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Abstract 

This paper presents a novel formalization of temporal 
notions and their classification. First, objective and 
subjective time perceptions are discussed from a 
philosophical and logical viewpoint. Then, all objective 
and subjective temporal concept types are identified, 
based on McTaggart’s A- and B-series and Priorean tense 
logic, to which temporal events (or propositions) could be 
mapped. Time ontology is then defined according to a 
formalism previously introduced by the authors, together 
with a graphical representation of the proposed temporal 
concept type hierarchy. Temporal axioms and properties 
are finally identified, linking our logic with propositional 
logic.. 

Keywords: Knowledge Representation, Ontology, 
Propositional Calculus, Temporal Logic. 

1 Introduction 

A time ontology is an ontology based on temporal 
notions. According to current sciences and philosophies, 
especially of Eastern origin, all objects and phenomena in 
the universe, whether they are humans, animals, plants, 
rocks, or a beautiful sunset, are transient, that is, they 
only exist within a certain timeframe. Since ontology, in 
its original definition, is a study of reality or existence of 
“things”, it ensues that time is intrinsically part of any 
ontology. In addition, since temporal notions are 
sometimes born from subjective perceptions, a time 
ontology could include elements that are only valid to an 
individual, a group of individuals, or within a particular 
context. This paper attempts to formalize time ontology 
based on objective as well as subjective perceptions, 
drawing inspirations from logicians such as J.E. 
McTaggart, A.N. Prior, C. Lejewski, and others. Their 
theories are still considered valid nowadays, although 
recent developments have contributed to better 
formalization of temporal reasoning. The concepts of 
subjective and objective times have been discussed by 
philosophers but we believe that this paper presents for 
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the first time a way to formalize them in an ontology. Our 
aim is to define an upper time ontology that could be later 
used in specific applications, such as to describe the 
temporal content of web pages or to build automated 
natural language translation engines.     

Temporal logic is considered founded by A.N. Prior 
(1914-1969) (Lejewski 1959). His work and the history 
of time ontology are detailed by Øhrstrøm and Schärfe 
(2004). One of the early attempts to formalize time was 
undertaken by J.F. Allen (1984) with the introduction of a 
general theory of action and time, in which are 
categorized time-related actions, such as concurrent 
actions and their interactions, causation, intention, belief 
and plan, etc. Causal reasoning is also later expanded in 
other work (Stein and Morgenstern 1994). More recently, 
OWL-Time (http://www.isi.edu/~pan/OWL-Time.html), 
formerly DAML-Time, is a project aiming to develop a 
representative ontology of time that expresses temporal 
concepts and properties common to any formalization of 
time, and specifically, the temporal content of web pages 
and the temporal properties of web services (Hobbs et al. 
2004). In OWL-Time, instant and interval are the only 
two main temporal entities, all other temporal notions 
being relations over these entities. Time ontologies 
formalizing instant and interval are also proposed by 
other authors (Zhou and Fikes 2000). It is interesting to 
note that Allen (1984) only accepts the concept of time 
interval but not that of instant or time-point, being 
considered instead as a "small interval" instead. Our 
formalization presupposes the concept of instant but does 
not explicitly elaborate that of interval, which we 
consider subsumed in the concepts of instant, time 
direction (i.e., the order between instants), and time 
continuity or density (i.e., the existence of other instants 
between any two instants). Other authors, such as Bittner 
(2002), embody those notions in the definition of a “time-
line”, which is isomorphic to the set of real numbers, of 
which a subset is a time interval. OWL-Time permits 
measurement (or quantification) of time, in terms of 
temporal unit, calendar and clock, although the concepts 
of present, past and future are only briefly discussed. 
OWL-Time could however be considered as an upper 
ontology on which other more specific or more detailed 
temporal ontologies (including ours) could be built.  

This paper is organized as follows: Section 2 recalls the 
temporal notions introduced by McTaggart. Section 3 re-
formalizes Priorean tense logic with linkages to 
McTaggart's notions and our proposed temporal concepts 
of objective and subjective times. Section 4 details our 



 

time ontology formalization. Section 5 identifies all 
temporal concept types and represents them in a tree-like 
hierarchy to assist with understanding. Section 6 details 
some temporal axioms that are fundamental to our theory, 
and derives temporal properties that relate our logic to 
propositional logic. And finally, Section 7 concludes our 
paper.  

2 McTaggart Temporal Concepts 

An important aspect of time is the question of its reality, 
first raised by J.E. McTaggart (1866-1925) in a 1908 
article, in which the logician defines three categories of 
temporal notions: A-series, consisting of notions of past, 
present and future, B-series, with notions of “earlier than” 
and “later than” (in fact one notion can be deduced from 
the other), and C-series, which is B-series without 
embedded A-series (as we shall see, a B-series always 
implicitly embeds an A-series). McTaggart maintains that 
changes are only possible with an A-series, since, in an 
A-series, any present event was future (at a time in the 
past) and will be past (at a time in the future), while, in a 
B-series, if an event M is earlier than another event N, 
then M will forever be earlier than N, and thus there 
cannot be any changes in a B-series. On the other hand, 
from a psychological perspective, without changes, a 
human mind cannot form any notion of time. Therefore, a 
B-series cannot be used to define time, only an A-series 
can. However, a B-series cannot exist without an A-series 
because one cannot deny that changes must have occurred 
in order to affirm that an event is earlier or later than 
another in a B-series (e.g., two events may have occurred 
at the same location, thus implying that changes must 
have happened there). Suppose that there is a B-series 
without an embedded A-series (called a C-series in this 
case), that series can give us an idea about the order 
between the events in the series but cannot enable us to 
form a notion about what time direction really means. It 
is like being presented with two statements made at two 
different instants, say, in 1995 and in 2000. We know 
from the order between those two numbers that one 
statement is made before the other, but we cannot know 
which year we are in now and whether time progresses 
from 1995 to 2000, or the other way around. In fact, 
direction is the main characteristic of time and 
consequently C-series cannot be considered as an 
appropriate representation of time. So, if an A-series is 
essential to define time, it follows then that, if an A-series 
cannot be defined, neither can be time. The difficulty 
with an A-series is that it is impossible to accurately (i.e., 
logically or mathematically) define the “present” (or the 
“now”). Mathematically, a point in time could be defined 
as the convergence of a series of time intervals, one 
strictly enclosing the next, with the first time interval 
enclosing the present moment by some significant margin 
such that all observers can agree to. For example, if the 
current time is about 8:00 AM, the first time interval 
could be from 7:00 AM to 9:00 AM, and the next time 
interval could be from 7:30 AM to 8:30 AM, and so on. 
Since it would take an infinity of steps to converge, any 
“point in time”, in particular the present, can only be a 
fictitious concept in the mathematical realm. 
Furthermore, since the present is not static (i.e., time is 

always “moving”), at some stage, it is impossible to 
objectively know whether the time interval being 
considered in the previous series still contains the present. 
Therefore, according to McTaggart and mathematical 
reasoning, time, in particular the present, is not real. This 
is also in line with quantum physics, according to which 
the existence or reality of a matter and the measurement 
of time could be quite subjective, although the perception 
of the present could be experienced by all human beings, 
with everyone generally being able to consciously 
perceive what he/she thinks of the very present moment. 

In summary, the notion of time is subjective, or, at best, 
can only be considered as relatively objective, i.e., it is 
only objectively agreed to within certain contexts or 
bounds. Since anything subjective cannot be considered 
as real in the traditional science of physics, McTaggart’s 
A-series is not real. And so is B-series as B-series 
implicitly includes A-series. While C-series may be real 
(since it can be objectively agreed to by all, e.g., no-one 
can deny that World War I happened before World War 
II), but, as discussed, it cannot be considered as an 
adequate representation of time. Therefore, any true 
ontology always relies on subjective temporal notions, 
whether explicitly or implicitly. In the following, 
whenever we refer to objectivity in temporal notions, we 
always mean objectivity in a relative sense, as absolute 
objectivity cannot be logically proven with time. 

Furthermore, in modern logic, an event could be defined 
as an activity that involves an outcome (Allen 1984). It 
usually (but not necessarily) has two main attributes: a 
location and a time (Hobbs et al. 2004). However, in its 
general definition, an event is "something that happens at 
a given place and time" (as per 
http://wordnet.princeton.edu/). This means that an event 
is a record of some changes that occur at some place 
during some time. Stated differently, event is a result of 
perception of changes, which also gives rise to the notion 
of time. Event as change perception therefore precedes 
the formation of the notion of time (of that event). Event 
is real (as it can be objectively agreed to) while time is 
abstract. Thus, event defines time, and in turn, time is 
used to record event. This is why in our ontological 
formalization presented in this paper, event and time are 
closely linked, while in other theories (such as OWL-
Time), they may be quite separate.   

3 Objective and Subjective Time Ontologies 

3.1 Objective Temporal Notions  

A.N. Prior defines four “first-grade” temporal notions to 
express the ideas of “earlier” and “later”, and their 
qualifications of temporariness and permanency 
(Øhrstrøm and Schärfe 2004). We propose to formalize 
those notions as four concept types, each of them is a 
function between (PxT) and P, where T is the Time 
Space and P is the Proposition Space, as used in 
propositional calculus (Klement 2006). The four 
functions could be defined as follows (where T(p,t) 
means “proposition p is true at instant t”): 

(1) Anteriority (A): A(p,t)  ≡def ∃t’≤t T(p,t’) (paraphrase: 
p is true at time t or before)  



 

(2) Posteriority (Po): Po(p,t) ≡def ∃t’≥t T(p,t’) 
(paraphrase: p is true at time t or after)  

(3) Permanent Anteriority (PeA): PeA(p,t) ≡def ∀t’≤t 
T(p,t’) (paraphrase: p is always true at time t or 
before)  

(4) Permanent Posteriority (PePo): PePo(p,t) ≡def ∀t’≥t 
T(p,t’) (paraphrase: p is always true at time t or after)  

Our definitions above rely on the notions of instant (t), 
time order (or time direction, which is the order relation 

"≤" between two instants), truth of a proposition at an 
instant (T(p,t)), and first-order logic (i.e., the universal 

and existential quantifiers "∀" and "∃"). These four 
definitions also formalize McTaggart’s B-series notion. 
In addition, to complete A.N. Prior’s first-grade notions, 
three further temporal notions could be derived from the 
above to express the ideas of temporariness and 
permanency. These three additional notions are 
independent of specific instants and are functions 
between P and P: 

(5) Temporariness (T) = Anteriority or Posteriority, i.e., 

T(p)  ≡def ∃t A(p,t) ∪ Po(p,t) = ∃t T(p,t) (paraphrase: 
p is temporarily (or sometime) true)  

(6) Permanency (Pe) = Permanent Anteriority and 

Permanent Posteriority, i.e.,  Pe(p) ≡def ∀t PeA(p,t) ∩ 

PePo(p,t) = ∀t T(p,t) (paraphrase: p is permanently 
(or always) true)  

(7) Discrete Permanency = Anteriority and Posteriority, 

i.e., DPe(p) ≡def ∀t0 A(t0,p) ∩ Po(t0,p) = ∀t0 ∃t ∃t’: t ≤ 

t0 ≤ t’, T(p,t) ∩ T(p,t’) (paraphrase: p is permanently 
and discretely true, i.e., at any moment, p is true 
before and after that moment. This is a new notion 
first introduced in this paper.)  

A.N. Prior's second-grade temporal notions are first-grade 
notions, plus the notion of the present (or the now). In 
fact, Prior's second-grade notions are simply a more 
explicit expression of first-grade notions, if we accept 
McTaggart's argument that a B-series always implicitly 
embeds an A-series. We can now derive from the notion 
of the present four additional temporal notions. These are 
independent of specific instants and are functions 
between P and P: 

(8) Future (F): F(p)  ≡def ∃t ≥ Now T(p,t) (paraphrase: p 
will sometime be true)  

(9) Past (Pa): Pa(p)  ≡def ∃t ≤ Now T(p,t) (paraphrase: p 
was sometime true)  

(10) Permanent Future (PeF): PeF(p) ≡def ∀t ≥ Now T(p,t) 
(paraphrase: p will always be true)  

(11) Permanent Past (PePa): PePa(p) ≡def ∀t ≤ Now T(p,t) 
(paraphrase: p was always true) 

The above 11 notions cover all objective temporal notions 
in our theory, which also encompass McTaggart’s A- and 
B-series notions and A.N. Prior's first- and second-grade 
temporal notions. 

Based on the above formal definitions, we can easily 
prove the following properties: 

• Temporariness = Future or Past, i.e., T(p) = F(p) ∪ 
Pa(p) (paraphrase: p is temporarily true = p was or 
will be true) 

• Permanency = Permanent Future and Permanent 

Past, i.e., Pe(p) = PeF(p) ∩ PePa(p) (paraphrase: p is 

permanently true = p was always and will always be 
true) 

• Discrete Permanency subsumes Future and Past (see 
formal definition of the subsumption relation in Sect. 

4), i.e., DPe(p) > F(p) ∩ Pa(p) = ∃t ∃t’: t≤Now≤ t’, 

T(p,t)∩T(p,t’) (paraphrase: if p is permanently and 
discretely true, then in particular, p was true 
sometime in the past and will be true again sometime 
in the future). 

3.2 Subjective Temporal Notions  

The above temporal notions are objective as they imply 
that the time direction between two events ordered by the 

relation “≤” could be objectively perceived by all 
observers. However, as discussed earlier, time is 
subjective and therefore subjective temporal notions 
could be formally introduced as follows.  

Subjective first-grade temporal notions are defined as 
functions between the domain set of P, PxT, or PxTxO 
(where O is the observer space), and the value set of P: 
(In the following, T(p,t,O) means “proposition p is true at 
time t according to observer O”.)  

(1) Subjective Anteriority (SA): SA(p,t,O) ≡def ∃t’ ≤ t 
T(p,t’,O) (paraphrase: p is true at time t or sometime 
before, according to observer O)  

(2) Indeterminate Subjective Anteriority (ISA): ISA(p,t) 

≡def ∃t’<t ∃O T(p,t’,O) = ∃O SA(p,t,O) (paraphrase: 
p is true at time t or sometime before, according to 
some observer)  

(3) Subjective Permanent Anteriority (SPeA): 

SPeA(p,t,O) ≡def ∀t’≤t T(p,t’,O) (paraphrase: p is 
always true at time t and before, according to 
observer O) 

(4) Indeterminate Subjective Permanent Anteriority 

(ISPeA): ISPeA(p,t) ≡def ∀t’≤t ∃O T(p,t’,O) 
(paraphrase: p is always true at time t and before, 
according to some observers – Note: there may be 
different observers at different times, i.e., ISPeA(p,t) 

≠ ∃O SPeA(p,t,O)) 

(5) Subjective Posteriority (SPo): SPo(p,t,O) ≡def ∃t’≥t 
T(p,t’,O) (paraphrase: p is true at time t or sometime 
after, according to observer O)  

(6) Indeterminate Subjective Posteriority (ISPo): 

ISPo(p,t) ≡def ∃t’≥t ∃O T(p,t’,O) = ∃O SPo(p,t,O) 
(paraphrase: p is true at time t or sometime after, 
according to some observer)  

(7) Subjective Permanent Posteriority (SPePo): 

SPePo(p,t,O) ≡def ∀t’ ≥ t T(p,t’,O) (paraphrase: p is 
always true at time t and after, according to observer 
O)  

(8) Indeterminate Subjective Permanent Posteriority 

(ISPePo): ISPePo(p,t) ≡def ∀t’≥t ∃O T(p,t’,O) 
(paraphrase: p is always true at time t and after, 
according to some observers - Note: there may be 
different observers at different time, i.e., ISPePo(p,t) 

≠ ∃O SPePo(p,t,O))  

(9) Subjective Permanency (SPe): SPe(p,O) ≡def ∀t 
T(p,t,O) (paraphrase: p is always true according to 
observer O)  



 

(10) Indeterminate Subjective Permanency (ISPe): 

ISPe(p) ≡def ∀t ∃O T(p,t,O) (paraphrase: p is always 
true according to some observers – Note: there may 
be different observers at different times, i.e., ISPe(p) 

≠ ∃O SPe(p,O))  

(11) Subjective Temporariness (ST): ST(p,O) ≡def ∃t 
T(p,t,O) (paraphrase: p is sometime true according to 
observer O)  

(12) Indeterminate Subjective Temporariness (ST): 

IST(p) ≡def ∃t ∃O T(p,t,O) = ∃O ST(p,O) 
(paraphrase: p is sometime true according to some 
observer)  

In the above, the notion of subjectivity expresses the idea 
that something is true according to one known observer 
while the notion of indeterminate subjectivity conveys 
that something is true according to some observer or 
observers, who are only known in particular contexts or 
particular instants of that observation.  

When the notion of the present is added, we can define 
additional subjective second-grade temporal notions 
similarly: 

(13) Subjective Future (SF): SF(p,O) ≡def  ∃t≥Now 
T(p,t,O) (paraphrase: p is or will sometime be true 
according to observer O)  

(14) Indeterminate Subjective Future (ISF): ISF(p) ≡def  

∃t≥Now ∃O T(p,t,O) = ∃O SF(p,O) (paraphrase: p is 
or will sometime be true according to some observer) 

(15) Subjective Permanent Future (SPeF): SPeF(p,O) ≡def  

∀t≥Now T(p,t,O) (paraphrase: p is and will always 
be true according to observer O)   

(16) Indeterminate Subjective Permanent Future (ISPeF): 

ISPeF(p) ≡def  ∀t≥Now ∃O T(p,t,O) (paraphrase: p is 
and will always be true according to some observers 
- Note: there may be different observers at different 

times, i.e., ISPeF(p) ≠ ∃O SPeF(p,O))  

(17) Subjective Past (SPa): SPa(p,O) ≡def  ∃t≤Now 
T(p,t,O) (paraphrase: p is or was sometime true 
according to observer O)  

(18) Indeterminate Subjective Past (ISPa): ISPa(p) ≡def  

∃t≤Now ∃O T(p,t,O) =  ∃O SPa(p,O) (paraphrase: p 
is or was sometime true according to some observer)  

(19) Subjective Permanent Past (SPePa): SPePa(p,O) ≡def 

∀t≤Now T(p,t,O) (paraphrase: p is and was always 
true according to observer O)  

(20) Indeterminate Subjective Permanent Past (ISPePa): 

ISPePa(p) ≡def ∀t≤Now ∃O T(p,t,O) (paraphrase: p is 
and was always true according to some observers - 
Note: there may be different observers at different 

times, i.e., ISPePa(p) ≠ ∃O SPePa(p,O))  
(21) Subjective Discrete Permanency = Subjective 

Anteriority and Subjective Posteriority: SDPe(p,O) 

≡def (∀t0 SA(p,t0,O) ∩ SPo(p,t0,O)) = (∀t0 ∃t ∃t’: 

t≤t0≤t’, T(p,t,O) ∩ T(p,t’,O)) (paraphrase: At any 
instant t, p is true before and after t according to 
observer O, in particular, p was true and will be true 
again according to observer O). Note that Subjective 
Discrete Permanency subsumes Subjective Past and 

Subjective Future, i.e., SDPe(p,O) > (SPa(p,O) ∩ 
SF(p,O)) since the right part of the equation is equal 

to (∃t ∃t’: t ≤ Now ≤ t’, T(p,t,O) ∩ T(p,t’,O))  

(22) Indeterminate Subjective Discrete Permanency = 
Indeterminate Subjective Anteriority and 
Indeterminate Subjective Posteriority, i.e., ISDPe(p) 

≡def (∀t0 ∃O ∃O’ SA(p,t0,O) ∩ SPo(p,t0,O’)) = (∀t0 

∃O ∃O’ ∃t ∃t’: t≤t0≤t’, T(p,t,O) ∩ T(p,t’,O’)) 
(paraphrase: if p is discretely and permanently true 
according some observers, then in particular, p was 
true and will be true again according to some 
observers – Note: there may be different observers at 

different times, i.e., ISDPe(p) ≠ ∃O SDPe(p,O)). 
Also note that Indeterminate Subjective Discrete 
Permanency subsumes Indeterminate Subjective Past 
and Indeterminate Subjective Future, i.e., ISDPe(p) > 

(∃O ∃O’ SPa(p,O) ∩ SF(p,O’)) since the right part of 

the equation is equal to (∃t ∃t’ ∃O ∃O’: t≤Now≤t’, 

T(p,t,O) ∩ T(p,t’,O’)) 

The above 22 definitions cover all subjective temporal 
notions in our formalism, which also extend McTaggart’s 
A- and B-series notions and A.N. Prior's first- and 
second-grade temporal notions, into subjectivity. 

4 Proposed Ontology Formalization  

Nguyen and Corbett (2003, 2006) define an ontology as a 
semantically consistent subset of a canon, which is in 
essence a mapping of a real world onto an abstract world. 
In this paper, to simplify and without loss of generality, 
we consider these two notions identical. 

In our formalism, a time ontology (or time canon) could 
be formally defined as a 5-tuple K = (T, I, <, conf, B) in 
which: 

(1) T is the set of temporal concept and relation types, 

i.e., T = TC ∪TR  where:  
(a) TC is the set of temporal concept types, 

consisting of 11 objective and 22 subjective 
temporal notions as listed above.  

(b) TR is the set of temporal relation types, 
consisting of 3 elements similar to the three 
main logical connectives of propositional 

calculus, i.e., negation (¬), conjunction (∩), and 

disjunction (∪) (Smith 2003), defined as 
follows: 

• ¬ is a unary relation over TC , i.e. ¬: TC  -> TC 

with ∀c∈TC the value ¬(c) (simply written as 

¬c) is a temporal concept type defined over 

the same domain set as c, i.e., ∀p∈P ∀t∈T 

∀O∈O 

o if c is defined over P only, then (¬c)(p) = 

¬(c(p))  

o if c is defined over PxT, then (¬c)(p,t) = 

¬(c(p,t))  
o if c is defined over PxTxO, then 

(¬c)(p,t,O) = ¬(c(p,t,O))  

• ∩ is a binary relation over TC  x TC , i.e., ∩: TC 

x TC -> TC with ∀c,c’∈TC the value ∩(c,c’) 

(simply written as c∩c’) is a temporal concept 
type defined over the largest of the 2 domain 
sets used by c and c’, i.e.,  



 

o if c and c’ are both defined over P only, or 

over PxT, or over PxTxO, then so is c∩c’ 

with: ∀p∈P ∀t∈T ∀O∈O 

 (c∩c’)(p) = c(p) ∩ c’(p) 

 or (c∩c’)(p,t) = c(p,t) ∩ c’(p,t)  

 or (c∩c’)(p,t,O) = c(p,t,O) ∩ c’(p,t,O)  
o if there is a difference in the domain sets 

of c and c’, then c∩c’ is defined over the 
largest domain set of the two, e.g., if c is 
defined over P only and c’ is defined over 

PxTxO, then c∩c’ is defined over PxTxO 

with: ∀p∈P ∀t∈T ∀O∈O 

 (c∩c’)(p,t,O) = c(p) ∩ c’(p,t,O)  

• ∪ is defined similarly to ∩. 
(2) I is the set of instances of temporal concept types in 

TC . I consists of all atomic propositions that contain 
temporal notions, i.e., temporal propositions that 
cannot be further divided into sub-propositions 
connected by any of the four logical connectives of 
propositional calculus: “and”, “or”, “not”, and 
“implication”. For example, the proposition “it was 
hot yesterday but it will be cooler tomorrow” could 
be considered as two atomic temporal propositions: 
“it was hot yesterday” and “it will be cooler 
tomorrow” connected by the logical connective 

“and” (i.e., “∩”). Note that our definition of 
temporal proposition is what OWL-Time calls 
eventuality or event. 

(3) “<” is the subsumption relation in T, defined as a 
binary relation between temporal concept types or 
between temporal relation types, such that the first 
type is semantically entailed by the second, e.g., the 
relation "b < a" or "a > b" between two temporal 
concept types a and b means: "a semantically entails 
b". This subsumption relation is based on the 
semantic entailment relation of propositional calculus 
(normally represented by the symbol “╞”) (Smith 
2003). As we shall see, in some cases, semantic 

entailment in our subsumption relation also means 
syntactic proof (normally represented by the symbol 
“├”) (Smith 2003). Formally, “<” can be defined as 
follows: 

• Subsumption relation in TC :   

∀c,c’∈TC   we have: c > c’ if and only if : 
a) If the domain set of c’ is larger than, or equal to, 
that of c, then the semantic entailment relation 
between the propositions transformed by c and c’ 
(i.e., the values of the functions c and c’) must be 
true for all instances of the common domain set 
(between c and c’), and for all instances of each extra 
dimension of the domain set of c’, i.e.,  

c>c’ ≡def ∀p∈P ∀t∈T ∀O∈O c(p) ╞ 
c’(p)|c’(p,t)|c’(p,O)|c’(p,t,O) 

or c>c’ ≡def ∀p∈P ∀t∈T ∀O∈O c(p,t) ╞ 
c’(p,t)|c’(p,t,O)  

or c>c’ ≡def ∀p∈P ∀t∈T ∀O∈O c(p,t,O) ╞  
c’(p,t,O)  

b) If the domain set of c is larger than that of c’, then 
the semantic entailment relation between the 
propositions transformed by c and c’ (i.e., the values 
of the functions c and c’) must be true for all 
instances of the common domain set (between c and 

c’), and for at least one instance of each extra 
dimension of the domain set of c, i.e., 

c>c’ ≡def ∀p∈P ∃t∈T c(p,t) ╞  c’(p)  

or c>c’ ≡def ∀p∈P ∃O∈O c(p,O) ╞  c’(p) 

or c>c’ ≡def ∀p∈P ∃t∈T ∃O∈O c(p,t,O) ╞  c’(p) 

or c>c’ ≡def ∀p∈P ∀t∈T ∃O∈O c(p,t,O) ╞  
c’(p,t)  

or c>c’ ≡def ∀p∈P ∀O∈O ∃t∈T c(p,t,O) ╞  
c’(p,O) 

In the above, the symbol “|” means “logical or”, e.g.,  
“c(p)|c(p,t)|c(p,t,O)” means “c(p), c(p,t), or c(p,t,O), 
depending on the domain set of c”. Note that in the 
above, condition a) is generally used to determine 
that an objective concept subsumes a subjective 
concept of the same nature (such as PeA > SPeA), 
while condition b) is generally used to determine the 
subsumption relation between two concepts of the 
same category (i.e., both objective or both subjective, 
such as SA > ISA).       

• Subsumption relation in TR :   

The subsumption relation “<” among the temporal 
relation types in TR could be formally defined as: 

∀r,r’∈TR  r > r’ ≡def ∀c,c’∈TC  r(c,c’) > r’(c,c’) with 
the relation “r(c,c’) > r’(c,c’)” defined similarly to 
the relation “<” between two elements of TC as 
above. In fact, since there are only 3 temporal 

relation types: ¬, ∩, and ∪, it can be proven that the 

only subsumption relation in TR  is: “∩∩∩∩ > ∪∪∪∪”. Indeed, 

∀c,c’∈TC , we have (assuming that c and c’ are 
defined over P only, to simplify): 

  (c∩c’) > (c∪c’)  

 or ∀p∈P (c∩c’)(p) ╞  (c∪c’)(p) 

 or ∀p∈P (c(p)∩c’(p)) ╞  (c(p)∪c’(p)) 

The last statement is true because in propositional 
calculus, “any two propositions that are jointly true 
always imply that either proposition is true”. 

(4) conf is the “conformity” relation, defined between 
the set of all non-tautological temporal concept type 
instances (denoted as I\{*}) and the set of all 
temporal concept types TC, i.e., conf:  I\{*} -> TC 
where {*} represents the set of all tautologies in 
propositional calculus. The conf function expresses 
the idea that any atomic temporal proposition, except 
a tautology, can be associated with a temporal 
concept type. For example, the temporal proposition: 
“The phenomenon p has been observed throughout 

the ages” can be translated as “∀t≤Now ∃O 
T(p,t,O)”, or p can be associated with the 
“Indeterminate Subjective Permanent Past” concept 
type of TC (i.e., if we call that statement q, then 

q∈I\{*} and conf(q)=ISPePa). We should distinguish 
that statement with: “Someone has always observed 

the phenomenon p”, translated as “∃O ∀t≤Now: 
T(p,t,O)”, or p is an instance of the “Subjective 
Permanent Past” concept type. Similarly, the 
statement: “The truth p will be revealed to all in the 

future” could be translated as “∃t≥Now ∀O 

T(p,t,O)”, or “∃t≥Now T(p,t)”, or “p is a Future 
truth” (i.e., p is an instance of the “Future” temporal 
concept type), while the statement: “Someone will 



 

know the truth p” could be translated as “∃O ∃t≥Now 
T(p,t,O)”, or “p is a Subjective Future” truth (i.e., p 
is an instance of the “Subjective Future” temporal 
concept type). Note that in OWL-Time, the relations 
between propositions and times are atTime(e,t|T) and 
holds(e,t|T) (meaning "the proposition or event e 
holds at instant t or during interval T"). These 
relations are similar to our conf function. OWL-Time 
separates the event (or proposition) ontology from 
the time ontology. (In fact, atTime is a relation in the 
time ontology while holds is a relation in the event 
ontology, although both have the same semantics in 
OWL-Time.) In our formalism, we link them 
together because as discussed earlier we consider that 
propositions and events are part of the real world 
while time is part of an abstract world, and an 
ontology is a formal attempt to link those two worlds 
(Nguyen et al. 2006). 

(5) B is the Canonical Basis function, defined between 

TR and the set of all subsets of TC (denoted as ϕ(TC)), 

i.e., B: TR -> ϕ(TC). B expresses the “usage pattern” 
(or “canonical basis”) of each temporal relation type, 
that is, it defines which temporal concept types can 
be used in each temporal relation type. In our time 
ontology, based on the above definitions of TC and TR  
there is no restriction and any temporal concept type 
can be used with any temporal relation type. This is 
similar to propositional calculus, in which the 

relations ¬, ∩, and ∪ can be used with any 
propositions. 

Finally, note that our formalism could be considered as a 
meta-logic since it is defined on top of propositional 
logic. 

5 Representation of Time Ontologies  

In the objective time ontology, the previously identified 
11 objective temporal concepts could be syntactically 

proven to be linked by 10 subsumption relations, based 
on their predicate formulae specified in Section 3. (More 
correctly, those 10 relations are 10 supertypes (Sowa 
1984), as some relations are between more than two 
concepts.) This means that our temporal subsumption 
relation ("<") that is based on semantic entailment can 
also be said to be based on syntactic proof  (Smith 2003):  

1. Anteriority > Temporariness  
2. Discrete Permanency > Anteriority, Future, Past, 

Posteriority  
3. Future > Temporariness  
4. Past > Temporariness  
5. Permanency > Discrete Permanency, Permanent 

Anteriority, Permanent Future, Permanent Past, 
Permanent Posteriority  

6. Permanent Anteriority > Anteriority  
7. Permanent Future > Future  
8. Permanent Past > Past  
9. Permanent Posteriority > Posteriority  
10. Posteriority > Temporariness 

Figure 1 (drawn with a tool built by the authors (Nguyen 
et al. 2006)) shows the objective temporal concept type 
hierarchy. Note that ‘permanency’ is at the top of the 
hierarchy while ‘temporariness’ is at its bottom. (Also 

note that in all figures, concept names between 
parentheses are co-references (Sowa 1984).) 

Similarly, it can be syntactically proven that there are 21 
(n-ary) subsumption relations among the 22 subjective 
temporal concept types, forming a hierarchy represented 
in Figure 2 (with acronyms used in order to reduce the 
figure size). Note that ‘subjective permanency’ is at the 
top of the hierarchy while ‘indeterminate subjective 
temporariness’ is at its bottom.  

In the combined objective-subjective ontology, we can 
identify additional subsumption relations linking 
objective with subjective concepts, based on the formal 
definition of the subsumption relation in Sect. 4. In 
general, an objective concept semantically entails (or 
subsumes) the subjective concept of the same nature, 
since “an objectively true proposition” means “a 
proposition true to all observers”. Also, no subjective 
concept type can subsume an objective concept type due 
to the extra observer dimension needed in the former. 
Therefore, the following 11 additional subsumption 
relations forms the complete list of objective-subjective 
relationships (with acronyms used for legibility): 

1. A > SA  
2. Po > SPo 
3. F > SF  
4. Pa > SPa  
5. T > ST  
6. DPe > SDPe 
7. Pe > SPe 
8. PeA > SPeA 
9. PePo > SPePo 
10. PeF > SPeF 
11. PePa > SPePa 

Finally, if we add the above 11 objective-subjective 
relations to the previous 10 objective and 21 subjective 
relations, we obtain a total of 42 relations, which can be 
consolidated into 32 (n-ary) subsumption relations (after 
relation consolidation (Nguyen et al. 2006)) between the 
33 objective and subjective temporal concept types. They 
can be fully listed as follows: 

1. A > SA, T  
2. DPe > A, F, Pa, Po, SDPe  
3. F > SF, T  
4. ISA > IST  
5. ISDPe > ISA, ISF, ISPa, ISPo  
6. ISF > IST  
7. ISPa > IST  
8. ISPe > ISPeA, ISPeF, ISPePa, ISPePo  
9. ISPeA > ISA  
10. ISPeF > ISF  
11. ISPePa > ISPa  
12. ISPePo > ISPo  
13. ISPo > IST  
14. Pa > SPa, T  
15. Pe > DPe, PeA, PeF, PePa, PePo, SPe  
16. PeA > A, SPeA  
17. PeF > F, SPeF  
18. PePa > Pa, SPePa 
19. PePo > Po, SPePo  
20. Po > SPo, T 



 
 

Fig. 1. Objective Temporal Concept Type Hierarchy 

Fig. 2. Subjective Temporal Concept Type Hierarchy 

(same sub-hierarchy as in Fig. 2)  

Fig. 3. Combined Temporal Concept Type Hierarchy 



 

21. SA > ISA, ST   
22. SDPe > ISDPe, SA, SF, SPa, SPo  
23. SF > ISF, ST  
24. SPa > ISPa, ST  
25. SPe > ISPe, SDPe, SPeA, SPeF, SPePa, SPePo 
26. SPeA > ISPeA, SA  
27. SPeF > ISPeF, SF  
28. SPePa > ISPePa, SPa  
29. SPePo > ISPePo, SPo  
30. SPo > ISPo, ST  
31. ST > IST  
32. T > ST 
Based on these subsumption relations, the combined 
temporal concept type hierarchy could be represented in 
Figure 3. Note that ‘permanency’ (coming from the 
objective ontology) is at the top of the hierarchy while 
‘indeterminate subjective temporariness’ (coming from 
the subjective ontology) is at its bottom, as one may 
intuitively expect in light of the earlier remarks on 
objective-subjective subsumption relations. 

6 Temporal Axioms and Properties 

In this section, we will attempt to identify key axioms and 
properties in our temporal logic. We call our axioms 
Truth Axioms because they express the semantics of the 
truth functions T(p,t) and T(p,t,O).   

6.1 Temporal Axioms   

• Truth Axiom 1:  ∀p  p ⇒ (∀c  c(p)) 

(paraphrase: If a proposition is true, then it is true under 
any temporal concept type.) 

This axiom is the most basic and fundamental in our 
theory. It simply states that if a proposition is true without 
any temporal qualification, then it is supposed to be 
permanently true. And since it is permanently true and 
permanency is at the top of our temporal concept type 
hierarchy, it is true with any subtype of permanency, i.e., 
true with any other temporal concept type. 

• Truth Axiom 2: 

(2a) T(p⇒q,t)  =  (T(p,t) ⇒ T(q,t)) 

and  T(p⇒q,t,O) = (T(p,t,O) ⇒ (T(q,t,O))   

(paraphrase: If at time t (and according to observer O), “p 
implies q” is true, then “p is true at t (and according to 
observer O)” implies “q is true at time t (and according to 
observer O)”, and vice-versa.)    

(2b) T(p∩q,t)  =  (T(p,t)∩T(q,t)) 

and  T(p∩q,t,O) = (T(p,t,O)∩(T(q,t,O))   

(paraphrase: If at time t (and according to observer O), 
both p and q are true, then both “p is true at time t (and 
according to observer O)” and “q is true at time t (and 
according to observer O)” are true, and vice-versa.) 

(2c) T(p∪q,t)  =  ( T(p,t)∪T(q,t) ) 

and T(p∪q,t,O) = (T(p,t,O)∪(T(q,t,O))   

(paraphrase: If at time t (and according to observer O), 
either p or q is true, then either “p is true at time t (and 

according to observer O)” or “q is true at time t (and 
according to observer O)” is true, and vice-versa.)  

(2d) ¬T(p,t)  =  T(¬p,t) 

and ¬T(p,t,O)  =  T(¬p,t,O) 

(paraphrase: If at time t (and according to observer O), p 
is not true, then it is true that “p is not true at time t (and 
according to observer O)”, and vice-versa.)  

• Truth Axiom 3: 

(3a) (∀t  T(p⇒q,t) )  =  ( (∀t T(p,t)) ⇒ (∀t’ T(q,t’)))  

and (∀t ∀O T(p⇒q,t,O) ) = ( (∀t ∀O T(p,t,O)) ⇒ (∀t’ 

∀O’ T(q,t',O')))   

(paraphrase: If at any time (and according to any 
observer), “p implies q” is true, then “p is true at all times 
(and according to all observers)” implies “q is true at all 
times (and according to all observers)”, and vice-versa.) 

(3b) (∀t  T(p∩q,t) )  =  ( (∀t T(p,t)) ∩ (∀t’ T(q,t’))) 

and (∀t ∀O T(p∩q,t,O) ) = ( (∀t ∀O T(p,t,O)) ∩ (∀t’ 

∀O’ T(q,t',O')) )   

(paraphrase: If at any time (and according to any 
observer), both p and q are true, then both “p is true at all 
times (and according to all observers)” and “q is true at 
all times (and according to all observers)” are true, and 
vice-versa.) 

(3c) ((∀t T(p,t)) ∪ (∀t’ T(q,t’)) )  ⇒  (∀t  T(p∪q,t)) 

and ((∀t ∀O T(p,t,O)) ∪ (∀t’ ∀O’ T(q,t',O')) )  ⇒  (∀t 

∀O  T(p∪q,t,O))    

(paraphrase: If either “p is true at all times (and according 
to all observers)” or “q is true at all times (and according 
to all observers)” is true, then at any time (and according 
to any observer), either p or q is true.) Note that the 
converse of this Truth Axiom does not hold. 

(3d) (∀t  ¬T(p,t))  =  (∀t T(¬p,t)) 

and (∀t ∀O ¬T(p,t,O))  = (∀t ∀O T(¬p,t,O)) 

(paraphrase: If at all times (and according to all 
observers), p is not true, then it is true at all times (and 
according to all observers) that “p is not true (at those 
times (and according to those observers))”, and vice-
versa.)  

• Truth Axiom 4: 

(4a) (∀t0 ∃t ∃t’: t≤t0≤t’, T(p,t)∩T(p,t’)⇒T(q,t)∩T(q,t’))  

⇒  ((∀t0 ∃t ∃t’: t ≤t0≤t’, T(p,t)∩T(p,t’)) ⇒ (∀s0 ∃s ∃s’: 

s≤s0≤s’ T(q,s)∩T(q,s’)))  

and 

(∀O ∀t0 ∃t ∃t’: t ≤t0≤t’, T(p,t,O)∩T(p,t’,O) ⇒ 

T(q,t,O)∩T(q,t’,O) ) ⇒  

((∀O ∀t0 ∃t ∃t’: t≤t0≤t’, T(p,t,O)∩T(p,t’,O)) ⇒ (∀O’ ∀s0 

∃s ∃s’: s≤s0≤s’ T(q,s,O’)∩T(q,s’,O’)) ) 

(paraphrase: If at any time t (and according to any 
observer), “p is true before and after t” implies “q is true 
before and after t (but at the same times as p)”, then “p is 
true before and after t, at any time t (and according to any 
observer)” implies “q is true before and after s, at any 
time s (and according to any observer) (the times before 



 

and after s could be different from those relating to p)”.) 
Note that the converse of this Truth Axiom does not hold. 

(4b) (∀t0 ∃t ∃t’: t≤t0≤t’, (T(p,t)∩T(p,t’)) ∩ 

(T(q,t)∩T(q,t’)))  ⇒  ((∀t0 ∃t ∃t’: t ≤t0≤t’, T(p,t)∩T(p,t’))  

∩ (∀s0 ∃s ∃s’: s≤s0≤s’ T(q,s)∩T(q,s’))) 

and 

(∀O ∀t0 ∃t ∃t’: t ≤t0≤t’, (T(p,t,O)∩T(p,t’,O)) ∩ 

(T(q,t,O)∩T(q,t’,O)) ) ⇒ ((∀O ∀t0 ∃t ∃t’: t≤t0≤t’, 

T(p,t,O)∩T(p,t’,O)) ∩ (∀O’ ∀s0 ∃s ∃s’: s≤s0≤s’ 

T(q,s,O’)∩T(q,s’,O’)) ) 

(paraphrase: If at any time t (and according to any 
observer), both “p is true before and after t” and “q is true 
before and after t (but at the same times as p)”, then both  
“p is true before and after t, at any time t (and according 
to any observer)” and “q is true before and after s, at any 
time s (and according to any observer) (the times before 
and after s could be different from those relating to p)”.) 
Note that the converse of this Truth Axiom does not hold. 

(4c) ((∀t0 ∃t ∃t’: t ≤t0≤t’, T(p,t)∩T(p,t’))  ∪ (∀s0 ∃s ∃s’: 

s≤s0≤s’ T(q,s)∩T(q,s’))) ⇒ (∀t0 ∃t ∃t’: t≤t0≤t’, 

(T(p,t)∩T(p,t’)) ∪ (T(q,t)∩T(q,t’))) 

and 

((∀O ∀t0 ∃t ∃t’: t≤t0≤t’, T(p,t,O)∩T(p,t’,O)) ∪ (∀O’ ∀s0 

∃s ∃s’: s≤s0≤s’ T(q,s,O’)∩T(q,s’,O’))) ⇒ (∀O ∀t0 ∃t ∃t’: 

t ≤t0≤t’, (T(p,t,O)∩T(p,t’,O)) ∪ (T(q,t,O)∩T(q,t’,O)) )  

(paraphrase: If either “p is true before and after t, at any 
time t (and according to any observer)” or “q is true 
before and after s, at any time s (and according to any 
observer)” is true, then at any time t (and according to 
any observer), either “p is true before and after t” or “q is 
true before and after t” is true.) Note that the converse of 
this Truth Axiom does not hold. 

(4d) (∀t0 ∃t ∃t’: t ≤t0≤t’, ¬(T(p,t)∩T(p,t’)) ) = (∀t0 ∃t ∃t’: 

t≤t0≤t’, T(¬p,t)∪T(¬p,t’))  

and 

(∀O ∀t0 ∃t ∃t’: t≤t0≤t’, ¬(T(p,t,O)∩T(p,t’,O))) = (∀O ∀t0 

∃t ∃t’: t≤t0≤t’, T(¬p,t,O)∪T(¬p,t’,O))  

(paraphrase: If at any time t (and according to any 
observer), it is not true that we have both “p is true before 
t” and  “p is true after t”, then at any time t (and 
according to any observer), either “p is not true before t” 
or “p is not true after t” is true. The converse also holds.) 
Note that this axiom is only added for completeness, as it 
is simply a deduction of De Morgan’s theorem in 
propositional calculus and the above Truth Axiom 2d. 

6.2 Temporal Properties 

Based on the above Truth Axioms, the following 
properties linking our temporal formalization and 
propositional logic could be proven syntactically. 

In the following, we use the symbol ‘⇒’ to denote the 
implication relation in propositional calculus and also, to 
simplify the notations we will suppose that c is defined 
over P only, as similar properties could be written when c 
is defined over PxT or PxTxO.  

For any temporal concept type c in TC and for any 
propositions p, q and r in P, we have the following 
properties: 

(1) c(p⇒q) ╞  (c(p)⇒c(q)) 

(paraphrase: if “p implies q” is true under a temporal 
concept type c, then “p is true under c” implies “q is true 
under c”.) For example, if the proposition: “p implies q” 
has always been true (i.e., the proposition is a Permanent 
Past truth), then the proposition: “p has always been true” 
implies the proposition: “q has always been true”. 

(2) (p⇒q) ╞  (c(p)⇒c(q))  
(paraphrase: if “p implies q” is true, then for any temporal 
concept type c, “p is true under c” implies “q is true under 
c”.) 

(3) c(¬p) ╞  ¬c(p)  
(paraphrase: For a temporal concept type c, if “non-p is 
true under c”, then it is not true that “p is true under c”.) 
Note that the converse of this property does not hold. 

(4) c(p∩q) ╞  (c(p)∩c(q))   

(paraphrase: If the proposition “p and q are true” is true 
under c (i.e., p and q are jointly true under c), then both 
propositions: “p is true under c” and “q is true under c” 
are true.) For example, if both p and q will always be 
jointly true (i.e., “p and q” is a Permanent Future truth), 
then “p will always be true” and “q will always be true” 
are both true.  

(5) (c(p)∪c(q)) ╞  c(p∪q)     
(paraphrase: if either proposition “p is true under c” and 
“q is true under c” is true, then the proposition “either p 
or q is true” is true under c.) For example, if either “p will 
always be true” or “q will always be true” is true, then “p 
or q is true” will always be true. Note that the converse of 
this property is not true, e.g., if “p or q is true” is a 
Discrete Permanent truth, then it is not necessarily true 
that either “p is a Discrete Permanent truth” or “q is a 
Discrete Permanent truth “ is true, since, at any time t, “p 
or q” is true before and after t (e.g., p is true before t and 
q is true after t), but it is not necessarily true that “p is 
true both before and after t” or “q is true both before and 
after t”.  

(6) ¬(c(p) ∩ c(q)) = (¬c(p) ∪ ¬c(q))   
This is an extension of De Morgan’s Theorem No. 1 in 
propositional calculus.   
(paraphrase: If it is not true that both “p true under c” and 
“q true under c” can be jointly true, then it must be true 
that either “p not true under c” or “q not true under c” is 
true, and vice-versa.) For example, if we cannot have 
both “p is a Discrete Permanent truth” and “q is a 
Discrete Permanent truth”, then either “p is not a Discrete 
Permanent truth” or “q is not a Discrete Permanent truth” 
is true, and vice-versa. 

(7) (c(¬p) ∪ c(¬q)) ╞ ¬(c(p) ∩ c(q))    
This is an extension of Temporal Property 6 above.   

(8) ¬(c(p) ∪ c(q)) = (¬c(p) ∩ ¬c(q))  
This is an extension of De Morgan’s Theorem No. 2 in 
propositional calculus. 

(paraphrase: If it is not true that either “p true under c” or 
“q true under c” is true, then it is true that “p not true 
under c” and “q not true under c” are both true.) The 
converse also holds. For example, if we cannot have 
either p or q as a Future truth, then we can have both “p 



 

not a Future truth” and “q not a Future truth” (i.e., both p 
and q are not Future truths), and vice-versa. 

(9) (c(¬p) ∩ c(¬q)) ╞ ¬(c(p) ∪ c(q))    
This is an extension of Temporal Property 8 above. 

(10)  Temporal Modus Ponens: c((p⇒q) ∩ p) ╞  c(q) 
(paraphrase: If both “p implies q” and p are true under c, 
then q is true under c.) Note that it could be proven that a 
similar Temporal Modus Ponens formula does not hold: 

(c(p⇒q)∩c(p)) ╞  c(q) 
(11)  Temporal Modus Tollens: 

  c((p⇒q) ∩ ¬q) ╞  c(¬p)  
(paraphrase: If both “p implies q” and "not q" are true 
under c, then "not p" is true under c.) Note that it could be 
proven that the similar following Temporal Modus 
Tollens formulae do not hold: 

- c((p⇒q) ∩ ¬¬¬¬q)) ╞  ¬¬¬¬c(p) 

- (c(p⇒q)  ∩ ¬¬¬¬c(q)) ╞  c(¬¬¬¬p) 

- (c(p⇒q)  ∩ ¬¬¬¬c(q)) ╞  ¬¬¬¬c(p) 
(12)  Temporal Transposition: 

 c(p⇒q) ╞  (¬c(q) ⇒ ¬c(p)) 

(paraphrase: If “p implies q” is true under c, then it is true 
that “q not true under c” implies “q not true under c”.) 
Note that Transposition is similar to Modus Tollens, but 
they are not the same as Modus Tollens emphasizes the 
non-true value of q in the conclusion while Transposition 
emphasizes the semantic entailment relation in the 
conclusion proposition.   

(13)  Temporal Distribution: 

 (c(p) ∪ c(q∩r)) ╞  (c(p∪q) ∩ (c(p∪r)) 
(paraphrase: If “p true under c” or “q and r jointly true 
under c”, then both “p or q true under c” and “p or r true 
under c” are true.) Note that it could be proven that the 
following similar formulae do not hold: 

 - (c(p) ∩ c(q∪r)) ╞  (c(p∩q) ∪ (c(p∩r)) 

 - (c(p∪q) ∩ ¬c(p)) ╞  c(q) 

 - (c(p⇒q) ∩ c(q⇒r)) ╞  c(p⇒r) 

We apologize for not being able to include the proofs for 
the above properties in this paper due to space restriction.  

7 Conclusion  

This paper proposes a novel formalization of temporal 
notions in which all objective and subjective temporal 
concept types are identified, based on McTaggart’s A- 
and B-series and Priorean tense logic, with the help of 
propositional calculus and first-order logic. Our approach 
enables categorization of tempo-modal propositions 
under a time ontology, structured according to a 
formalism that we previously introduced. In our time 
ontology, we identify through syntactic proof 32 n-ary 
subsumption relations among the 33 temporal concept 
types, forming a hierarchy that could be graphically 
represented as a tree structure. Some axioms and 
properties linking our temporal logic with propositional 
calculus are also identified, contributing to future 
research in combining time and event ontologies. Possible 
world semantics and multi-agent systems are other 
directions that could be explored in the future in 
conjunction with our concept of subjectivity in time and 
event. Our ultimate aim is to use our temporal logic to 
assist formal reasoning involving time, including the 

development of the Semantic Web, e.g., by describing the 
temporal content of web pages and by building automated 
natural language translation engines.  
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