
A Distributed Heuristic Solution using Arbitration for the
MMMKP

Md. Mostofa Akbar1, Eric. G. Manning3, Gholamali C. Shoja2, Steven Shelford4
Tareque Hossain5

1
Department of CSE, BUET, Dhaka, Bangladesh

mostofa@cse.buet.ac.bd
2
Department of CS, PANDA Group, UVic, Victoria, BC, Canada

gshoja@csc.uvic.ca
3
Department of CS and ECE, PANDA Group, UVic, Victoria, BC, Canada

emanning@csr.uvic.ca
4
Department of CS, UVic, Victoria, BC, Canada

sshelfor@uvic.ca
5
Commlink Info Tech Ltd., R&D Group, Dhaka, Bangladesh

tareque@commlinkinfotech.com

Abstract

The Multiple-Choice Multi-Dimension Multi Knapsack
Problem (MMMKP) is the distributed version of
Multiple-Choice Multi-Dimension Knapsack Problem
(MMKP), a variant of the 0-1 classic Knapsack Problem.
Algorithms for finding the exact solution of MMKP as
well as MMMKP are not suitable for application in real
time decision-making applications. This paper presents a
new heuristic algorithm, Arbitrated Heuristic (A-HEU)
for solving MMMKP. A-HEU finds the solution with a
few messages at the cost of reduced optimality than that
of I-HEU, which is a centralized algorithm. We also
discuss practical uses of MMMKP such as distributed
Video on Demand service.
.
Keywords: Heuristic, Knapsack, Distributed.

1 Introduction
The classical 0-1 Knapsack Problem (KP) is to pick up
items for a knapsack for maximum total value, so that the
total resource required does not exceed the resource
constraint R of the knapsack. The 0-1 classical KP and its
variants are used in many resource management
applications such as cargo loading, industrial production,
menu planning and resource allocation in multimedia
servers. Let there be n items with values v1,v2,…,vn and
let the corresponding resources required to pick the items
be r1,r2,…,rn respectively. The items can represent
services and their associated values can be values of
revenue earned from that service. In mathematical
notation, the 0-1 Knapsack Problem is to find V =

maximize , subject to the constraint

and .

i

n

i
i vx∑

=1
Rrx

n

i
i ≤∑

=1

∈ix

il

i

}1,0{
The Multidimensional Multiple-choice Knapsack
Problem (MMKP) is a variant of the classical 0-1 KP
[5][6]. Let there be n groups of items. Group i has

items. Each item of the group has a particular value and

m

m

it requires resources. The objective of the MMKP is to
pick exactly one item from each group for maximum total
value of the collected items, subject to resource
constraints of the knapsack. A resource constraint is the
availability of a particular type of resource to pick items
for a particular knapsack.
We define a new problem, the Multiple-Choice Multi-
Dimension Multi Knapsack Problem (MMMKP) as a
distributed version of the MMKP, where the resources are
distributed among knapsacks. There is a solver associated
with each knapsack for picking the items from the group.
So, distributed computing techniques will be required for
picking items. The following diagram shows an example
of the MMMKP.

v =10
r121=5, r122=7

v =14
r131=4, r132=7

v =9
r111=5,r112=5

v =11
r311=0, r312=4

Available
Resource
Type r1: 5

Item 3
Available
resource
Type r2: 10

Solver 1 Solver 2

v =13
r321=0, r322=8

Item 2

Item 1

v =0
r101=0,r102=0

v =0
r301=0, r302=0

Item 0

Knapsack 1 Knapsack 2
Group 1 Group 3

Figure 1 An MMMKP with 2 knapsacks and one
resource in each knapsack

To define the MMMKP mathematically we need the
following assumptions about the problem.

• There are M knapsacks. M solvers (one for each
knapsack) pick items from the groups.

• The dimension of resources in Knapsack s is ms and
it provides resources labelled as μs to μs + ms - 1
inclusive. The total set of resources of the sth
knapsack is defined by
()11 ,,, −++ ssss mRRR μμμ LLLL .

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

31

• Each solver is associated with exactly one knapsack.
Only Solver s knows the entire state of Knapsack s
and Solver s is solely responsible for allocating the
resources of Knapsack s. The state information of a
knapsack, such as resources used or available, is
completely private to that knapsack and its solver,
unless explicitly communicated to another solver by
messaging.

• There are n groups of items. The ith group has li
items. The jth item of the ith group requires rijk of the
kth resource. Each solver knows which resource is
served by which knapsack. The value of the jth item
of the ith group is vij. n groups are distributed among
M solvers. The number of groups in Solvers 1, 2,
...,..., M are n1, n2, ...,ns, ..., nM respectively. The
resource consumptions and associated values of the
items of the ns local groups of Solver s will not be
advertised fully to all the solvers. The partial
resource consumption of an item for a knapsack is
defined by the resource requirement of the item from
that knapsack. Thus, partial resource consumption of
the jth item of the ith group for the resources of
Knapsack s is expressed by the vector

() ()()11 ,,, −++ ssss mijijij rrr μμμ L . The partial resource
consumption of each item for any knapsack is sent to
its associated solver. The set of M solvers will jointly
execute a suitable distributed algorithm to pick
exactly one item from each group, so that the total
value of the picked items for the entire set of solvers
is maximized subject to the resource constraints of
each knapsack.

In mathematical notation, the MMMKP can be described
as follows.

Maximize = , total earned value from the

picked items of the groups of all servers such that the

resource constraints and

are satisfied.

V ∑∑
= =i j

ijijvx
1 1

∑∑
= =

n

i

l

j

i

1 1

n li

il

}1,0{∈ijx
i

∑∑
= =

2

1 1i

l

j
ijij

i

vx

=1 ,5

∑∑
= =

2

1 1i

l

j
ij rx

i

≤ kijkij Rrx , ∑
=

=
j

ijx
1

1

The subscripts are defined as follows:

• k = μ1, μ1+1,…, μ1+m1-1,… , μs, μs +1,…, μs + ms -
1,……., μM, μM+1,…, μM+mM-1

• , the picking variables
• =1, 2… n; j = 1, 2… li.

For our example in Figure 1 we can express the problem
as follows:

Maximize V = , subject to the resource

constraints and

∑∑
= =

≤
1

1

l

j
ijij Rrx

i

=2 10R

2

1i

≤2ij

1.1 MMMKP for Solving Multimedia
Distribution Problems

MMMKP can be easily applied to revenue maximization
problems where we find multiple admission controllers
for multimedia session requests under a particular
multimedia service provider organization. With
MMMKP, the admission controllers may work together
sharing multimedia session requests and determine the
optimal serving strategy for maximum revenue. The
following example demonstrates a viable application of
MMMKP in Distributed Multimedia Server System.

Available
Resource
IO: R11
Memory:R12
CPU: R13

m1 m2

Available
Resource
IO: R21
Memory:R22
CPU: R23

m2 m3

m3 m5 Server1 Server2

Request1 Request2 Request3 Request4

Movies Served Movies Served

11 12r 13r 21r 22r 23r

Figure 2 VoD servers serving requests

Consider two “Video-on-Demand” servers each serving
two different collections or sets of movies as shown in
Figure 2. A subscriber upon authentication may request
for a multimedia session to any of the servers. If the
movie does not reside in the server attempting to process
it or if the server runs out of resources, the server may
forward the session request to the other server.
A multimedia session between the server and the
subscriber will require allocation of a number of
resources on part of the server. These resources may
include but are not limited to: Processing power, physical
memory and IO capacity. It is allocation of these
resources that determine a session’s quality of service.
For sake of simplicity we consider only one level of QoS
for each of the servers. Real life situations can be more
complex with multiple QoS levels, separating subscribers
who pay more for high quality audio-visual feed from
those who settle for lesser quality. It is worth mentioning
that a server has the full authority to allocate and utilize
its resource only, which is one of the basic principles of
distributed systems. Hence the problem can be defined as
that of distributing multimedia session requests between
the two servers so that maximum number of requests can
be handled under the given resource constraints, thereby
maximizing revenue.

From Figure 2 we find that there are 6 resource
dimensions as expressed by (r , , , ,).
The first three indicates the resources of Server1 and the
remaining three indicates the resources of Server2. Figure

CRPIT Volume 107 - Parallel and Distributed Computing 2010

32

3 shows an example of different choices of serving the
requests in further details.

Two solvers are considered representing two servers
entertaining requests from the customers.
demands service of movie . As we can see, both of the
servers have the movie. Hence it is possible to serve the
request in two different ways, namely Choice1, when
served by & Choice2, when served by . A
generic representation for Choice1 would be (, , ,

, ,) and (0 , , 0 , ,) for Choice2.
Similarly is for movie which both
and offer. Hence we have two choices to have the
request satisfied. On the other hand movie resides only
on and only on leaving us with a
single choice for servicing requests concerning each of
these movies.

1Request

2Server

12r 13r

1Server

2m

r

1Server

3Request

2

1 5m

11r
0 0

Server

0

Server

0 21 22r

3m

2Server

23r

1m

Available
Resource
Type R11: 14
Type R12: 20
Type R13: 19

Request1(m2)

Server1

Solver 1

Solver 2

Item 0/
Choice 0

Item 1/
Choice 1

Request2(m5)

Request3(m3) Request4(m1)

v = 16
r11=r12= r13=0

r21=17, r22=3, r23=5

Server2

v = 8
r11=r12= r13=0

r21=9, r22=12, r23=7

v = 15
r11=r12= r13=0

r21=5, r22=12, r23=9

v = 21
r11=r12= r13=0

r21=14, r22=8, r23=4

v = 14
r11=7, r12=8, r13=11

r21=r22= r23=0

v = 18
r11=13, r12=5, r13=9

r21=r22= r23=0

Available
Resource
Type R21: 17
Type R22: 13
Type R23: 9

Group 1 Group 2

Group 3 Group 4

Figure 3 Multimedia distribution system mapped to
MMMKP

The goal of MMMKP in such a Distributed Multimedia
Server System is to pick exactly one item or QoS from
each of the Group representing each request. When
working independently, these servers may not choose the
combination that is optimal for both of the servers, as
already pointed out in the introduction section. MMMKP
allows these two servers to share their decisions of
resource allocation by passing messages and determines
the solution that will yield maximum overall revenue.

2 Related Work on Solving Knapsack
Problems

Many practical problems in resource management similar
to the one discussed above can be mapped to the MMKP,
consequentially their distributed version to MMMKP. But
proposed exact solutions for MMKP are so
computationally expensive [3][4][8] that they are not
feasible for real time applications. In such cases heuristic
or approximate algorithms for solving the MMKP and
MMMKP play an important role.

Over the years, many heuristics have been proposed with
a view to provide real time solution for MMKP. One of
the earliest heuristics was HEU, proposed by Khan [7].
Khan has applied the concept of aggregate resource
consumption [9] to pick a new candidate item in a group
to solve the MMKP. Aggregate resource of the jth item of

the ith group is defined by CCra k
k

ijkij ×=∑ , where

Ck= amount of the kth resource consumption and

∑= 2
kCC

() k
k

ijkkiiij Crra ×−=Δ ∑][ρ

ijiiij vvv

. His heuristic HEU selects the lowest-
valued items by utility or revenue of each group as an
initial solution. It then upgrades the solution by choosing
a new candidate item from a group, which has the highest
positive Δaij, the change in aggregate consumed resource
(the item which gives the best revenue with the least
aggregate resource). If no such item is found then an item
with the highest (Δvij)/(Δaij) (maximum value gain per
unit aggregate resource expended) is chosen. Here,

, the increase in aggregate

consumed resource.

 rijk= amount of the kth resource consumption of the jth
item of the ith group.

ρ[i]=index of selected item from the ith group and
−][ρ , is the gain in total value. Δ =

Consequently, Akbar et al. [1] proposed another heuristic
using the concept of aggregate resource called M-HEU, a
modified version of Khan’s HEU. In M-HEU the items in
each group of the MMKP are sorted in non-decreasing
order according to the value associated with each item.
Hence, it can be said that in each group the bottom items
are lower-valued items than the top ones. The items at the
top can be defined as higher-valued items than those in
the bottom. Picking a higher-valued or lower-valued item
than the currently selected item in a group is called an
upgrade or a downgrade respectively. The heuristic
focuses on finding an upgrade or downgrade frequently.
That is why the items of each group need to be sorted
according to the associated values of the items. If a
particular pick of items (one from each group) does not
satisfy the resource constraints, that solution is defined as
infeasible. A feasible solution is a solution that satisfies
the resource constraints. For any resource k, infeasibility
factor fk is defined as kk R

1
C . The kth resource is feasible

if the infeasibility factor ≤kf , otherwise it is infeasible.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

33

If the number of groups in the MMKP is very large then it
is not possible to run M-HEU once every few seconds, as
a real time system, (for example a multimedia system
with 10,000 sessions) might well require. An incremental
solution is a necessity to achieve better computation
speed. By changing the technique of finding feasible
solution M-HEU can be used to solve the MMKP
incrementally, starting from an already solved MMKP.
Akbar et al. named this heuristic I-HEU [1]. The
proposed arbitrated heuristic A-HEU applies I-HEU in
the solvers to select the probable candidate of the selected
items. The steps of I-HEU are briefly described as
follows:

Finding Feasible Solution (Step 1): In I-HEU a feasible
solution is searched by selecting a lower valued item at
first. If no feasible solution is found by searching lower
valued item then higher valued items are looked up, like
M-HEU. In this way most of the solution at hand can be
re-used to obtain the new solution with less effort.

Upgrading Feasible Solution (Step 2): This is done by
iimproving the solution value by selecting a feasible
higher-valued item from the groups subject to resource
constraints, i.e., by feasible upgrades.

Upgrade followed by Downgrades (Step 3): In this step
the solution value is improved by one infeasible upgrade
followed by one or more downgrades. This is analogous
to get rid of local minima in the hill climbing algorithm.

Shahriar [11] presented a scalable solution to run MMKP
heuristic using a multiple processor based computing
server by distributing the computation among the
processing nodes. But the presented algorithm is not
intended for running the new problem that we have
presented in this article.

In the following section, we present A-HEU, a new
arbitrated heuristic, to determine the solution of the
MMMKP by arbitrating among the solvers with a lower
number of messages. But the total value of the items
picked by A-HEU is often less than that of the centralized
version.

3 Arbitrated Heuristic (A-HEU) for Solving
the MMMKP

This method of solving MMMKP requires a few
messages with several rounds of arbitrations; its message
passing complexity is O(M). The solver in each knapsack
runs I-HEU independently. The candidate for upgrades
and downgrades are calculated based on the value of
PCAR (Partial Change of Aggregate Resource) defined as
follows:

() k

m

k
ijkkiiijs Crrpa

ss

s

×−=Δ ∑
−+

=

1

][

μ

μ
ρ

Hence, as a simplifying assumption, the resources in
other knapsacks are completely ignored in this
calculation. To find a feasible solution we first run Step 1

of I-HEU in each solver. If each solver finds a feasible
solution and each solver satisfies the resource constraint
of all the selected items from each group, then we find a
feasible solution. Now, to find upgrades and downgrades,
each solver sends its proposed list of selected items,
calculated by running Step 2 and 3 of I-HEU, to the other
solvers. The proposed list is sorted according to change of
value per PCAR. It is worth mentioning that to find the
globally selected items according to the values of PCAR
the list must be sent along with the associated values of
PCAR. The items in this sorted list, which satisfy the
resource constraints of all the knapsacks, can be selected.
Thus arbitration among the solvers is required to select
items from the groups.

The same procedure can then be repeated until we run out
of real time, to attempt to obtain better total values. Here
we present an arbitration technique to select the items
which requires only O(M) message complexity. The
following example shows only one arbitration step of A-
HEU.

If we run I-HEU in both the solvers of Figure 4
independently, the solution can be shown in Table 1. As
the lowest valued items are all zero, we need not find a
feasible solution. Picking the jth item of the ith group can
be expressed by ()ji, . The proposed lists by Solvers 1
and 2 are ({) })2,2(,3,1 (){ })3,4(,2,3 and respectively.
These lists are exchanged between the solvers. The sorted
global list after merging these proposed lists is
({) () })2,2(),2,3(,3,4,3,1 . Now the feasible picks by Solver

1 are () (){ })2,3(,3,4,3,1 ∑ = 141r

() ()}3,4,3,1

 with . Similarly the

feasible picks by Solver 2 are { with

∑ = 152r

()

. So Solver 1 and 2 can satisfy the first 3 and
2 picks respectively from the proposed sorted list of
selected items. They exchange this information and take
the set intersection of their possible solutions; namely,
they pick the first 2 items from the proposed list. Hence
the solution after the first arbitration is ()3,4,3,1{ } with

∑ = 141r , ∑ = 152r 31=and V .

CRPIT Volume 107 - Parallel and Distributed Computing 2010

34

v =10
r121=5, r122=7

v =14
r131=4, r132=7

v =9
r111=5,r112=5

v =11
r311=0, r312=4

v =12
r421=7, r422=7

v =7
r411=5, r412=3

v =17
r431=10, r432=8

Knapsack 2

Group 1

Group 3 Group 4

v =13
r321=0, r322=8

v =11
r211=12, r212=0

v =12
r221=13, r222=0

Group 2
Knapsack 1

Solver 1

Solver 2

v =0
r101=0,r102=0

v =0
r401=0, r402=0

v =0
r301=0, r302=0

v =0
r201=0, r202=0

Total
Resource
Type r1: 23

Consumed
Resource
C1: 0

Total
Resource
Type r2: 16

Consumed
Resource
C2: 0

Figure 4 An MMMKP with two knapsacks.

Groups Picke

d
Items

Change of
value per
PCAR

Resource
consumption

Group 1 3 3.5 Resource
consumption in
Solver 1: ∑ = 171r

Group 2 2 0.923

Group 3 2 1.625 Resource
consumption in
Solver 2:

 ∑ = 162r

Group 4 3 2.125

Table 1 Items picked by Solver 1 and 2 by running I-
HEU independently

3.1 Format of the Messages
The messages required to run A-HEU are listed and
briefly described as follows.

Message
Type

Description of the structure Monitor
counter
associated with
the message

Groups This is a list of groups. Each

group is defined by (solver

number, group number,

number of items, partial

resource requirements for the

items)

no_of_groups_m
sgs

Message
Type

Description of the structure Monitor
counter
associated with
the message

Local Total
Value

The vector (solver number,
total value) indicates the total
value of the items picked by a
solver.

no_of_local_tota

l_value

_msgs

Proposed
Selected
Item List

The following vector is used to
define a proposed selected item

(solver number, group number,
item number, value per PCAR)

no_of_local_pro
posed_list_msgs

Local
Feasibility
Index

The vector (s, L) indicates that
the first L items from the
beginning of the global
proposed selected item list are
feasible with respect to the
resources in Solver s.

no_of_local_feas
ibilty_msgs

Solution
Not Found

This message indicates that a
solver could not find any
solution while determining
proposed selected items for
feasible solution.

Not applicable
because the
solver terminates
if this message is
received.

Table 2 Different Types of Messages used in A-HEU.

3.2 Sequence of Events in A-HEU

Waiting for messages
from a solver

Saving PCARs

no_of_local_proposed_
list_msgs<no_of_solver

Notify the
sender thread

Saving proposed selected
items of other solvers

Saving local
feasibility index

no_of_local_feasibility
_index < no_of_solvers

.......................

......
................
.............

proposed selected items Local infeasibility index

Yes

No

Yes

No Notify the
sender thread

Receiver Thread
Figure 5 Flow chart of distributed computation by A-

HEU (Receiver Thread)

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

35

Figure 5 and 6 shows the flow chart of the processes and
events in A-HEU during each arbitration. We allocate
separate variables for each solver’s list of proposed
selected items and local feasibility index. Thus, the
actions ‘saving proposed selected items’ and ‘saving local
feasibility index’ executed by the receiver threads need
not to be atomic or synchronized. The decision blocks in
the flow chart check counters shared by all threads, so,
these decision blocks must be synchronized.

Determining the proposed
selected items and sending it to
the other solvers

no_of_local_proposed_
list_msgs<no_of_solvers

Waiting for notification of all
proposed item lists received

Sorting proposed selected items
Determining local feasibility index
and sending it to other solvers

Yes

no_of_local_feasibility_index
< no_of_solvers

No

Determining the global feasibility
index and updating the selected
items.

Yes No

Waiting for notification of all
local feasibility index received

Sender Thread

Figure 6 Flow chart of distributed computation by A-
HEU (Sender Thread)

3.3 Complexity of A-HEU
Here we present the computational and message passing
complexity by one arbitration of A-HEU as the first
arbitration yields near optimal total value while the
following iterations improve the solution with increased
total values.

Computational complexity to run I-HEU on an MMKP
with Mn groups and Mm resources is

2
2

)1(3
−⎟

⎠
⎞

⎜
⎝
⎛ l

M
n

M
m in Step 2 and 2

2

)1(17
−⎟

⎠
⎞

⎜
⎝
⎛ − l

M
n

M
m to

escape from local minima in Step 3.

We require the following messages and computations in
each arbitration to find the candidate items for upgrading
or downgrading:

()12 M − messages to send local proposed list of selected
items.

()
2

1−nn floating point operations to sort the locally

proposed lists to determine the global proposed list.

⎟
⎠
⎞

⎜
⎝
⎛ + M

M
nm2 comparisons to find the local and global

feasibility index. Thus computation and message passing

complexities in each solver are ⎟
⎠

⎞
⎜
⎝

⎛ −
3

22)1(
M
mlnO and

()MO

5,21

 respectively.

4 Experimental Results
In order to study the run-time performance of A-HEU to
solve the MMMKP we implemented A-HEU along with
I-HEU using Java. For simplicity of the implementation,
we assume:

• Each group has the same number of items i.e.,
= = = =nlll LL

4,21 ==

• Each knapsack has the same number of resources i.e.,
= = = mmmm MLL

cM nnnn

.

• Each solver has the same number of groups i.e.,
= = = =LL,21 .

The algorithms were tested for an MMMKP with 3
knapsacks. Three different machines were used as three
different solvers and a fourth machine was used as a
generator of the MMMKP. The generator generates the
groups of the MMMKP and sends them to the solvers.
The generator machine also runs I-HEU on the
transformed MMKP from the generated MMMKP.

4.1 Test Pattern Generation
The total amount of resources in the knapsacks, resource
consumption by the items, and the values associated with
the items are initialized as follows.
Rc = Maximum amount of a resource consumption by an
item
Pc = Maximum cost per unit resource
Ri = Total amount of the ith resource = nc×M×Rc.
Pk = Cost of the kth resource = Pc × Random (0.0, 1.0)
Random (0.0, 1.0) = A uniform continuous random
number from 0.0 to 1.0.
Item 0 with zero value and zero resource consumption,
i.e., ri0k = 0.0 and vi0 = 0.0 is inserted for each group of
the data set. Selection of this item indicates rejection of
the group which is similar to the rejection of request in

CRPIT Volume 107 - Parallel and Distributed Computing 2010

36

the admission controller. The other items of the groups
are initialized by the following random functions:
rijk = The kth resource of the jth item of the ith group = Rc
× Random (0.0, 1.0)
For initializing item values we use the following
functions:
vij = Value of the jth item of the ith group

=∑ ⎟
⎠

⎞
⎜
⎝

⎛
××××+×

1010
)0.1,0.0(cc

kijk
PR

MmRandomPr

4.2 Test Results
The experiment was conducted for different values of nc,
from 100 up to 1000. The following data was collected
from the experiments and is presented in Figure 7 to
Figure 9.

• Total values of the picked items and time required by
I-HEU

• Number of messages required by A-HEU

• Required time, total value of the picked items and
number of messages by one, two and three
arbitrations of A-HEU

In the experiment we have compared A-HEU with the
centralized version I-HEU. There is no algorithm prosed
so far in the literature to solve the MMMKP. That is why
we present the effectiveness of A-HEU with respect to I-
HEU by analyzing experimental results.

Machine
name

CPU speed RAM O/S JDK
Versio
ns

Solver 1 750 MHz 256 MB Windows
2000

JDK
1.2.2

Solver 2 700 MHz 192 MB Windows
2000

JDK
1.3.1_0
3

Solver 3 750 MHz 256 MB Windows
2000

JDK
1.2.2

Generator 700 MHz 192 MB Windows
2000

JDK
1.3.1_0
3

Table 3 Specifications of the solvers and generator of
the MMMKP using IBM PC compatible.

4.3 Observations

• The total value of the items picked by A-HEU is
approximately 90% of the total value of the items
picked by D-HEU, but A-HEU requires a less time
compared to D-HEU.

• Figure 9 shows the effect of message passing time in
the overall complexity of the algorithm. For smaller
data sets computational time is less compared to
message passing. For larger data sets quadratic
computation complexity of the algorithms dominates
over linear message complexity. That is why better
performance is observed for the larger data sets.

• We can easily conclude that A-HEU scales better
than centralized I-HEU. We observe significant
reduction in time requirement using A-HEU as
reported by the time requirement data plotted in the
exponential scale of the vertical axis.

• An irregular behaviour for the result of the set with
700 groups is observed in the figures showing the
experimental results. Our complexity analysis
presenting in this article is based on the worst case
scenario. The actual computational time mostly
depends on the data sets. A particular data set may
lead to quick or late convergence to find the solution
of the MMMKP showing exceptional behaviour in
the result.

• For almost all the MMMKP data sets the total value
of the items picked by first arbitration of A-HEU is
more than 95% of the total value of the items finally
picked by A-HEU.

Number of
groups in
each
solver

HEUI

HEUA

V
V

−

−
1

100×
HEUI

HEUA

V
V

−

−
2

100

× 100

3

×
−

−

HEUI

HEUA

V
V

100×
−

−

HEUI

HEUA

V
V

100 92.63 93.07 93.07 93.07
200 90.71 91.15 91.15 91.15
300 92.27 92.56 92.56 92.56
400 91.43 91.52 91.52 91.52
500 91.35 91.35 91.35 91.35
600 92.43 92.43 92.43 92.43
700 74.40 87.80 87.91 88.12
800 92.05 92.05 92.05 92.05
900 91.64 91.71 91.71 91.71

1000 92.57 92.77 92.80 92.80
Table 4 Ratio of total value of the items picked by A-
HEU with respect to I-HEU. V indicates the
total value of the items picked by the ith arbitration of
A-HEU. V and V indicates the total value
of the items picked by A-HEU and I-HEU.

i
HEUA−

HEUA− HEUI −

0

100000

200000

300000

400000

500000

600000

700000

800000

100 200 300 400 500 600 700 800 900 1000

Number of groups in each solver

To
ta

l v
al

ue
 o

f t
he

 it
em

s p
ic

ke
d

by
di

ffe
re

nt
 h

eu
ris

tic
s

A-HEU A-HEU (1st Arbitration) A-HEU (2nd Arbitration)
A-HEU (3rd Arbitration) I-HEU

Figure 7 Total value of the items picked by A-HEU, D-
HEU and I-HEU

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

37

1

10

100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of groups in each solver

N
um

be
r o

f m
es

sa
ge

s
re

qu
ire

d

A-HEU (1st arbitration)
A-HEU (2nd Arbitration)
A-HEU (3rd Arbitration)
A-HEU

Figure 8 Number of messages required by distributed

algorithms to solve the MMMKP.

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

Number of groups in each solver

Ti
m

e
re

qu
ire

d
in

 m
s

100000

A-HEU (1st Arbitration) A-HEU (2nd Arbitration)
A-HEU (3rd Arbitration) A-HEU
I-HEU

Figure 9 Time required by different algorithms to
solve the MMMKP and MMKP

4.4 Discussion of the Performance of A-HEU

• An arbitration in A-HEU requires a few messages
compared to any other regular distributed computing
algorithms. So an iteration of A-HEU can be easily
applicable for on line admission control algorithms.
The admission control algorithm can execute further
arbitration for better values if it has a more relaxed
time constraint. Thus this algorithm is very suitable
for an online system that requires quick decisions
with a sub optimal total value, with the possibility of
using more available time to improve the quality of
the computation.

• The main reason for sub optimality in A-HEU lies in
not considering all resource requirements in the
preliminary selection.

• The arbitration technique for finding global
feasibility index is another reason for sub optimality.
We give up upgrading from the proposed list of
selected items if we get one infeasible upgrade in the
list. The very next item might be feasible. A new
arbitration technique with O(nM) message
complexity might do that. However, if we do the
arbitration again, with a newly calculated proposed
selected item list for better total value, the competent
items will get a chance to be selected. That is why
we prefer multiple iterations of the arbitration, to a
new arbitration technique with O(nM) message
complexity.

• If the items of the groups consume all the resources
of all knapsacks uniformly then A-HEU is unlikely
to get better total value in the next arbitration,
because a particular resource has already been
exhausted in the previous arbitration.

In practical cases, such as multimedia servers and
Enterprise Networks, a QoS level of a session requires
resources of a particular server or a particular network
link. So there is a chance to allocate available resources
to other selected items of the groups in the next
arbitration.

5 Conclusion
In this article we have presented a new variant of
knapsack problems which requires distributed algorithm
to solve the problem. Our proposed new algorithm A-
HEU achieves almost 90% optimality of I-HEU in

()3
1

MO
of the computation time required by I-HEU and

O(M) message passing where M is the number of solvers
in the system. The experimental results show that the
message passing time can be ignored for a larger problem
set. Thus the new algorithm presents a scalable with the
scope of distributed control. This particular problem is
very much applicable for different resource sharing
system in the distributed real time systems. This
algorithm is a potential candidate for admission
controlling in distributed real time systems.

6 References

[1] Akbar, M., Manning, E. G., Shoja, G. C. and Khan, S.

(2001): Heuristic solutions for the multiple-choice
multi-dimension knapsack problem. Proceedings of
the International Conference on Computational
Science 659–668, San Francisco, Calif, USA, May
2001.

[2] Akbar, M., Manning, E. G., Shoja, G. C. (2001):
Admission Control and QoS adaptation in
Distributed Multimedia Server System. ITCom 2001
Denver, USA, August 2001.

[3] Armstrong, R., Kung, D., Sinha, P. and Zoltners, A.
(1983): A Computational Study of Multiple Choice

CRPIT Volume 107 - Parallel and Distributed Computing 2010

38

Knapsack Algorithm. ACM Transaction on
Mathematical Software 9:184-198.

[4] Koleser, P. (1967): A Branch and Bound Algorithm
for Knapsack Problem. Management Science 13:723-
735.

[5] Nauss, R. (1978): The 0-1 Knapsack Problem with
Multiple Choice Constraints. European Journal of
Operation Research 2:125-131.

[6] Magazine, M. and Oguz, O. (1984): A Heuristic
Algorithm for Multidimensional Zero-One Knapsack
Problem. European Journal of Operational Research
16(3):319-326.

[7] Khan, S., Li, K. F. and Manning, E.G. (1997): The
Utility Model for Adaptive Multimedia System.
International Workshop on Multimedia Modeling
111-126.

[8] Shih, W. (1979): A Branch and Bound Method for
Multiconstraint Knapsack Problem. Journal of the
Operational Research Society 30:369-378.

[9] Toyoda, Y. (1975): A Simplified Algorithm for
Obtaining Approximate Solution to Zero-one
Programming Problems. Management Science
21:1417-1427.

[10] Hifi, M and Michrafy, M. (2006): A reactive local
search-based algorithm for the disjunctively
constrained knapsack problem. Journal of the
Operational Research Society 57:718-726.

[11] Shahriar, M.A.Z, Akbar, M.M., Rahman, M.S. and
Newton, M.A.H. (2008): A multiprocessor based
heuristic for multi-dimensional multiple-choice
knapsack problem. The Journal of Supercomputing
43(3): 257-280.

[12] Hifi, M., Michrafy, M. and Sbihi, A. (2004):
Heuristic algorithms for the multiple-choice
multidimensional knapsack problem. Journal of the
Operational Research Society 55:1323–1332.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

39

