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Abstract 
 
The Multiple-Choice Multi-Dimension Multi Knapsack 
Problem (MMMKP) is the distributed version of 
Multiple-Choice Multi-Dimension Knapsack Problem 
(MMKP), a variant of the 0-1 classic Knapsack Problem. 
Algorithms for finding the exact solution of MMKP as 
well as MMMKP are not suitable for application in real 
time decision-making applications. This paper presents a 
new heuristic algorithm, Arbitrated Heuristic (A-HEU) 
for solving MMMKP. A-HEU finds the solution with a 
few messages at the cost of reduced optimality than that 
of I-HEU, which is a centralized algorithm. We also 
discuss practical uses of MMMKP such as distributed 
Video on Demand service. 
. 
Keywords:  Heuristic, Knapsack, Distributed. 

1 Introduction 
The classical 0-1 Knapsack Problem (KP) is to pick up 
items for a knapsack for maximum total value, so that the 
total resource required does not exceed the resource 
constraint R of the knapsack. The 0-1 classical KP and its 
variants are used in many resource management 
applications such as cargo loading, industrial production, 
menu planning and resource allocation in multimedia 
servers. Let there be n items with values v1,v2,…,vn and 
let  the corresponding resources required to pick the items 
be r1,r2,…,rn respectively. The items can represent 
services and their associated values can be values of 
revenue earned from that service. In mathematical 
notation, the 0-1 Knapsack Problem is to find V = 

maximize , subject to the constraint  

and . 
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The Multidimensional Multiple-choice Knapsack 
Problem (MMKP) is a variant of the classical 0-1 KP 
[5][6]. Let there be n  groups of items. Group i  has 

items. Each item of the group has a particular value and 
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it requires resources. The objective of the MMKP is to 
pick exactly one item from each group for maximum total 
value of the collected items, subject to  resource 
constraints of the knapsack. A resource constraint is the 
availability of a particular type of resource to pick items 
for a particular knapsack. 
We define a new problem, the Multiple-Choice Multi-
Dimension Multi Knapsack Problem (MMMKP) as a 
distributed version of the MMKP, where the resources are 
distributed among knapsacks. There is a solver associated 
with each knapsack for picking the items from the group. 
So, distributed computing techniques will be required for 
picking items. The following diagram shows an example 
of the MMMKP. 
 

v =10 
r121=5, r122=7 

v =14 
r131=4, r132=7

v =9 
r111=5,r112=5 

v =11 
r311=0, r312=4 

Available 
Resource   
Type r1: 5 

Item 3
Available 
resource 
Type r2: 10 

Solver 1 Solver 2 

v =13 
r321=0, r322=8 

Item 2

Item 1

v =0 
r101=0,r102=0 

v =0 
r301=0, r302=0 

Item 0

Knapsack 1 Knapsack 2
Group 1 Group 3  

Figure 1 An MMMKP with 2 knapsacks and one 
resource in each knapsack 

To define the MMMKP mathematically we need the 
following assumptions about the problem. 

• There are M knapsacks.  M solvers (one for each 
knapsack) pick items from the groups. 

• The dimension of resources in Knapsack s is ms and 
it provides resources labelled as μs to μs + ms - 1 
inclusive. The total set of resources of the sth 
knapsack is defined by 
( )11 ,,, −++ ssss mRRR μμμ LLLL .  
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• Each solver is associated with exactly one knapsack. 
Only Solver s knows the entire state of Knapsack s 
and Solver s is solely responsible for allocating the 
resources of Knapsack s. The state information of a 
knapsack, such as   resources used or available, is 
completely private to that knapsack and its solver, 
unless explicitly communicated to another solver by 
messaging.  

• There are n groups of items. The ith group has li 
items. The jth item of the ith group requires rijk of the 
kth resource. Each solver knows which resource is 
served by which knapsack. The value of the jth item 
of the ith group is vij. n groups are distributed among 
M solvers. The number of groups in Solvers 1, 2, 
...,..., M are n1, n2, ...,ns, ..., nM respectively. The 
resource consumptions and associated values of the 
items of the ns local groups of Solver s will not be 
advertised fully to all the solvers. The partial 
resource consumption of an item for a knapsack is 
defined by the resource requirement of the item from 
that knapsack. Thus, partial resource consumption of 
the jth item of the ith group for the resources of 
Knapsack s is expressed by the vector 

( ) ( )( )11 ,,, −++ ssss mijijij rrr μμμ L . The partial resource 
consumption of each item for any knapsack is sent to 
its associated solver. The set of M solvers will jointly 
execute a suitable distributed algorithm to pick 
exactly one item from each group, so that the total 
value of the picked items for the entire set of solvers 
is maximized subject to the resource constraints of 
each knapsack. 

 

In mathematical notation, the MMMKP can be described 
as follows. 

Maximize = , total earned value from the 

picked items of the groups of all servers such that the 

resource constraints  and  

are satisfied. 
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The subscripts are defined as follows:   

• k = μ1, μ1+1,…, μ1+m1-1,… , μs, μs +1,…, μs + ms -
1,……., μM, μM+1,…, μM+mM-1  

• , the picking variables  
• =1, 2… n; j = 1, 2… li. 

For our example in Figure 1 we can express the problem 
as follows: 

Maximize V = , subject to the resource 

constraints  and 
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1.1 MMMKP for Solving Multimedia 
Distribution Problems 

MMMKP can be easily applied to revenue maximization 
problems where we find multiple admission controllers 
for multimedia session requests under a particular 
multimedia service provider organization. With 
MMMKP, the admission controllers may work together 
sharing multimedia session requests and determine the 
optimal serving strategy for maximum revenue. The 
following example demonstrates a viable application of 
MMMKP in Distributed Multimedia Server System. 

 
 

Available 
Resource   
IO: R11 
Memory:R12 
CPU: R13 

m1 m2 

Available 
Resource   
IO: R21 
Memory:R22 
CPU: R23 

m2 m3 

m3 m5 Server1 Server2 

Request1 Request2 Request3 Request4 

Movies Served Movies Served 

11 12r 13r 21r 22r 23r

 
Figure 2 VoD servers serving requests 

 
Consider two “Video-on-Demand” servers each serving 
two different collections or sets of movies as shown in 
Figure 2. A subscriber upon authentication may request 
for a multimedia session to any of the servers. If the 
movie does not reside in the server attempting to process 
it or if the server runs out of resources, the server may 
forward the session request to the other server.   
A multimedia session between the server and the 
subscriber will require allocation of a number of 
resources on part of the server. These resources may 
include but are not limited to: Processing power, physical 
memory and IO capacity. It is allocation of these 
resources that determine a session’s quality of service. 
For sake of simplicity we consider only one level of QoS 
for each of the servers. Real life situations can be more 
complex with multiple QoS levels, separating subscribers 
who pay more for high quality audio-visual feed from 
those who settle for lesser quality.  It is worth mentioning 
that a server has the full authority to allocate and utilize 
its resource only, which is one of the basic principles of 
distributed systems. Hence the problem can be defined as 
that of distributing multimedia session requests between 
the two servers so that maximum number of requests can 
be handled under the given resource constraints, thereby 
maximizing revenue. 
 
From Figure 2 we find that there are 6 resource 
dimensions as expressed by ( r , , , ,  ). 
The first three indicates the resources of Server1 and the 
remaining three indicates the resources of Server2. Figure 
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3 shows an example of different choices of serving the 
requests in further details. 
 
Two solvers are considered representing two servers 
entertaining requests from the customers.  
demands service of movie . As we can see, both of the 
servers have the movie. Hence it is possible to serve the 
request in two different ways, namely Choice1, when 
served by  & Choice2, when served by . A 
generic representation for Choice1 would be ( , , , 

, , ) and ( 0 , , 0 , ,  ) for Choice2. 
Similarly  is for movie  which both  
and offer. Hence we have two choices to have the 
request satisfied. On the other hand movie resides only 
on and  only on  leaving us with a 
single choice for servicing requests concerning each of 
these movies. 

1Request

2Server

12r 13r

1Server

2m

r

1Server

3Request

2

1 5m

11r
0 0

Server

0

Server

0 21 22r

3m

2Server

23r

1m

 

Available 
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Type R13: 19 

Request1(m2) 

Server1 

Solver 1 

Solver 2 

Item 0/ 
Choice 0 

Item 1/ 
Choice 1 

Request2(m5) 

Request3(m3) Request4(m1) 

v = 16 
r11=r12= r13=0 

r21=17, r22=3, r23=5 

Server2 

v = 8 
r11=r12= r13=0 

r21=9, r22=12, r23=7 

v = 15 
r11=r12= r13=0 

r21=5, r22=12, r23=9 

v = 21 
r11=r12= r13=0 

r21=14, r22=8, r23=4 

v = 14 
r11=7, r12=8, r13=11 

r21=r22= r23=0 

v = 18 
r11=13, r12=5, r13=9 

r21=r22= r23=0 

Available 
Resource   
Type R21: 17 
Type R22: 13 
Type R23: 9 

Group 1 Group 2 

Group 3 Group 4  

Figure 3 Multimedia distribution system mapped to 
MMMKP 

The goal of MMMKP in such a Distributed Multimedia 
Server System is to pick exactly one item or QoS from 
each of the Group representing each request. When 
working independently, these servers may not choose the 
combination that is optimal for both of the servers, as 
already pointed out in the introduction section. MMMKP 
allows these two servers to share their decisions of 
resource allocation by passing messages and determines 
the solution that will yield maximum overall revenue. 
 

2 Related Work on Solving Knapsack 
Problems 

Many practical problems in resource management similar 
to the one discussed above can be mapped to the MMKP, 
consequentially their distributed version to MMMKP. But 
proposed exact solutions for MMKP are so 
computationally expensive [3][4][8] that they are not 
feasible for real time applications. In such cases heuristic 
or approximate algorithms for solving the MMKP and 
MMMKP play an important role. 

Over the years, many heuristics have been proposed with 
a view to provide real time solution for MMKP. One of 
the earliest heuristics was HEU, proposed by Khan [7]. 
Khan has applied the concept of aggregate resource 
consumption [9] to pick a new candidate item in a group 
to solve the MMKP. Aggregate resource of the jth item of 

the ith group is defined by CCra k
k

ijkij ×=∑ , where 

Ck= amount of the kth resource consumption and 

∑= 2
kCC

( ) k
k

ijkkiiij Crra ×−=Δ ∑ ][ρ

ijiiij vvv

. His heuristic HEU selects the lowest-
valued items by utility or revenue of each group as an 
initial solution. It then upgrades the solution by choosing 
a new candidate item from a group, which has the highest 
positive Δaij, the change in aggregate consumed resource 
(the item which gives the best revenue with the least 
aggregate resource). If no such item is found then an item 
with the highest (Δvij)/(Δaij) (maximum value gain per 
unit aggregate resource expended) is chosen. Here, 

, the increase in aggregate 

consumed resource. 

 rijk= amount of the kth resource consumption of the jth 
item of the ith group. 

ρ[i]=index of selected item from the ith group and 
−][ρ , is the gain in total value. Δ =

Consequently, Akbar et al. [1] proposed another heuristic 
using the concept of aggregate resource called M-HEU, a 
modified version of Khan’s HEU. In M-HEU the items in 
each group of the MMKP are sorted in non-decreasing 
order according to the value associated with each item. 
Hence, it can be said that in each group the bottom items 
are lower-valued items than the top ones. The items at the 
top can be defined as higher-valued items than those in 
the bottom. Picking a higher-valued or lower-valued item 
than the currently selected item in a group is called an 
upgrade or a downgrade respectively. The heuristic 
focuses on finding an upgrade or downgrade frequently. 
That is why the items of each group need to be sorted 
according to the associated values of the items. If a 
particular pick of items (one from each group) does not 
satisfy the resource constraints, that solution is defined as 
infeasible. A feasible solution is a solution that satisfies 
the resource constraints. For any resource k, infeasibility 
factor fk is defined as kk R

1
C . The kth resource is feasible 

if the infeasibility factor ≤kf , otherwise it is infeasible. 
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If the number of groups in the MMKP is very large then it 
is not possible to run M-HEU once every few seconds, as 
a real time system, (for example a multimedia system 
with 10,000 sessions) might well require. An incremental 
solution is a necessity to achieve better computation 
speed. By changing the technique of finding feasible 
solution M-HEU can be used to solve the MMKP 
incrementally, starting from an already solved MMKP.  
Akbar et al. named this heuristic I-HEU [1]. The 
proposed arbitrated heuristic A-HEU applies I-HEU in 
the solvers to select the probable candidate of the selected 
items. The steps of I-HEU are briefly described as 
follows: 

Finding Feasible Solution (Step 1): In I-HEU a feasible 
solution is searched by selecting a lower valued item at 
first. If no feasible solution is found by searching lower 
valued item then higher valued items are looked up, like 
M-HEU. In this way most of the solution at hand can be 
re-used to obtain the new solution with less effort. 
 
Upgrading Feasible Solution (Step 2): This is done by 
iimproving the solution value by selecting a feasible 
higher-valued item from the groups subject to resource 
constraints, i.e., by feasible upgrades. 

 
Upgrade followed by Downgrades (Step 3): In this step 
the solution value is improved by one infeasible upgrade 
followed by one or more downgrades. This is analogous 
to get rid of local minima in the hill climbing algorithm. 

 
Shahriar [11] presented a scalable solution to run MMKP 
heuristic using a multiple processor based computing 
server by distributing the computation among the 
processing nodes. But the presented algorithm is not 
intended for running the new problem that we have 
presented in this article. 
 
In the following section, we present A-HEU, a new 
arbitrated heuristic, to determine the solution of the 
MMMKP by arbitrating among the solvers with a lower 
number of messages. But the total value of the items 
picked by A-HEU is often less than that of the centralized 
version. 
 

3 Arbitrated Heuristic (A-HEU) for Solving 
the MMMKP 

This method of solving MMMKP requires a few 
messages with several rounds of arbitrations; its message 
passing complexity is O(M). The solver in each knapsack 
runs I-HEU independently. The candidate for upgrades 
and downgrades are calculated based on the value of 
PCAR (Partial Change of Aggregate Resource) defined as 
follows: 

( ) k

m

k
ijkkiiijs Crrpa

ss

s

×−=Δ ∑
−+

=

1

][

μ

μ
ρ  

Hence, as a simplifying assumption, the resources in 
other knapsacks are completely ignored in this 
calculation. To find a feasible solution we first run Step 1 

of I-HEU in each solver. If each solver finds a feasible 
solution and each solver satisfies the resource constraint 
of all the selected items from each group, then we find a 
feasible solution. Now, to find upgrades and downgrades, 
each solver sends its proposed list of selected items, 
calculated by running Step 2 and 3 of I-HEU, to the other 
solvers. The proposed list is sorted according to change of 
value per PCAR. It is worth mentioning that to find the 
globally selected items according to the values of PCAR 
the list must be sent along with the associated values of 
PCAR. The items in this sorted list, which satisfy the 
resource constraints of all the knapsacks, can be selected. 
Thus arbitration among the solvers is required to select 
items from the groups.  

The same procedure can then be repeated until we run out 
of real time, to attempt to obtain better total values. Here 
we present an arbitration technique to select the items 
which requires only O(M) message complexity. The 
following example shows only one arbitration step of A-
HEU. 
 
If we run I-HEU in both the solvers of Figure 4 
independently, the solution can be shown in Table 1.  As 
the lowest valued items are all zero, we need not find a 
feasible solution. Picking the jth item of the ith group can 
be expressed by ( )ji, . The proposed lists by Solvers 1 
and 2 are ({ ) })2,2(,3,1 ( ){ })3,4(,2,3 and  respectively. 
These lists are exchanged between the solvers. The sorted 
global list after merging these proposed lists is 
({ ) ( ) })2,2(),2,3(,3,4,3,1 . Now the feasible picks by Solver 

1 are ( ) ( ){ })2,3(,3,4,3,1 ∑ = 141r

( ) ( )}3,4,3,1

 with . Similarly the 

feasible picks by Solver 2 are {  with 

∑ = 152r

( )

.  So Solver 1 and 2 can satisfy the first 3 and 
2 picks respectively from the proposed sorted list of 
selected items. They exchange this information and take 
the set intersection of their possible solutions; namely, 
they pick the first 2 items from the proposed list. Hence 
the solution after the first arbitration is ( )3,4,3,1{ } with 

∑ = 141r , ∑ = 152r 31=and V . 
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v =12 
r421=7, r422=7 
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v =13 
r321=0, r322=8 

v =11 
r211=12, r212=0 

v =12 
r221=13, r222=0 

Group 2 
Knapsack 1

Solver 1 

Solver 2 

v =0 
r101=0,r102=0 

v =0 
r401=0, r402=0 

v =0 
r301=0, r302=0 

v =0 
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Total 
Resource   
Type r1: 23 
 
Consumed 
Resource  
C1: 0 

Total 
Resource   
Type r2: 16
 
Consumed 
Resource 
C2: 0 

 

 
Figure 4 An MMMKP with two knapsacks. 

 
Groups Picke

d 
Items 

Change of 
value per 
PCAR 

Resource 
consumption 

Group 1 3 3.5 Resource 
consumption in 
Solver 1:  ∑ = 171r

Group 2 2 0.923 

Group 3 2 1.625 Resource 
consumption in 
Solver 2: 

 ∑ = 162r

Group 4 3 2.125 

Table 1 Items picked by Solver 1 and 2 by running I-
HEU independently 

3.1 Format of the Messages  
The messages required to run A-HEU are listed and 
briefly described as follows. 

 
Message 
Type 

Description of the structure Monitor 
counter 
associated with 
the message 

Groups This is a list of groups. Each 

group is defined by (solver 

number, group number, 

number of items, partial 

resource requirements for the 

items) 

no_of_groups_m
sgs 

Message 
Type 

Description of the structure Monitor 
counter 
associated with 
the message 

Local Total 
Value 

The vector (solver number, 
total value) indicates the total 
value of the items picked by a 
solver. 

no_of_local_tota

l_value 

_msgs 

Proposed 
Selected 
Item List 

The following vector is used to 
define a proposed selected item  

(solver number, group number, 
item number, value per PCAR) 

no_of_local_pro
posed_list_msgs 

Local 
Feasibility 
Index 

The vector (s, L) indicates that 
the first L items from the 
beginning of  the global 
proposed selected item list are 
feasible with respect to the 
resources in Solver s. 

no_of_local_feas
ibilty_msgs 

Solution 
Not Found 

This message indicates that a 
solver could not find any 
solution while determining 
proposed selected items for 
feasible solution. 

Not applicable 
because the 
solver terminates 
if this message is 
received. 

 
Table 2 Different Types of Messages used in A-HEU. 

3.2 Sequence of Events in A-HEU 
 

Waiting for messages 
from a solver 

Saving PCARs

no_of_local_proposed_ 
list_msgs<no_of_solver

Notify the 
sender thread 

Saving proposed selected 
items of other solvers 

Saving local 
feasibility index 

no_of_local_feasibility
_index < no_of_solvers

.......................

......
................
.............

proposed selected items Local infeasibility index

Yes 

No 

Yes 

No Notify the 
sender thread 

Receiver Thread  
Figure 5 Flow chart of distributed computation by A-

HEU (Receiver Thread) 
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Figure 5 and 6 shows the flow chart of the processes and 
events in A-HEU during each arbitration. We allocate 
separate variables for each solver’s list of proposed 
selected items and local feasibility index. Thus, the 
actions ‘saving proposed selected items’ and ‘saving local 
feasibility index’ executed by the receiver threads need 
not to be atomic or synchronized. The decision blocks in 
the flow chart check counters shared by all threads, so, 
these decision blocks must be synchronized. 

 
 

Determining the proposed 
selected items and sending it to 
the other solvers 

no_of_local_proposed_ 
list_msgs<no_of_solvers 

Waiting for notification of all 
proposed item lists received  

Sorting proposed selected items 
Determining local feasibility index 
and sending it to other solvers 

Yes 

no_of_local_feasibility_index 
< no_of_solvers 

No 

Determining the global feasibility 
index and updating the selected 
items. 

Yes No 

Waiting for notification of all 
local feasibility index received 

Sender Thread 
 

Figure 6 Flow chart of distributed computation by A-
HEU (Sender Thread) 

3.3 Complexity of A-HEU 
Here we present the computational and message passing 
complexity by one arbitration of A-HEU as the first 
arbitration yields near optimal total value while the 
following iterations improve the solution with increased 
total values. 

Computational complexity to run I-HEU on an MMKP 
with Mn groups and Mm resources is 

2
2

)1(3
−⎟

⎠
⎞

⎜
⎝
⎛ l

M
n

M
m in Step 2 and 2

2

)1(17
−⎟

⎠
⎞

⎜
⎝
⎛ − l

M
n

M
m  to 

escape from local minima in Step 3. 

We require the following messages and computations in 
each arbitration to find the candidate items for upgrading 
or downgrading: 

( )12 M − messages to send local proposed list of selected 
items. 

( )
2

1−nn floating point operations to sort the locally 

proposed lists to determine the global proposed list. 

⎟
⎠
⎞

⎜
⎝
⎛ + M

M
nm2 comparisons to find the local and global 

feasibility index. Thus computation and message passing 

complexities in each solver are ⎟
⎠

⎞
⎜
⎝

⎛ −
3

22 )1(
M
mlnO  and 

( )MO

5,21

 respectively. 

4 Experimental Results 
In order to study the run-time performance of A-HEU to 
solve the MMMKP we implemented A-HEU along with 
I-HEU using Java. For simplicity of the implementation, 
we assume: 

• Each group has the same number of items i.e., 
= = = =nlll LL

4,21 ==

  

• Each knapsack has the same number of resources i.e., 
= = = mmmm MLL

cM nnnn

.  

• Each solver has the same number of groups i.e., 
= = = =LL,21 .  

The algorithms were tested for an MMMKP with 3 
knapsacks. Three different machines were used as three 
different solvers and a fourth machine was used as a 
generator of the MMMKP. The generator generates the 
groups of the MMMKP and sends them to the solvers. 
The generator machine also runs I-HEU on the 
transformed MMKP from the generated MMMKP. 

4.1 Test Pattern Generation 
The total amount of resources in the knapsacks, resource 
consumption by the items, and the values associated with 
the items are initialized as follows. 
Rc = Maximum amount of a resource consumption by an 
item 
Pc = Maximum cost per unit resource 
Ri = Total amount of the ith resource = nc×M×Rc. 
Pk = Cost of the kth resource = Pc × Random (0.0, 1.0) 
Random (0.0, 1.0) = A uniform continuous random 
number from 0.0 to 1.0. 
Item 0 with zero value and zero resource consumption, 
i.e., ri0k = 0.0 and vi0 = 0.0 is inserted for each group of 
the data set. Selection of this item indicates rejection of 
the group which is similar to the rejection of request in 
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the admission controller. The other items of the groups 
are initialized by the following random functions: 
rijk = The kth resource of the jth item of the ith group = Rc 
× Random (0.0, 1.0) 
For initializing item values we use the following 
functions: 
vij = Value of the jth item of the ith group 

=∑ ⎟
⎠

⎞
⎜
⎝

⎛
××××+×

1010
)0.1,0.0( cc

kijk
PR

MmRandomPr   

4.2 Test Results 
The experiment was conducted for different values of nc, 
from 100 up to 1000. The following data was collected 
from the experiments and is presented in Figure 7 to 
Figure 9. 

• Total values of the picked items and time required by 
I-HEU 

• Number of messages required by A-HEU 

• Required time, total value of the picked items and 
number of messages by one, two and three 
arbitrations of A-HEU 

 
In the experiment we have compared A-HEU with the 
centralized version I-HEU. There is no algorithm prosed 
so far in the literature to solve the MMMKP. That is why 
we present the effectiveness of A-HEU with respect to I-
HEU by analyzing experimental results. 
 

Machine 
name 

CPU speed RAM O/S  JDK 
Versio
ns 

Solver 1 750 MHz 256 MB Windows 
2000 

JDK 
1.2.2 

Solver 2 700 MHz 192 MB Windows 
2000 

JDK 
1.3.1_0
3 

Solver 3 750 MHz 256 MB Windows 
2000 

JDK 
1.2.2 

Generator 700 MHz 192 MB Windows 
2000 

JDK 
1.3.1_0
3 

Table 3 Specifications of the solvers and generator of 
the MMMKP using IBM PC compatible. 
 

4.3 Observations   

• The total value of the items picked by A-HEU is 
approximately 90% of the total value of the items 
picked by D-HEU, but A-HEU requires a less time 
compared to D-HEU. 

• Figure 9 shows the effect of message passing time in 
the overall complexity of the algorithm. For smaller 
data sets computational time is less compared to 
message passing. For larger data sets quadratic 
computation complexity of the algorithms dominates 
over linear message complexity. That is why better 
performance is observed for the larger data sets. 

• We can easily conclude that A-HEU scales better 
than centralized I-HEU. We observe significant 
reduction in time requirement using A-HEU as 
reported by the time requirement data plotted in the 
exponential scale of the vertical axis. 

• An irregular behaviour for the result of the set with 
700 groups is observed in the figures showing the 
experimental results. Our complexity analysis 
presenting in this article is based on the worst case 
scenario. The actual computational time mostly 
depends on the data sets. A particular data set may 
lead to quick or late convergence to find the solution 
of the MMMKP showing exceptional behaviour in 
the result. 

• For almost all the MMMKP data sets the total value 
of the items picked by first arbitration of A-HEU is 
more than 95% of the total value of the items finally 
picked by A-HEU. 

 
 

Number of 
groups in 
each 
solver 
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V
V
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−
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HEUI

HEUA

V
V
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−
2

100
 

×  100

3

×
−

−

HEUI

HEUA

V
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−

−

HEUI

HEUA

V
V

  

100 92.63 93.07 93.07 93.07 
200 90.71 91.15 91.15 91.15 
300 92.27 92.56 92.56 92.56 
400 91.43 91.52 91.52 91.52 
500 91.35 91.35 91.35 91.35 
600 92.43 92.43 92.43 92.43 
700 74.40 87.80 87.91 88.12 
800 92.05 92.05 92.05 92.05 
900 91.64 91.71 91.71 91.71 

1000 92.57 92.77 92.80 92.80 
Table 4 Ratio of total value of the items picked by A-
HEU with respect to I-HEU. V  indicates the 
total value of the items picked by the ith arbitration of 
A-HEU. V  and  V  indicates the total value 
of the items picked by  A-HEU and I-HEU. 

i
HEUA−

HEUA− HEUI −
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Figure 7 Total value of the items picked by A-HEU, D-
HEU and I-HEU 
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Figure 8 Number of messages required by distributed 

algorithms to solve the MMMKP. 
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4.4 Discussion of the Performance of A-HEU 

• An arbitration in A-HEU requires a few messages 
compared to any other regular distributed computing 
algorithms. So an iteration of A-HEU can be easily 
applicable for on line admission control algorithms. 
The admission control algorithm can execute further 
arbitration for better values if it has a more relaxed 
time constraint. Thus this algorithm is very suitable 
for an online system that requires quick decisions 
with a sub optimal total value, with the possibility of 
using more available time to improve the quality of 
the computation. 

• The main reason for sub optimality in A-HEU lies in 
not considering all resource requirements in the 
preliminary selection.  

• The arbitration technique for finding global 
feasibility index is another reason for sub optimality. 
We give up upgrading from the proposed list of 
selected items if we get one infeasible upgrade in the 
list. The very next item might be feasible. A new 
arbitration technique with O(nM) message 
complexity might do that. However, if we do the 
arbitration again, with a newly calculated proposed 
selected item list for better total value, the competent 
items will get a chance to be selected. That is why 
we prefer multiple iterations of the arbitration, to a 
new arbitration technique with O(nM) message 
complexity. 

• If the items of the groups consume all the resources 
of all knapsacks uniformly then A-HEU is unlikely 
to get better total value in the next arbitration, 
because a particular resource has already been 
exhausted in the previous arbitration.  

 
In practical cases, such as multimedia servers and 
Enterprise Networks, a QoS level of a session requires 
resources of a particular server or a particular network 
link. So there is a chance to allocate available resources 
to other selected items of the groups in the next 
arbitration. 
 

5 Conclusion 
In this article we have presented a new variant of 
knapsack problems which requires distributed algorithm 
to solve the problem. Our proposed new algorithm A-
HEU achieves almost 90% optimality of I-HEU in 

( )3
1

MO
of the computation time required by I-HEU and 

O(M) message passing where M is the number of solvers 
in the system. The experimental results show that the 
message passing time can be ignored for a larger problem 
set. Thus the new algorithm presents a scalable with the 
scope of distributed control. This particular problem is 
very much applicable for different resource sharing 
system in the distributed real time systems. This 
algorithm is a potential candidate for admission 
controlling in distributed real time systems. 
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