
A Dynamic, Decentralised Search Algorithm for Efficient DataRetrieval in a
Distributed Tuple Space

Alistair Atkinson

Eastern Institute of Technology
Hawke’s Bay, New Zealand

Private Bag 1201, Hawke’s Bay Mail Centre, Napier 4142
Email:aatkinson@eit.ac.nz

Abstract

This paper presents an algorithm which may be used to
efficiently search for and retrieve tuples in a distributed
tuple space. The algorithm, a core part of the Tuple-
ware system, is based on the success or failure of previ-
ous tuple requests to remote nodes in the system, and this
data is used determine the relative probability of partic-
ular remote nodes being able to fulfil subsequent future
requests. The logic of this algorithm is distributed and de-
centralised: each node dynamically calculates its relation-
ship with other nodes at runtime. The behaviour of the
algorithm using two applications is analysed, and shows
significant improvement in terms of efficiency and perfor-
mance compared to comparable tuple space implementa-
tions.

Keywords:tuple space, data retrieval, locality, distributed
computing.

1 Introduction

This paper describes a search algorithm for efficiently re-
trieving tuples on a cluster-based distributed tuple space.
This algorithm forms one of the core part of the Tupleware
cluster middleware, a high-level description of which can
be found in [3].

The Tupleware system was implemented with the goal
of achieving a scalable platform for the implementation
and execution of parallel array-based applications, whilst
maintaining the simplicity and transparency of the original
tuple space paradigm [7].

In order to achieve scalability, it was decided to use a
decentralised approach, and to distributed the tuple space
across nodes in the cluster. It followed, then, that it would
be necessary to store and search for tuples in the most ef-
ficient manner possible, and it is for this reason that the
search algorithm presented in this paper was developed.

To evaluate the performance and scalability of Tu-
pleware (and its search algorithm) the performance of
two non-trivial applications are presented. Ease of pro-
grammability is discussed in the previous paper cited
above.

The contribution of this research is that it provides
an investigation into a concrete implementation of dis-
tributed tuple space using non-trivial data-parallel appli-
cations. This area of research, while studied previously
as we will see in Section 3, often focusses on theoretical
models which lack a concrete implementation, and others
seek to provide a more general-purpose platform. This re-
search project has focussed on a particular class of appli-
cations in order to exploit their common characteristics,

Copyright c©2010, Australian Computer Society, Inc. This paper ap-
peared at the Eighth Australasian Symposium on Parallel and Distributed
Computing (AusPDC2010), Brisbane, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol. 107, Jinjun
Chen and Rajiv Ranjan, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

which has informed the development of the search tech-
niques being presented.

2 Motivation

Tuple spaces, first introduced by Gelernter’s Linda coor-
dination language [7], are recognised as offering many ad-
vantages over the more common message-passing model
as a distributed computing paradigm. These advantages
include: a decoupling of the computations and coordina-
tion parts of a parallel program, both temporal and geo-
graphic distribution, loosely-coupled interaction between
processes, and a higher level of abstraction which unbur-
dens the programmer from needing to explicitly deal with
lower-level details of inter-process communication.

However, the adaption of the tuple space model to a
distributed environment poses some additional challenges
compared to its implementation on multiprocessor com-
puters. Namely, the increase in latency and relatively re-
stricted network data transfer rates cause any operations
involving network communication to become relatively
expensive, and also distributed systems generally need to
be able to scale to large number of nodes. This means
that the available network bandwidth must be used as ef-
ficiently as possibly, and thus it is necessary to minimise
the number of communication events in a given system in
order to achieve this.

These limitations were illustrated in [18], which de-
scribed the scalability of various tuple space implemen-
tations under varying loads, and showed the scalability
of the included systems to be relatively poor. A study
presented in [15] also outlined the issues involved with
efficiently implementing a tuple space in a distributed
environment, and presented a performance evaluation of
an unmodified JavaSpaces system using applications with
similar characteristics to those presented in this paper. The
results of this evaluation showed the limitations of a cen-
tralised tuple space for tightly-coupled applications, and
its more commendable performance for loosely-coupled
replicated-worker style applications.

These factors are what motivated this particular re-
search, which addresses these issues, and proposes a
search algorithm suitable for use in a distributed tuple
space which can be utilised for array-based parallel ap-
plications.

3 Previous Work

Some of the more notable systems which feature dis-
tributed or multiple tuple spaces are briefly described in
this section. The systems included can be contrasted in
terms of the transparency of their distribution, the logical
integration of the tuple space(s), and whether or not the
system logic is centralised or decentralised.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

21

3.1 Multiple Tuple Spaces in Linda

Multiple Tuple Space Linda [14] (usually abbreviated to
MTS-Linda) was one of the earliest attempts to add multi-
ple tuple spaces to the original Linda model. MTS-Linda
incorporates tuple spaces which are treated as first-class
objects, and can be manipulated by the programmer to suit
an application’s requirements. The use of multiple tuple
spaces allowed data (represented as passive tuples), and
processes (represented as active tuples), to be grouped and
manipulated as a whole. As tuple spaces are treated as first
class objects, each tuple space is simply conceptualised as
a ”local data structure within a process” [14], which goes
some way towards raising the level of transparency of the
system’s distribution.

Tuples which reside in other (non-local) tuple spaces
may also be accessed, provided they are within the ”con-
text tuple space” of the process making the access request.
That is, multiple tuple spaces may belong to the same con-
text, and processes may opt to retrieve tuples from either
its local tuple space, or from a tuple space contained in the
same context. In this way, multiple tuple spaces are added
in a hierarchical manner, rather than the flat, or disjoint
way they have been incorporated in some other systems.

Another attempt at implementing multiple tuple spaces
for Linda was by Rowstron & Wood [16], who adapted
the Linda model to networks of heterogeneous worksta-
tions. This system did not propose a new way of adding
multiple tuple spaces to the system, but simply assumed
that they existed. The main contribution this system
made was the addition of new tuple space access primi-
tives, namely bulk retrieval operationscollect() and
copy-collect(). The former operation moves a set
of matching tuples from one tuple space to another, and
the latter performs a similar function, except matching tu-
ples are copied from one tuple space to another [17]. This
implementation classifies tuple space as either local or re-
mote, the main difference being that tuples stored in a lo-
cal tuple space are not accessible by remote nodes in the
system, whereas those stored in a remote tuple space do
not have this restriction. Further, local tuples are stored lo-
cally, in the local processes address space, whereas remote
tuples are stored on remotetuple space servers, which
generally reside on separate, dedicated nodes on the net-
work. The decision as to whether a given tuple is classi-
fied as being local or remote is performed dynamically at
runtime by the system kernel.

The bulk operations allowed the movement of multiple
tuples using only a single operation, whereas in the orig-
inal Linda model this would have required multiple invo-
cations of the tuple spaces access operations. This factor,
along with the optimisation of the locality of stored tuples,
allowed the system to make more efficient use of the net-
work, and to realise some significant performance gains
compared to traditional implementations [16].

3.2 SwarmLinda

In terms of algorithmic approaches to tuple search and re-
trieval in systems with multiple or distributed tuple spaces,
there are a small number of proposed systems at the time
of writing that have this as their focus. The most notable of
these is arguably the SwarmLinda distributed tuple space
described in [11].

SwarmLinda employs a tuple storage and retrieval al-
gorithm inspired by the collective intelligence displayed
by swarms of ants. SwarmLinda is characterised by agents
(in this case, ants) acting individually, but whose individ-
ual actions combine to exhibit a collective intelligence.
These agents ”act extremely decentralised” and perform
their actions ”by making purely local decisions and by tak-
ing actions that require only a few computations” [5].

The collectively intelligent behaviour displayed by
these ant swarms relates to the locality or tuple storage,
and efficient tuple retrieval from the network. In short,

when a new tuple is produced, it will be stored by one
of the ’ant’ agents on a node which stores tuples with the
most similar characteristics to the new tuple. Tuples with
a particular characteristic emit a ’scent’, and this scent is
used by the agents when they need to retrieve a tuple. The
characteristics of the tuple to be retrieved, along with the
scent being emitted, is used to guide the search of the
agent. It is argued that a SwarmLinda system will dy-
namically adapt itself to the characteristics of the tuples
being stored, so that tuple retrieval operations will tend
towards optimal over time. However, at the time of writ-
ing, these ideas have not been implemented in a concrete
system, and as such no performance data are available to
determine their effectiveness.

3.3 Scope

Scope [12] is a formal model for the addition of multi-
ple tuple spaces to Linda-like systems. It aims to address
the scalability problem of Linda, and also to increase the
expressiveness of Linda-like operations so as to enable op-
erations such as transactions, and prevent semantic limita-
tions such as the multiple-read problem. Most relevant to
the research presented in this paper, however, is the gen-
eralised way in which Scope handles the issue of multiple
tuple spaces, in particular its idea of ”overlapping” tuple
spaces.

Multiple spaces have traditionally been added to tuple
space systems in one of two way: by nesting spaces hier-
archically, as in MTS-Linda, or by simply adding disjoint
spaces which have no logical relationship, as in JavaS-
paces [12].

Scope presents a generalised approach to the addition
of multiple spaces, introducing the idea of overlapping tu-
ples spaces. This allows some parts of each space to be
shared, and other parts to be separate. In concrete terms,
tuples are able to belong to more than one space at a time.
Essentially, each ”portion” of tuple space is represented by
a named scope, and these portions can be combined and
arranged based on defined scope operations. These oper-
ations are based on the set operations union, complement
and intersection, and can be used to define tuple mem-
bership to one more more scopes. The expressiveness of
Scope allows it to implement hierarchical and disjoint tu-
ple spaces in addition to overlapping spaces.

A concrete implementation of Scope is presented in
[13]. However, no performance results are available for
any Scope-based implementation, and no subsequent re-
search seems to have been done at the time of writing.

3.4 JavaSpaces

JavaSpaces [10] is an implementation of the spaces
paradigm from Sun Microsystems. Specifically, it is a ser-
vice which forms part of the Jini distributed software ar-
chitecture. It provides a stand-alone object space, called a
JavaSpace.

The system may have more than one space, however
each space is a separate entity and their respective roles
in the system are not coordinated. Each application must
contain the logic for utilising the available JavaSpaces in-
frastructure.

Like most derivative implementations of the tuple
space model, JavaSpaces is an effective platform for im-
plementing a range of distributed applications and utilis-
ing common design patterns. In particular, it has been
shown in [2] to be ideally suited to the Master/Worker
style of parallelism, particularly coarse-grained parallel
applications. For applications which are more fine-grained
or tightly-coupled, JavaSpaces can experience scalability
problems due the the increased communication demands
inherent in these applications (see, for example [18]).

CRPIT Volume 107 - Parallel and Distributed Computing 2010

22

4 Tupleware Overview

Tupleware is a library and runtime system which provides
a distributed tuple space platform for computing clusters.
It is aimed specifically at array-based numerical and/or
scientific applications, which exhibit common character-
istics that may be exploited in order to optimise the com-
munication patterns between cluster nodes.

Tupleware has previously been described in [3], so the
entire system will not be covered in great detail again here.
Instead, the description will be restricted to a high-level
overview of the operation of the main components of the
system only, in order to inform the discussion of the per-
formance results. For a more detailed description refer to
the previous publication referenced above.

4.1 System Architecture

A complete Tupleware system consists of a collection of
nodes, each of which hosts its own local partition of the
tuple space. These local partitions, combined, constitute
the whole (distributed) tuple space.

The main components of the Tupleware architecture
consist of the following: a runtime system, a tuple space
service, and tuple space stub objects. These components
form a layered architecture upon which an application
module can execute. An example Tupleware system con-
sisting of two nodes is illustrated in Figure 1.

ServiceStubServiceStub

RuntimeRuntime

ApplicationApplication

Figure 1: Architecture of a two-node Tupleware system.

4.2 System Components

The main components are briefly described as follows:

4.2.1 Tuples & Templates

The fundamental data object in a tuple space system is
a tuple, which are used to encapsulate one or more data
objects. A tuple has one or more fields each of which
contain a value. Fields should not contain anynull values,
and tuples are treated as immutable objects.

Templates are used to perform content-based associa-
tive lookup on tuples. Templates are similar to tuples
in that it encapsulates a set of data fields. However, un-
like a tuple, some (or all) of these fields may be assigned
null values, denoting wildcards which may match against
any value during associative lookup. Associative lookup
involves the use of thematches() method, which de-
termines whether a template matches a given tuple. The
matching function has the same semantics as the original
Linda: a template must be an equivalent length, and its
specified values must be equal to a given tuple in order to
positively match.

4.2.2 Local Tuple Space

A local tuple space provides the basic functionality re-
quired for tuple storage and lookup on a single node. The
local space maintains all of the stored tuples on node, and
is searchable by a node’s service in response to tuple re-
quests from remote nodes.

The local tuple space is thread-safe, and, in most in-
stances,uses the first three fields of a tuple as the key to
a hash table which references the tuple data itself. The

reasoning behind this was that in almost all applications
relevant to those targetted by Tupleware, the first three el-
ements are always those used to identify and index the
array, and, in the case of the ocean model, more than one
iteration of previous array values will need to be stored
(usually two, and sometimes three).

An example of this arrangement is shown in Figure 2.

"A00"

"A01"

"A02" <"A",0,2,1.42,2>

<"A",0,1,1.38,2>

<"A",0,0,1.34,2> <"A",0,0,1.93,1>

<"A",0,1,1.97,1>

<"A",0,2,2.01,1>

<"A",0,0,2.20,0>

<"A",0,1,2.24,0>

<"A",0,2,2.28,0>

"Anm" <"A",n,m,data,2> <"A",n,m,data,1> <"A",n,m,data,0>

Keys Values

Figure 2: Local tuple storage using a hash table.

4.2.3 Inter-node Communication

Communication between nodes is carried between the
stub and service components of the system. All communi-
cation instances are initiated by the stub objects, which
send requests for tuples across the network to the ser-
vice running on a remote node. This service provides the
means by which remote nodes may search other nodes’ lo-
cal tuple spaces, and always answer queries directly rather
than forward unfulfillable requests.

4.2.4 Runtime System

The Tupleware runtime system contains the core system
logic, and control the operation of the lower level com-
ponents such as stub objects and each node’s local tu-
ple space. The runtime system initiates and controls the
search and retrieval of remote tuples, using the search
function presented in the following section. Each nodes’
runtime system maintains a collection of stub objects,
each of which corresponds to a remote node in the sys-
tem.

Finally, the runtime system presents an API for use by
the top level application layer. It is the only interface into
the Tupleware system for an application, and is largely
responsible for maintaining the transparency of the tuple
space’s distribution on the cluster.

4.2.5 Application Processes

At the highest layer, application processes implement the
application logic which in turn interfaces with the underly-
ing runtime system. Applications have a reasonably trans-
parent interface to the distributed Tupleware system, and
are able to make use of the standard Linda-style opera-
tions.

5 Search Algorithm

5.1 Overview

The principle behind the search algorithm is to minimise
the number of communication instances required to re-
trieve a tuple by targetting retrieval requests to those nodes
which have the highest probability of being able to sat-
isfy the request, based on the success of previous requests.
This technique was adopted due to the nature of the ap-
plications at which Tupleware is targetted for use. These
are generally array-based applications in which the array
is decomposed into individual regions, and each region is
processed in parallel.

The characteristics of applications such as these is that
any communication between processes is going to tend

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

23

to occur between those processes which are processing
”neighbouring” regions of the array, whereas nodes pro-
cessing unrelated regions of an array are going to tend to
communicate very rarely, if at all. It is these observed
characteristics that we wish to be reflected in the tuple
search patterns carried out by the runtime, and the search
function provides the platform for achieving this.

5.2 Search Algorithm Operation

An executing Tupleware system consist of individual
nodes, each with its own runtime system, each of which
will need to communicate with a subset of all nodes in
the system almost exclusively, and rarely if at all with all
other nodes. These groupings, or clusters, of nodes will
emerge quickly during the execution of an application as
each individual runtime system dynamically adapts to the
patterns of communication instances it is tasked with car-
rying out.

Underpinning the operation of the search algorithm is
asuccess factorwhich is associated with each tuple space
stub object maintained by the runtime system. The success
factor is a numerical value between zero and one, and is
used to denote the likelihood of the tuple space service
associated with a given tuple space stub being able to fulfil
a request for a tuple. A higher success factor represents
that there is a greater chance of success, and vice versa.

At the beginning of an application’s execution, each
stub has a success factor of 0.5 as there are no previous
requests from which to calculate another value. A value
of 0.5 is meant to represent an intermediate chance of suc-
cess. Due to all stubs starting with an equal success factor,
the initial requests made are random, however the success
factor will be recalculated based on the success or failure
of these requests, and quite quickly a distinct ordering, or
ranking, emerges which can be used to prioritise subse-
quent requests.

The recalculation of the success factor occurs every
time a stub is used to perform a request, and is based on
the following equation:

S=

{

S+(1−S)×A Success
S−S×A Failure

where:

• S is the success factor, and

• A is the adjustment factor.

The adjustment factor is a floating point value between
zero and one used to specify by how much the success
factor should be adjusted each time it is recalculated. This
value will determine how quickly the success factor moves
towards either one or zero, or in other words, by how rep-
resentative a successful request is in terms of the prioriti-
sation of subsequent requests.

This value should be chosen based on the application
and the number of processes in a system. If there is a weak
relationship between the data being computed on each
process, then each process may ultimately end up needing
to communicate with a relatively large number of other
processes. In cases such as this a small adjustment factor
should be used, as one successful request to a remote tuple
space does not imply that there is a much greater proba-
bility of success for future requests. However, if there is
a tight relationship between the data segments being com-
puted by each process, then it follows that these processes
will likely communicate very frequently, and that a suc-
cessful request should have a higher bearing on the prob-
ability of success for subsequent requests.

In practice, an adjustment factor of 0.2 was used as it
reflects the characteristics of these particular applications.
An adjustment factor of greater than 0.5 would reflect a

fairly volatile system with a very weak relationship be-
tween processes, where a value of 0.1 or 0.2 would repre-
sent a more stable relationship.

An an application performs each iteration of its pro-
cessing, the success factor will be recalculated, and over
a relatively small number of iterations, the success fac-
tor associated with a node’s neighbouring nodes will be
greater than non-neighbouring nodes. An example of this
is illustrated in Figure 3.

Node11

Node15Node14

0.30

0.300.30

Node7

0.30

Node3

0.30
Node2

Node6

Node1

0.90

Node4

0.90

Node0

0.70

Node10

0.90

Node9

0.70

Node8

0.70

0.90

0.70

Node5

0.30

Node13

0.30

Node12

Figure 3: The success factor associated with a node’s
neighbouring nodes.

5.3 Benefits of the search algorithm

The search algorithm being presented here can be con-
trasted with the one used previously, which relied on a
most-recently-successful approach to order tuple requests
to remote nodes. The problem with this approach was that,
while it was more effective than a blind search, it took
into account only the success of the immediately previous
search.

This was a non-optimal solution for the types of appli-
cation being targetted by this system, especially in the case
of the ocean model, as quite often data retrieval will in-
volve several requests to several neighbouring nodes (one
for each boundary being updated). In these cases an null
response from a remote node does not necessarily mean
that the request cannot be fulfilled by the said node in the
future, but rather often it is that the required tuple sim-
ply has not yet been produced at the current point in time.
However, the result would be, using the most-recently-
successful approach, for this particular remote node to be
treated as though is should be given a much lesser prece-
dence for subsequent searches, which is not necessarily
the desired outcome.

On the other hand, the search algorithm being pre-
sented here imposes much less drastic modification to
search precedence, as it takes into account all historical
retrieval requests (with a greater weight to those carried
out more recently). The search precedence given by re-
mote nodes’ associated success factors provides a more
accurate reflection of the actual probability of a successful
tuple retrieval.

Another benefit implicit to this search algorithm is its
decentralised nature: updates to the success factor associ-
ated with each remote node is performed by each individ-
ual runtime without requiring any sharing of global state
information between nodes. Put simply, each node main-
tains its own unique ”view” of the cluster’s tuple storage,
based on its own search history. This eliminates any over-
head associated with the transmission of global state in-
formation.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

24

Finally, the search algorithm executed dynamically and
allows for changes and reconfigurations to tuple storage
on the cluster. If the storage characteristics change, the
groupings illustrated in Figure 3 will alter to reflect this.

5.4 Summary

In this section we have presented a dynamic, decentralised
search algorithm which is used to guide searches for tu-
ples stored on remote nodes of a cluster. The algorithm
has been contrasted with the one previously used by the
Tupleware system, and its benefits discussed.

In the following sections we present the performance
characteristics of the system using two non-trivial appli-
cations.

6 Applications

6.1 Overview

Two applications were used to test the behaviour of Tuple-
ware: a 2-D ocean modelling application, and a parallel
sorting application based on a modified quicksort. These
applications were chosen for their contrasting characteris-
tics, namely their different levels of granularity and com-
munication characteristics. However, both of these appli-
cations involve processing segments of an array in paral-
lel, and both are able to benefit from the search algorithm
being presented in this paper.

Each application is briefly described below.

6.2 Ocean Model

The ocean model is a two-dimensional simulation of an
enclosed body of water. The model calculates the water
current velocity and surface elevation based on a given
wind velocity and bathymetry.

The body of water is represented by the application as
a 2-D grid, and each cell in the grid represents a single grid
point. Grid points each individually store descriptive data,
including the depth of the water at that point, along with
the surface elevation and current velocity. Wind velocity
is assumed to be constant across the grid. The variables
stored in each grid point are staggered in such as way that
theu andv variables are associated, respectively, with the
x-axis and y-axis edges of each grid point. Theetavari-
able is representative of the centre point of each grid point.

When executed, the model iterates through a specified
number of time-steps; and at each time-step, the surface
elevation and current velocity values of each grid point
are recalculated based on the values stored at neighbour-
ing grid points. This process continues for the specified
number of time-steps, at which point the model should be
in a steady-state and thus finished.

The model is parallelised through domain decomposi-
tion of the grid, which splits the grid into a number sepa-
ratepanels, up to the number of nodes available for pro-
cessing. Each panel is assigned to a specific node, whose
responsibility it is to perform the processing on the panel.
As each panel represents only part of the complete grid,
at each iteration it is necessary for the boundary values of
each panel to be retrieved from neighbouring panels. This
process is illustrated by Figure 4, which shows a 9x9 grid
which has been decomposed into three panels. Each 9x3
panel has a halo region, represented by the shaded cells,
whose values are updated after each iteration of the model.
The arrows between neighbouring halo region cells repre-
sent the communication instances which are involved in
each boundary update.

6.3 Quicksort

Quicksort [9] is a widely used sorting algorithm with an
average case execution time ofO(nlogn). It is an effi-

Panel 1 Panel 2 Panel 3

Figure 4: Updating panel boundary values.

cient general-purpose sorting algorithm which rarely ex-
hibits its worst-case execution time.

There are several characteristics of the quicksort al-
gorithm which led to it being used in the performance
evaluation which follows. Firstly, parallelisation of quick-
sort (and modified and implemented here) is reasonably
straightforward, and produces processing tasks which are
loosely-coupled and have only moderate data dependen-
cies. Secondly, by modifying the quicksort algorithm
so that partitioning ends when an array segment length
reaches a certain predefined threshold, it is possible to
adjust the granularity of the parallelism exhibited by the
sorting algorithm. This feature is useful as it allows us to
evaluate the performance of the system with various levels
of communication frequency.

The algorithm used to evaluate the system in this pa-
per is a modified version of quicksort. As described
above, unsorted arrays are repeatedly partitioned until
their length is less than or equal to a predetermined thresh-
old value. At this point, partitioning ends and the remain-
ing unsorted array segment is sorted using some other se-
quential algorithm; in this case, insertion sort [6].

The ability to adjust the granularity of the application
in this manner is useful, as it assists in determining the
true scalability of the system and at which point the com-
munication requirements begin to outweigh the benefits of
the distribution of the application.

7 Performance Evaluation & Analysis

7.1 Metrics

The metrics used to evaluate the behaviour and perfor-
mance of Tupleware as presented in this paper are the
runtimes, which are the wall-clock timings of the execu-
tion of various part of the application, and from which we
can derive thespeedupdelivered by the Tupleware system.
Speedup as used here does not differ from its standard us-
age in this area, that being the ratio of sequential runtime
to parallel runtime [4, p. 74].

From these metrics, we can then make assertions re-
garding thescalabilityof the system as a whole. There are
two aspects of scalability which will be outlined: scalabil-
ity in terms of the number of processors, and scalability
in terms of the problem size. The former is directly re-
lated to speedup and Amdahl’s Law [1]; if a parallel pro-
gram tends towards a speedup ofN when executed onN
processes, then it is said to be scalable. The latter aspect,
scalability in terms of problem size, is concerned with how
effectively the problem can be split amongst the available
processors. That is, if a parallel system can execute a prob-
lem of sizeS in a time ofT, then if the size ofSdoubles
we wish the execution time to be no greater than 2� T.
If doubling the problem size results in significantly more
than doubling the total runtime, the system would not be
scalable in terms of problem size.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

25

7.2 Execution Environment

The performance testing was conducted on a sixteen-
node cluster, with each node consisting of a Pentium
4 (3GHz) processor with 1GB of memory, and running
Ubuntu Linux 8.04 (kernel 2.6) along with Java 6 update
10. Nodes were connected by a 100Mbps Ethernet net-
work. Performance profiling was carried out using the
Clarkware Profiler(Clark, 2008), which is able to mea-
sure the total and per-iteration runtimes (wall-clock time)
between specified points in a program. Each process was
executed with the following Java command-line options:
-Xms512M to set an initial heaps size of 512MB, and
-Xmx2048M for a maximum heap size of 2GB.

7.3 Ocean Model

The ocean model was tested on a varying number of
nodes, from one through to sixteen. When discussing the
number of nodes taking part in the system, we are speci-
fying the number of worker nodes. In all Tupleware ap-
plication these always exists exactly one master process in
addition to one or more of the worker processes.

The size of the grid was also varied for experimental
purposes, ranging from 1200x1200 through to 2400x2400
in increments of 200x200. This gives a substantial range
of grid sizes, keeping in mind that the total number of grid
points increases exponentially as the grid grows larger;
this is illustrated in Table 1, which also details the amount
of raw data stored in each size grid. A 2400x2400 grid
was the largest possible for execution before some nodes,
particularly the master node, began to use virtual mem-
ory, which began to artificially effect the behaviour of the
system.

Grid Size Grid Points (million) Data (MB)
1200x1200 1.44 87.9
1400x1400 1.96 119.6
1600x1600 2.56 156.3
1800x1800 3.24 197.8
2000x2000 4.00 244.1
2200x2200 4.84 295.4
2400x2400 5.76 351.6

Table 1: Total grid points and data size.

The number of timesteps completed by the model re-
mained constant at fifty; this gave the system sufficient
parallel execution in order for a rigorous performance
evaluation to be performed.

7.3.1 Results

The overall speedup of the ocean model application is
shown in Figure 5.

This gives us a high high-level overview of the be-
haviour of the system, however it would be useful to sepa-
rate the performance of the systems in terms of its sequen-
tial and parallel execution. The runtimes of each of these
execution phases are illustrated in Figures 6 and 7.

As we can see, an increase in the number of nodes sub-
stantially decreases the time taken for the initial applica-
tion data to be delivered to each worker node, and for the
final processed panels to be returned to the master node.
This would most likely be due to the use of a switched net-
work, which would allow data to be sent simultaneously
to each worker node over each point-to-point circuit. In-
creasing the number of worker nodes also reduces the size
of data being transferred, as the width of each panel would
be smaller.

These figures also show that in the cases of fourteen
and sixteen nodes, the decrease in sequential runtime be-
comes negligible, or in some cases increases. This is

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Nodes

Ocean Model Speedup (Total)

1200
1400
1600
1800
2000
2200
2400

Figure 5: Ocean model’s overall speedup.

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Nodes

Ocean Model Sequential Runtime (secs)

1200
1400
1600
1800
2000
2200
2400

Figure 6: Sequential runtimes (secs) for varying number
of nodes in the ocean model.

likely due to the reliance on the master node, which is
responsible for either transmitting or receiving all of the
data. If we extrapolate these results to a larger number of
nodes, then it is likely that these times would continue to
slightly increase. However, quite plainly there are signif-
icant speedup benefits attained by adding extra nodes to
the system in terms of these sequential runtimes.

Following on from the sequential runtime of the ap-
plication, we can turn our attention to the behaviour dur-
ing parallel execution. During this phase of execution, the
worker nodes behave in a completely decentralised way,
and communicate directly in order to share boundary val-
ues at each timestep.

The first conclusion which can be drawn from this
result is that increasing the number of nodes decreases
the width of each panel, resulting in fewer grid points
which need to be computed, and hence less time spent
performing processing. However, with the size of each
panel’s boundary region remaining the same, the ratio
between computation and communication inevitably be-
comes smaller.

Secondly, an increase in the number of nodes also in-
creases the likelihood that some required boundary values
will not be available between timesteps, resulting in ad-
ditional time a node must spend searching for or waiting
for the values to become available. These factors combine
to produce a disappointing level of efficiency during the
parallel phase of execution.

However, it can also be seen that an increase in grid
size generally results in increased efficiency, something
particularly apparent for systems with six or less nodes.
This is due to an increased grid size resulting in a lin-
ear increase in boundary size along with an exponential

CRPIT Volume 107 - Parallel and Distributed Computing 2010

26

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Nodes

Ocean Model Runtimes (Parallel Execution)

1200
1400
1600
1800
2000
2200
2400

Figure 7: Parallel execution runtimes of the ocean model.

increase in the number of grid points being computed.
Whilst it would have been an interesting exercise to ex-
periment with grid sizes greater than 2400x2400, it was
at this point that the cluster nodes began to need to use
virtual memory, which artificially effected the results.

7.3.2 Ocean Model Summary

The results of the ocean model’s performance allow us to
conclude the following:

The Tupleware system does provide the application
with an overall speedup gain by distributing the applica-
tion and processing it in parallel. However, the level of
speedup is limited, with the best result being experienced
with the largest grid size used.

A significant part of this speedup gain is due to the de-
crease in time taken to perform the beginning and end se-
quential stages of the application’s execution. This is due
to the increased efficiency of network data transfer and, as
the number of nodes is increased, smaller total panel sizes.
Thus, the runtime of this sequential phase is not fixed, de-
spite it being reliant on the single worker node.

The parallel phase of execution also provides a limited
level of speedup, and this is due to smaller panels requir-
ing less time to compute. However, the increased time
spent on network communications as the number of nodes
grows cancels out these benefits.

The overall performance of the ocean model is to be
expected given the application’s characteristics, in partic-
ular its tightly-coupled nature and the fact that each node’s
execution is synchronised to a high degree with the nodes
that are processing neighbouring panels.

Some encouragement can be taken from the fact that
scalability tends to increase along with the problem size.
Therefore we can conclude that the scalability would
likely continue to improve if the grid size were increased
to greater than 2400. However, the increase would need
to be very significant, as the efficiency of this application
clearly showed that the communications time significantly
dominated the processing time of the application.

7.4 Modified Quicksort

Much like the ocean model, the sorting application was
tested on a varying number of worker nodes, from one
through to sixteen, with an additional master node to set
up and finalise the application’s execution.

7.4.1 Results

The total runtimes of the sorting application are presented
in Figure 8.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Nodes

Parallel Sorting Total Runtime

35K
50K
65K

Figure 8: Total runtimes of the parallel sorting application.

As can be seen from the runtime for a single node sys-
tem, sorting the array with the algorithm being used re-
quires a significant amount of processing. Comparing this
against a sixteen node system, we can see that the distri-
bution and parallelisation of the application results in a
substantial decrease in the overall runtime.

As a whole, the speedup experienced by the applica-
tion is very pleasing. These speedup values can be found
in Figure 9.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Nodes

Parallel Sorting Speedup (Total)

35K
50K
65K

Figure 9: Total speedup of the sorting application.

In the instances of a thirty-five thousand threshold be-
ing used, the speedup peaks at 9.95 on twelve nodes be-
fore decreasing on fourteen and sixteen node systems.
Nonetheless, this still provides a reduction in total runtime
from 94.3 seconds to 9.5 seconds, a total decrease of 84.8
seconds. Considering that this threshold size is the small-
est used for testing, and entails the greatest amount of net-
work communication relative to other thresholds used, this
is a pleasing result.

The two other threshold values used for testing gave
a constant speedup up to sixteen nodes. In particular, for
a threshold of sixty-five thousand, the speedup is near to
optimal, and provides a total reduction in runtime of 181.3
seconds from 193.7 seconds on a single node system to
12.4 when sixteen nodes are used.

Parallel runtime is the sum total of the time spent per-
forming network communications and processing once an
initial unsorted array segment has been obtained. Network
communications consist of obtaining additional unsorted
segments once a worker’s own storage in local tuple space
has been exhausted, and also transferring sorted segments
back to the master process. This will be affected by the
threshold size: a smaller threshold requires more frequent
communication with the master process, whereas a larger
threshold requires less frequent. The speedup in terms of

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

27

the parallel phase of execution is illustrated in Figure 10.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Nodes

Parallel Sorting Speedup (Parallel Execution)

35K
50K
65K

Figure 10: Speedup of parallel phase of sorting applica-
tion execution.

As this shows, the speedup of the parallel phase of ex-
ecution closely correlates to the speedup in terms of to-
tal runtime. For the smaller threshold value of thirty-five
thousand, the speedup peaks at twelve nodes, however the
speedup for the fifty thousand threshold continues through
to sixteen nodes.

7.4.2 Modified Quicksort Summary

The results of the performance testing of the sorting ap-
plication in the previous section have shown that the Tu-
pleware system provides the application with significant
performance gains and speedup. The speedup is most pro-
nounced when a larger threshold is used. This is to be
expected as increasing the threshold increases the granu-
larity of the applications, increasing the ratio computation
to communications time.

These results are very pleasing, and demonstrate
that the system is able to provide speedup and perfor-
mance gains for medium-grained applications. Based on
Gustafson’s Law [8], with the average communication
time for each process remaining relatively constant as the
number of nodes increases, while the total workload be-
comes larger, we would expect the application to continue
to provide a high level of speedup as the number of nodes
increases past sixteen. This prediction is further strength-
ened when we consider that increasing the problem size
(via an increased threshold) actually greatly increases the
efficiency of the system.

7.5 Performance Evaluation Summary

This section has presented the performance results of two
applications: an ocean model and a parallel sorting appli-
cation.

The findings of this performance evaluation were
pleasing in terms of the sorting application, which dis-
played a high level of speedup on up to the maximum
number of sixteen nodes, and was effective in evenly dis-
tributing the processing workload amongst all participat-
ing nodes in the system. The performance of this ap-
plication also clearly illustrated the effect of varying the
granularity of each processing task, with the larger thresh-
old size exhibiting a higher degree of speedup than the
smaller threshold sizes. This was due to the time each
process spent on network communications remaining rel-
atively constant, while the processing performed per pro-
cess decreased as more nodes were added to the system.
This is a result typical of an application such as this, and
we can conclude that the Tupleware system has met its aim
in this case of providing a scalable platform upon which
to develop this style of medium-grained application.

In terms of the ocean model, the results show that the
overall speedup gain was limited, and that as the number
of nodes increased, the time each node spent performing
network communication placed limiting factor to the con-
tinued scalability of the application. However, we also
found that in increase in problem size, in this case the size
of the grid, did not place a disproportionate load on any
processes, and so there remains scope for the grid size
to be increased further on a cluster with nodes with more
than 1GB of memory.

8 Conclusions & Further Work

This paper has presented a dynamic, decentralised search
function for the retrieval of tuples in a distributed system
which contains multiple or a distributed tuple space. The
search function optimises its behaviour based on the his-
torical success or failure of previous tuple requests, which
allows an accurate representation of the relative probabil-
ity of remote nodes being able to fulfil a particular request
to be formed by each individual node.

A further benefit is that the search function’s logic is
decentralised, without any need for sharing request data
or global state information between nodes. If this was re-
quired, it would further add to the communication require-
ments of the system, and in turn lower the efficiency and
performance of the applications.

Performance testing was carried out in order to de-
termine the effectiveness of the search function, and the
results presented in the previous section show that the
system can provide performance gains for certain classes
of distributed parallel applications, and that it can scale
in terms of the number of nodes and also in terms of
the problem size. While the performance of the tightly-
coupled ocean model is not optimal, this is a common
problem with tuple space-based systems, and the per-
formance of Tupleware in this instance is comparatively
good. It should be noted that the distribution of the tu-
ple space in Tupleware in itself will introduce a certain
amount of overhead, and yet this does not seem to cause
the performance of applications running on Tupleware to
suffer noticeably.

Further work on the system will entail implementing
some sort of mechanism by which to measure the accu-
racy of tuple requests, so that we may compare the ef-
fectiveness of the search function being presented here to
other alternatives.

Also some additional work is planned to address dy-
namic reconfiguration of the system at runtime. At the
moment the number of participating nodes in the system
must be known at compile-time in order to partition of ar-
ray being processes and initialise the application. One of
the strengths of the tuple space paradigm is its flexibil-
ity, and so it would be desirable to implement additional
functionality to allow nodes to join and leave the system
without interrupting to completion of the application be-
ing executed.

References

[1] Amdahl, G 1967, ’Validity of the Single Processor
Approach to Achieving Large-Scale Computing Ca-
pabilities’,AFIPS Conference Proceedings, (30), pp.
483-485.

[2] Atkinson, A. and Malhotra, V 2004, ’Coalescing idle
workstations as a multiprocessor system using Javas-
paces and Java Web Start’,In: Eighth IASTED Intl.
Conference on Internet and Multimedia Systems and
Applications, August 16-18, 2004, Kauai, Hawaii,
USA.

[3] Atkinson, A 2008, ’A Distributed Tuple Space for
Cluster Computing’,Proceedings of the Ninth In-

CRPIT Volume 107 - Parallel and Distributed Computing 2010

28

ternational Conference on Parallel and Distributed
Computing and Techniques, Dunedin, New Zealand,
pp. 121-126.

[4] Carriero, N & Gelernter, D 1990,How to Write Par-
allel Programs, MIT Press, London.

[5] Charles, A et al. 2004, ‘On the implementation of
SwarmLinda’.In ACM-SE 42: Proceedings of the
42nd annual Southeast regional conference, pp. 297-
298, New York, NY, USA.

[6] Cormen, T. et al. 1999,Introduction to Algorithms,
MIT Press, Cambridge, Massachusetts.

[7] Gelernter, D 1985, ’Generative Communication in
Linda’, ACM Transactions on Programming Lan-
guages and Systems, vol. 7, no. 1, pp. 80-112.

[8] Gustafson, J 1988, ‘Reevaluating Amdahl’s law’.
Communications of the ACM,vol 31, no 5, pp. 532-
533.

[9] Hoare, CAR 1961, ’Algorithm 64: Quicksort’,Com-
munications of the ACM, vol 4, no 7.

[10] JavaSpacesTMService Specification, 2003, Sun Mi-
crosystems, California.

[11] Menezes, R and Tolksdorf, R 2003, ’A new approach
to scalable Linda-systems based on swarms’,Pro-
ceedings of the 18th Symposium on Applied Com-
puting (SAC’03), Melbourne, Florida, USA.

[12] Merrick, I. and A. Wood 2000, ’Coordination with
scopes’,In SAC ’00: Proceedings of the 2000 ACM
symposium on Applied computing, New York, NY,
USA, pp. 210-217.

[13] Merrick, I 2003, ’Scope-based coordination for open
systems’, PhD thesis, University of York.

[14] Nielsen B & Slrensen T, 1994, ’Distributed Program-
ming with Multiple Tuple Space Linda’, Masters
Thesis, Aalborg University, Denmark.

[15] Noble, M. S. and Zlateva, S. 2001,Scientific Compu-
tation with Javaspaces. Lecture Notes in Computer
Science 2110, 657-667

[16] Rowstron, Antony I. T., and Alan Wood. 1996. ’An
Efficient Distributed Tuple Space Implementation
for Networks of Workstations’.In Proceedings of the
Second International Euro-Par Conference on Paral-
lel Processing - Volume 1, pp. 510-513.

[17] Rowstron, A 1998, WCL: A Coordination Language
to Geographically Distributed Agents, World Wide
Web Journal, Volume 1, Issue 3, pp. 167-179.

[18] Wells, GC et al. 2004, ‘Linda implementations in
Java for concurrent systems: Research Articles’,
Concurrent Computing: Practice and Experience,
vol 16, no 10, pp. 1005-1022.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

29

