A Comparison of Different Approaches to the Introductory
Programming Course

Michael Goldweber! Joe Bergin®

Raymond Lister? Myles McNally*!

! Xavier University
Cincinnati, Ohio, USA 45207

Email: mikeyg@cs.xu.edu

2 Pace University
New York, New York, USA 10038
Email: berginf@pace.edu

3 University of Technology
Sydney, Australia NSW 2007

Email: raymond@it.uts.edu.au

% Alma College
Alma, Michigan, USA 48801
Email: mcnally@alma.edu

Keywords: Introductory programming environments,
microworlds, robotics.

1 Introduction

Over the last few years the number of visual and non-
traditional programming environments to support
the introductory programming course has greatly in-
creased. While in the past, instructors of the intro-
ductory programming course simply had to select a
compiler (and possibly a development environment),
today they face a plethora of choices. This panel will
present four such popular visual/non-traditional pro-
gramming environments.

A common thread among these environments is
that they all seek to continuously illustrate/visualize
the complete program state throughout program ex-
ecution. The underlying pedagogic assumption is
that such continuous non-textual visual feedback is
superior for introductory students than more tradi-
tional programming languages/environments; where
program state feedback is strictly textual, limited in
scope, and periodic (e.g. cout statements). This
panel will not only present four such popular pro-
gramming environments, but, since each approach has
its own strengths and weaknesses, engage the audi-
ence in a discussion comparing and contrasting them
as well.

2 Lego Mindstorms - Myles McNally

Lego Mindstorms is an inexpensive robotics system
consisting of a microprocessor brick, various sensors
and motors, and numerous Lego pieces. It can be
programmed in a variety of languages, including Java
and C+4. Since its initial release in 1996 dozens
of papers have been written on its use in computer
science education (Barnes 2002, Kay 2003, Lawhead,

Copyright (©2006, Australian Computer Society, Inc. This
paper appeared at Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Tasmania, Australia, January
2006. Conferences in Research and Practice in Information
Technology, Vol. 52. Denise Tolhurst and Samuel Mann, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Bland, Barnes, Duncan, Goldweber, Hollingsworth &
Schep 2003). Most describe its use, in one way or
another, in laboratory settings. Numerous workshops
on using the Mindstorms platform have been held,
attended by hundreds of faculty. Yet the platform’s
use is not as widespread as this level of interest would
suggest. I argue this is because of a number of easily
countered misconceptions, such as:

e It’s a toy, you can’t teach real program-
ming with it. Yes it’s a toy, but an educational
toy. And you can teach real programming with
it. Laboratory experiences have been developed
for Mindstorms on everything from the difference
between local and global variables to interfaces,
inheritance, and polymorphism.

e Adequate laboratory materials do not ex-
ist. They say you can find everything on the web,
and a large number of papers and laboratory ex-
ercises for Mindstorms can be so found. I am
part of a project that is building a comprehen-
sive set of laboratory materials for using Mind-
storms throughout the CS undergraduate cur-
riculum (Klassner, Lawhead & McNally 2005).
Among the items we have developed is a set of
twelve laboratories for an object oriented intro-
ductory course, each augmented by video clips of
task solutions.

e The kits are too expensive. You can buy ten
kits for the price of a computer workstation, and
using pair programming that would be sufficient
for a typical lab. That’s not so much.

e Why not just use a simulator? In fact other
members of this panel are going to suggest some-
thing like that. The reasons are numerous: Stu-
dents enjoy working with the robots, leading to
more time on task. Robots literally embody state
and behaviour, physically modelling the struc-
ture of the programming solutions. Students re-
ceive immediate visual feedback and enjoy inter-
acting with robots, naturally leading to increased
interaction with other members of the class as
well.

Conclusion: Mindstorms-based robotics are a
great choice for CS 1.

3 Karel J Robot - Joe Bergin
Karel J Robot (Bergin, Stehlik, Roberts & Pattis

2005) is a microworld that uses a small subset of Java
to teach fundamental computing concepts, especially
object-oriented programming. The language of Karel
is simply the language of message passing with ev-
erything else left out. A rich metaphor is presented
to students that does not depend on students under-
standing more primitive computational ideas, such as
the Von Neumann architecture. This approach has
many advantages. First, is that the syntactic and
conceptual load on students is much reduced, yet the
power of the language is still that of a Turing Ma-
chine. Second is that the system is very visual, with
feedback to students given immediately as a program
executes. Being Turing complete, the language sup-
ports an algorithmic rich first course, while still teach-
ing object-oriented (polymorphic) programming.

The beauty of message passing as a core language
is that every time you write a new class you extend
the language, but don’t extend the syntactic load on
the students. This means that student effort is spent
in solving a rich set of exercises, and not in learning
language details. It does require that some topics typ-
ically taught early must be delayed. Karel does not
teach Java’s arithmetic operations or primitive data
types, though arithmetic algorithms are included in
the examples and exercises. Experience has shown
Karel J Robot to be an effective introduction to com-
puting, taking only a few weeks to master. Students
then have a solid picture of computing, good prob-
lem solving skills; and a rich base from which to learn
other, more traditional, topics.

4 Alice - Michael Goldweber

The Alice programming environment (Stage3 Re-
search Group 2005) is an interactive 3D microworld
designed to facilitate the learning of computer pro-
gramiing by large portions of the general population.
Alice is programmed using an iconic approach; Al-
ice programmers do not type commands which must
adhere to a strict syntactic model, but instead use a
drag-and-drop interface to manipulate objects. While
Alice is based on an object world-view, it stresses sto-
rytelling as its primary metaphor.

Alice was designed to overcome the perceived so-
ciological and mechanical barriers which prevented
middle school girls from being successful computer
programmers. In addition to its growing use at
the middle/high school level, Alice has proven useful
for introducing programming at the university level
(Cooper, Dann & Pausch 2003) in

e non-majors (CS 0) courses,
e breadth-first introductory courses,

e traditional
courses.

programming-first introductory

The Alice environment, unlike most other mi-
croworlds, provides students with a very rich set of
objects for manipulation. Students can not only cre-
ate their own methods and functions for these ob-
jects, but can also create their own objects. Al
ice also explicitly supports the event-driven program-
ming model as well. Unfortunately, Alice objects
do not support inheritance, polymorphism, or data
structures more complex than single-dimensional ar-
rays.

Alice’s primary strength is the ease with which
introductory students can be almost immediately
successful. Since there is no syntax to master

and the iconic interface allows the programmer,
at any step in the program, to only select legal
choices/statements/commands, every program works
- it just might not do what was intended/solve the
problem at hand. This allows for deep and sophis-
ticated self-directed student exploration; something
that syntax-based languages and their concomitant
compiler wrestling matches implicitly discourages.

5 PigWorld - Raymond Lister

PigWorld (Lister 2004) is a microworld for introduc-
ing students to Java programing. Boy and girl pigs
move around a maze, finding food, avoiding preda-
tors, and - when the opportunity presents itself - mak-
ing love.

Pigworld was designed as an attempt to transcend
the dialectic of "procedural first” vs. "objects first”.
Many of the proponents of ”"procedural first” argue
that because objects contain methods which in turn
contain procedural code, it follows that algorithms
written in the procedural paradigm should be taught
first. The argument is based on a reductionist ”inside
out” view of algorithms. While it is true that, in the
procedural style, algorithms are encoded explicitly
within the methods of an object, in object-oriented
code complex algorithms can emerge from a sequence
of simple interactions between objects. For example,
in PigWorld, boy and girl pigs find each other in the
maze by a series of simple object interactions which
collectively implement Dijkstra’s shortest path algo-
rithm. With PigWorld I have taught Dijkstra’s short-
est path algorithm to students in their first semester
of programing, whereas no teacher of the procedural
paradigm would dream of teaching such an algorithm
so early.

PigWorld also demonstrates that linked-lists are
the natural first data structure for students being
taught objects-first. What more natural way could
there be of reinforcing the

1. principle of message passing, and
2. difference between a class and an object,

than by having a series of objects of the same class
act as the nodes of a linked list? In objects-early,
arrays should be taught after linked lists. In fact,
arrays should not be taught at all in the first semester.
Arrays are a low-level machine-oriented concept. The
teaching of arrays to novice programiners is destined
for the same oblivion as the teaching of assembler.

Many of the reported problems of teaching objects-
early are in fact due to misguided attempts to teach
7Objects Etcetera” - the teaching of objects-oriented
programming while maintaining the traditional pro-
cedural content of a first course in programming. Pig-
World demonstrates that an interesting pedagogic mi-
croworld requires a minimum of procedural program-
ming.

References

Barnes, D. (2002), ‘Teaching introductory java
through lego mindstorm models’, ACM SIGCSE
Bulletin 34(1).

Bergin, J., Stehlik, M., Roberts, M. & Pattis, J.
(2005), Karel J. Robot: A gentle introduction
to the art of object oriented programming.
Accessed 18 Aug 2005.

URL: "http://csis.pace.edu/ bergin/KarelJavaZed/”

Cooper, S., Dann, W. & Pausch, R. (2003), Teaching

objects-first in introductory computer science, in

‘Proceedings of the 34th SIGCSE Technical Sym-
posium on Computer Science Education’.

Kay, J. (2003), ‘Teaching robotics from a computer
science perspective’, Journal of Computing Sci-
ences in Colleges 19(2).

Klassner, F., Lawhead, P. & McNally, M. (2005),
LMICSE: Lego mindstorms in computer science
education project. Accessed 18 Aug 2005.
URL: "http://www.mes.alma.edu/LMICSE”

Lawhead, P., Bland, C., Barnes, D., Duncan, M.,
Goldweber, M., Hollingsworth, R. & Schep, M.
(2003), ‘A road map for teaching introductory
programming using lego mindstorms robots’,

ACM SIGCSE Bulletin 35(2).

Lister, R. (2004), Teaching java first: Experi-
ments with a pigs-early pedagogy, in ‘Sixth
Australasian Computing Education Conference

(ACE2004)’.

Stage3 Research Group (2005), Alice: Free, easy, in-
teractive 3d graphics for the www. Accessed 18
Aug 2005.

URL: "http://www.alice.org/”

