.6402 1.6643

6 174.0984 12.9000 1.6726 1.7588 3.5142 2.4929 1.2805 1.3231 5.4710 5.7810

7 504.0968 38.1329 4.8217 5.0730 9.8500 6.9969 3.7729 3.8581 17.4768 18.8116

Average 92.7847 6.9103 0.8890 0.9355 1.8610 1.3265 0.6853 0.7039 3.1332 3.3412

Cayley 0 0.0596 0.0038 0.0036 0.0015 0.0352 0.0343 0.0006 0.0007 0.0031 0.0023

graphs 1 0.1724 0.0133 0.0033 0.0036 0.1237 0.1040 0.0019 0.0020 0.0104 0.0084

2 0.5064 0.0430 0.0109 0.0115 0.6081 0.5148 0.0060 0.0062 0.0529 0.0561

3 1.1616 0.1668 0.0263 0.0292 1.1158 0.9550 0.0223 0.0218 0.1280 0.1220

4 4.8736 0.6849 0.1209 0.1221 4.2231 3.6082 0.1106 0.1518 0.5886 0.6021

5 9.2036 2.4132 0.2133 0.2172 5.0933 4.3397 0.3369 0.3764 0.9630 0.9246

6 7.1400 4.9858 0.1338 0.1407 2.2464 1.9095 0.6583 0.7053 0.4896 0.4715

7 12.7224 19.7854 0.1740 0.1836 1.4997 1.1844 2.6333 2.6962 0.6287 0.5478

Average 4.4800 3.5120 0.0858 0.0887 1.8682 1.5812 0.4712 0.4951 0.3580 0.3418

cycle 0 0.0212 0.0016 0.0007 0.0009 0.0027 0.0026 0.0003 0.0029 0.0012 0.0003

graphs 1 0.0588 0.0066 0.0012 0.0035 0.0027 0.0026 0.0008 0.0046 0.0022 0.0049

2 0.2236 0.0316 0.0034 0.0080 0.0039 0.0039 0.0031 0.0079 0.0056 0.0290

3 0.5428 0.1294 0.0068 0.0095 0.0071 0.0050 0.0132 0.0186 0.0200 0.0183

4 1.1220 0.4681 0.0133 0.0142 0.0056 0.0060 0.0494 0.0577 0.0366 0.0307

5 2.0728 1.9861 0.0240 0.0255 0.0077 0.0084 0.2429 0.3891 0.1281 0.2356

6 4.7428 7.9299 0.0533 0.0562 0.0161 0.0182 1.0435 1.2081 0.1983 0.2992

7 7.7152 31.1896 0.0878 0.0905 0.0272 0.0314 4.2280 4.3701 0.3352 0.4226

Average 2.0624 5.2179 0.0238 0.0260 0.0091 0.0098 0.6977 0.7574 0.0909 0.1301

sparse 0 0.0096 0.0011 0.0015 0.0008 0.0175 0.0018 0.0003 0.0004 0.0009 0.0003

graphs 1 0.0520 0.0064 0.0024 0.0010 0.0565 0.0041 0.0011 0.0011 0.0029 0.0010

2 0.2084 0.0321 0.0027 0.0014 0.0571 0.0079 0.0048 0.0036 0.0102 0.0028

3 0.6536 0.1291 0.0076 0.0025 0.2135 0.0132 0.0196 0.0124 0.0404 0.0066

4 1.9240 0.5460 0.0207 0.0051 0.7572 0.0249 0.0848 0.0526 0.1384 0.0195

5 5.6632 2.0746 0.0663 0.0102 2.3316 0.0435 0.2965 0.3819 0.5345 0.1590

6 10.5944 6.4405 0.1040 0.0201 2.8499 0.0694 0.9124 0.9687 0.9201 0.2733

7 34.1212 23.4932 0.4045 0.0382 17.3415 0.1912 3.4374 3.0170 3.4024 0.4003

Average 6.6533 4.0904 0.0762 0.0099 2.9531 0.0445 0.5946 0.5547 0.6312 0.1078

AVERAGE 26.4951 4.9326 0.2687 0.2650 1.6728 0.7405 0.6122 0.6277 1.0533 0.9802
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Table 2: Timings in seconds of girth algorithms on directed graphs.

Subset d girthseq d cudaBFS d cudaMAT d ompBFS d ompBFS p d ompMAT

directed 0 0.0016 0.0268 0.0068 0.0003 0.0005 0.0008
big cycles 1 0.0082 0.4085 0.0121 0.0008 0.0012 0.0051

2 0.0372 0.5955 0.0274 0.0033 0.0042 0.0247
3 0.1682 0.9255 0.0641 0.0143 0.0163 0.1168
4 0.7007 0.2859 0.1419 0.0616 0.0662 0.4696
5 2.7614 0.6990 0.2931 0.2471 0.2596 1.6903
6 9.8746 1.5924 0.6623 0.9421 1.0185 5.5603
7 41.9673 5.7967 2.1259 4.0266 4.2226 25.0513

Average 6.9399 1.2913 0.4167 0.6620 0.6986 4.1149

cycle 0 0.0024 0.0086 0.0638 0.0004 0.0017 0.0061
digraphs 1 0.0076 0.0075 0.0934 0.0010 0.0030 0.0040

2 0.0252 0.0025 0.0135 0.0029 0.0059 0.0015
3 0.1074 0.0016 0.0030 0.0122 0.0158 0.0016
4 0.4542 0.0030 0.0053 0.0505 0.0560 0.0033
5 1.5451 0.0035 0.0025 0.1654 0.1769 0.0054
6 7.4248 0.0083 0.0074 0.9728 1.0582 0.0465
7 26.8069 0.0105 0.0064 3.5560 3.7332 0.1559

Average 4.5467 0.0057 0.0244 0.5952 0.6313 0.0280

sparse 0 0.0013 0.5340 0.0025 0.0003 0.0008 0.0003
digraphs 1 0.0062 0.1696 0.0042 0.0009 0.0018 0.0007

2 0.0287 0.0389 0.0084 0.0034 0.0054 0.0018
3 0.1181 0.0193 0.0083 0.0136 0.0508 0.0038
4 0.4792 0.0139 0.0164 0.0548 0.0630 0.0116
5 1.7474 0.1223 0.0111 0.1933 0.2058 0.0859
6 6.6283 0.0343 0.1097 0.8764 1.0621 0.2391
7 19.8751 0.1582 0.1472 2.6206 2.8045 0.3118

Average 3.6105 0.1363 0.0385 0.4704 0.5243 0.0819

AVERAGE 5.0324 0.4778 0.1599 0.5759 0.6181 1.4083
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