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Abstract

Vector Quantization (VQ) and Clustering are signifi-
cantly important in the field of data mining and pat-
tern recognition. The Self Organizing Maps has been
widely used for clustering and topology visualization.
The topology of the SOM and its initial neurons play
an important role in the convergence of the Kohonen
neural network. In this paper, in order to improve the
convergence of the SOM we introduce an algorithm
based on the split and merging of clusters to initial-
ize neurons. We also introduce a topology based on
this initialization to optimize the vector quantization
error. Such an approach allows one to find global or
near global solution to the vector quantization and
consequently clustering problem. The numerical re-
sults on 4 small to large real-world data sets are re-
ported to demonstrate the performance of the pro-
posed algorithm.

Keywords: Self Organizing Maps, Clustering, Vector
Quantization, Split and Merge Algorithm.

1 Introduction

Clustering is the process of learning concept of raw
data by dividing the data into groups of similar ob-
jects (Berkhin 2006, Arous 2010). Many clustering
algorithms have been proposed based on statistics,
machine learning, neural networks and optimization
techniques (Jain et al. 1999, Berkhin 2006).

The self organizing map (Kohonen 2001) (SOM)
is the well known data mining tool where the aim
is to visualize a high dimensional data into usually
a 2-Dim grid. The SOM contains a set of neurons
that gradually adapts to input data by competitive
learning and creates ordered prototypes. The ordered
prototypes preserve the topology of the mapped data
and make the SOM to be very suitable for cluster
analysis (Yang et al. 2012). This adaption is based
on a similarity measure, which is usually Euclidean
distance, and repositioning of neurons in a 2-Dim
space using a learning algorithm. The performance
of the SOM strongly depends on a learning algorithm
(Haese 1998, Fiannaca et al. 2011, 2007, Goncalves
et al. 1998).

Different versions of the SOM have been intro-
duced in (Alahakoon et al. 2000, Appiah et al. 2012,
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Arous 2010, Ayadi et al. 2012, Brugger et al. 2008,
Cheng et al. 2009, Chi & Yang 2006, 2008, Cottrell
et al. 2009, Ghaseminezhad & Karami 2011, Gorgonio
& Costa 2008, Lapidot et al. 2002, Shah-Hosseini &
Safabakhsh 2003, Tasdemir et al. 2011, Vesanto & Al-
honiemi 2000, Wong et al. 2006, Xu et al. 2005, Yang
et al. 2012, Yen & Wu 2008, Zheng & Greenleaf 1996).
The paper (Wong et al. 2006) presents an automated
detection algorithm based on the SOM assuming that
the training data is adequate representation of the
sample distribution. Therefore, the SOM is trained
using a small proportion of the sample data set and
the algorithm defines a region around prototypes by
employing a parameter rj , j = 1, . . . , q (where q is
the number of neurons) that represents the distance
of the farthest projected sample into the neuron j.
The upcoming samples are distributed into the net-
work and novelties are those samples which cannot fit
into these regions. A combinatorial two-stage cluster-
ing algorithm based on the SOM is introduced in (Chi
& Yang 2008). The numerical results of the enhanced
SOM using the Ant Colony Optimization technique
and the k-means demonstrates the superiority of the
proposed algorithm in comparison with the SOM and
k-means. Similarly in (Brugger et al. 2008) an en-
hanced version of the Clusot algorithm (Bogdan &
Rosenstiel 2001) is applied in the SOM for automatic
cluster detection. In (Tasdemir et al. 2011) the SOM’s
prototypes are clustered hierarchically based on the
density instead of the distance dissimilarity. Recently,
a new two-stage algorithm is proposed in (Yang et al.
2012) that applies the graph cut algorithm (Shi &
Malik 2000) to the SOM output. Results presented
demonstrate that this algorithm outperforms direct
clustering methods using less computational time.

A dynamic SOM is a version of the SOM where
its structure is not fixed during the learning phase.
In (Alahakoon et al. 2000), a growing self organizing
map (GSOM) is presented which defines a spread fac-
tor to measure and control the growth of the network.
Similarly in (Ayadi et al. 2012), a multi level interior
growing SOM is introduced. Unlike the GSOM, which
allows the growth only from border sides, this algo-
rithm allows neurons to grow even from an interior
node of the map.

Another extension of the SOM algorithm is pre-
sented in (Haese 1998). This extension automatically
calculates the learning parameters during the train-
ing. The algorithm is based on the Kalman filter es-
timation technique and the idea of the topographic
product. The Fast Learning SOM (FLSOM) algo-
rithm is presented in (Fiannaca et al. 2011), which is
based on the application of the simulated annealing
(SA) metaheuristics to the SOM learning. The SA is
used to modify the learning rate factor in an adaptive
way. The FLSOM shows a good convergence, better
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than the original SOM algorithm.
In all above modifications of the SOM there are no

any specific procedures to initialize neurons. There-
fore the most of these algorithms are still sensitive
to the initialization of neurons. In this paper, to im-
prove the performance of the SOM we propose an
initialization algorithm based on the split and merge
procedure. The high dense areas in input data space
are detected by the proposed split and merge proce-
dure. Then neurons are generated in those detected
areas. A new topology is presented for the SOM to
restrict the adaption of the neurons to those neighbor-
hood ones which are located in the same high density
areas. Such an approach leads to better local min-
imum of the quantization error than that of by the
SOM. The proposed algorithm is tested using eight
real-world data sets.

The rest of the paper is organized as follows. The
basic self organizing maps and its learning algorithm
are presented in Section 3. In Section 2, the split
and merge procedure is introduced. The SOM ini-
tialization algorithm is presented in Section 3.1. In
Section 3.2 a new topology for the SOM is proposed.
The modified SOM algorithm and its implementation
are discussed in Section 4. Numerical results are pre-
sented in Section 5 and Section 6 concludes the paper.

2 Merging and Splitting Algorithms

In this section we discuss splitting and merging pro-
cedures in cluster analysis. More specifically, first we
present one algorithm for splitting and one algorithm
for merging. Finally, we present an algorithm based
on the combination of these two algorithms.

Assume that we have a set of k cluster centers Λ =
{c1, · · · , ck}, ci ∈ IRn. These centers are solutions to
the following problem:

minimize f =
k∑
i=1

m∑
j=1

‖xj − ci‖2 where xj ∈ Ci, (1)

here ci is the center point of the set Ci.
In some cases data points from the set Ci are not

dense in some neighborhood of its center ci. Given
a radius ε > 0 we consider the following two sets for
the cluster Ci:

Φic(ε) = {xj ∈ Ci| d(xj , ci) ≤ ε}, (2)

and

Φis(ε) = {xj ∈ Ci| ε < d(xj , ci) ≤ ri},

where

ri = max
j
{d(xj , ci)| xj ∈ Ci}, i = 1, . . . , k.

Two clusters Ci and Cl are said to be well separated
if d(ci, cl) ≥ (ri + rl).

It is clear that for any cluster Ci, i = 1, . . . , k
there exist εi ∈ (0, ri] such that |Φic(ε)| =
max(|Φic(ε)|, |Φis(ε)|) for all ε ∈ (εi, ri]. Consider the
following equation:

εi = βri.

where β ∈ (0, 1). If the εi is sufficiently small then
data points from the cluster Ci are dense around its
center ci.

The εi will be used to design a splitting algorithm
for clusters whereas the definition of well separated
clusters will be used to design a merging algorithm.

2.1 Splitting

In this subsection we describe the splitting procedure
for clusters. This will be done using the parameter β
and also special scheme to identify parts of a cluster
where most of point reside.

Assume that a set of k clusters, Ω = {C1, ..., Ck}
and a number β ∈ (0, 1) are given. The number of
points within the radius εi = βri from the center of
the cluster Ci is:

wic = |Φic(εi)|.

We introduce the angle θi,j between the cluster center
cj and the data point xi ∈ Cj as follows assuming
both cj 6= 0 and xi 6= 0:

θi,j = arccos
〈xi, cj〉
‖xi‖‖cj‖

. (3)

Remark 1 In order to make (3) well-defined we
transform the cluster Cj so that the point v =
(δ, . . . , δ) ∈ IRn becomes its center. Here δ > 0 is a
sufficiently small number, say δ ∈ (0, 0.1]. It is clear
that points xi from this cluster will be transformed as
follows:

x̄ti = xti − ctj + δ, t = 1, . . . , n.

Moreover we consider only those x̄i which satisfy the
following condition:

εj < d(x̄i, v) ≤ rj .

Then the angle θi,j is defined between v and x̄i.

Now we introduce the following two sets:

Φju(εj) = {xi ∈ Cj | εj < d(xi, cj) ≤ rj , 0 ≤ θi,j ≤
π

2
},

(4)
and

Φjd(εj) = {xi ∈ Cj | εj < d(xi, cj) ≤ rj ,
π

2
≤ θi,j ≤ π}.

(5)
The cardinalities of these sets are wju = |Φju(εj)| and

wjd = |Φjd(εj)|, respectively.

The sets Φic(εi),Φ
j
u(εj) and Φjd(εj) satisfy the fol-

lowing conditions:

1. wju + wjd + wjc = |Cj |;

2. Φjc(εi) ∪ Φju(εj) ∪ Φjd(εj) = Cj ;

3. Φjc(εi)∩Φju(εj) = ∅, Φjc(εi)∩Φjd(εj) = ∅, Φju(εj)∩
Φjd(εj) = ∅.

Application of the splitting procedure to the clus-
ter Cj depends on the values of wju, w

j
d and wjc . If

wjc ≥ max{wjd, w
j
c} (6)

then data points are dense around the cluster center
and we do not split such a cluster. If

wjc < max{wjd, w
j
c} (7)

then we split this cluster into two new ones. In order
to do so we define the following two subsets of Φic(εi):

Φjcu(εj) =
{
xi ∈ Φic(εi)|d(xi, cj) ≤ εj , 0 ≤ θi,j ≤

π

2

}
,

(8)
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and

Φjcd(εj) =
{
xi ∈ Φic(εi)|d(xi, cj) ≤ εj ,

π

2
≤ θi,j ≤ π

}
.

(9)
Then the cluster Cj is split into two new clusters as
follows:

C∗j = {Φju(εj) ∪ Φjcu(εj)}, (10)

with the center

c∗j =
1

|C∗j |
∑
xi∈C∗j

xi, (11)

and
C∗j′ = {Φjd(εj) ∪ Φjcd(εj)}. (12)

with the center

c∗j′ =
1

|C∗j′ |
∑

xi∈C∗j′

xi. (13)

Thus, the splitting algorithm can be summarized as
follows:

Algorithm 1 Splitting algorithm
Step 0. Input: A collection of k clusters Ω =
{C1, ..., Ck}, and the ratio β ∈ (0, 1).
Step 1. Select cluster Cj ∈ Ω and calculate its center
cj .
Step 2. Calculate d(xi, cj) and also θi,j using (3) for
all data point xi ∈ Cj .
Step 3. For each cluster Cj calculate sets

Φjc(εi),Φ
j
u(εj),Φ

j
d(εj) using (2), (4) and (5), respec-

tively.
Step 4. If (6) is satisfied then go to Step 6, otherwise
go to Step 5.
Step 5. Split the cluster Cj into two new clusters C∗j
and C∗j′ using (10) and (12), respectively. Update Ω
and set k := k + 1.
Step 6. If all clusters Cj , j = 1, . . . , k are visited
terminate, otherwise go to Step 2.

2.2 Merging

Assume that the collection of k clusters, Ω =
{C1, ..., Ck}, is given. It may happen that (also af-
ter applying the splitting algorithm) some clusters are
not well separated. In this subsection we design an
algorithm to merge clusters which are well separated
from each other.

According to the definition of well separated clus-
ters two clusters Cj , Cp ∈ Ω should be merged if

d(cj , cp)− (rj + rp) < 0. (14)

These two clusters are merged into one cluster as fol-
lows:

C∗j = Cj ∪ Cp, (15)

with the center

c∗j =
1

|C∗j |
∑
xi∈C∗j

xi. (16)

For the cluster C∗j we use only the index j meaning
that the cluster Cp joins the cluster Cj . Then the
merging algorithm can be summarized as follows:

Algorithm 2 Merging algorithm
Step 0. Input: A collection of k clusters Ω =
{C1, ..., Ck}.
Step 1. Select cluster Cj ∈ Ω and calculate its center
cj .
Step 2. Select cluster Cp ∈ Ω and calculate its center
cp, where j 6= p.
Step 3. If the condition (14) is satisfied then go to
Step 4, otherwise go to Step 6.
Step 4. Merge clusters Cj and Cp using (15). Update
the set Ω and set k := k − 1.
Step 5. If all cluster Cp, p = 1, · · · , k and j 6= p are
visited go to Step 6, otherwise go to Step 2.
Step 6. If all clusters Cj ∈ Ω are visited terminate,
otherwise go to Step 1.

One can see that Algorithm 1 and 2 are comple-
mentary. In other words, to have stable cluster cen-
ters these algorithms should be applied iteratively un-
til the cluster centers become stable. The stability
can be checked by monitoring the value of (1) until
satisfying the strictly decreasing value or the max-
imum number of iteration can be predefined in ad-
vance. In this paper we use the second criterion and
the split and merge algorithm is presented as follows.

Algorithm 3 Split and Merge algorithm
Step 0. Input: A collection of k clusters Ω =
{C1, ..., Ck}, the maximum number of iterations
γmax > 0 and the ratio β ∈ (0, 1). Set i := 0.
Step 1. Set i := i+ 1.
Step 2. Apply Algorithm 1 to the collection of clusters
Ω. This algorithm will generate a new collection of
clusters Ω.
Step 3. Apply Algorithm 2 to the collection of clusters
Ω.
Step 4. If i > γmax terminate, otherwise go to Step
1.

3 Self Organizing Maps

The SOM is an unsupervised neural network (Koho-
nen 2001) that usually contains a 2-Dim array of neu-
rons Ψ = {w1, · · · , wq}. Assume that we are given the
set of m input data vectors A = {x1, · · · , xm} where
xi ∈ IRn, i = 1, · · · ,m. In the SOM a weight wj ∈
IRn is associated with the neuron j, j = 1, · · · , q. For
given j ∈ {1, . . . , q} define the following set:

Sj = {xk : d(xk, wj) < d(xk, wl), l 6= j, l = 1, . . . , q}
(17)

where

d(x, y) = ‖x− y‖ =

(
n∑
t=1

(xt − yt)2

)1/2

, x, y ∈ IRn

is the Euclidean distance.
One data point xi, i ∈ {1, . . . ,m} at a time is

presented to the network and is compared with all
weight vectors. The nearest wj , j = 1, · · · , q is se-
lected as the best matching unit (BMU) for the i-th
data point. This data point is mapped to the best
matching neuron. Therefore,

Sj = Sj ∪ xi.

The set of neighborhood weights Nc = {wl :
p(c, l) ≤ r, l 6= c} around the BMU are updated
where p(c, l) is the distance between the BMU and
the neighborhood neuron l in 2-Dim coordinates of
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the network topology and r is the predefined radius.
Furthermore, p(c, l) ∈ IN and 0 < p(c, l) ≤ r. The
aim in this paper is to solve the following problem:

minimize E =
1

m

m∑
i=1

‖xi − wc‖, (18)

where wc is the weight of the BMU of xi, i = 1, . . . ,m.
A general description of the SOM algorithm is as fol-
lows.

Algorithm 4 SOM algorithm
Step 1. Initialize the dimension of the network, the
maximum number of iterations (T ), a radius (r) of
the network and weight vectors wj , j = 1, . . . , q. Set
iteration counter τ := 0.
Step 2. Select data xi, i = 1, . . . ,m and find its closest
neuron c, that is

c := argmin
j=1,...,q

‖xi − wj‖. (19)

Step 3. Update the set of neighborhood neurons wj ∈
Nc using the following equation:

wj := wj + α(τ)h(τ)(xi − wj). (20)

(Here h is a neighborhood function and α(τ) is a
learning rate at the iteration τ .)
Step 4. If all input data are presented to the network
go to Step 5, otherwise go to Step 2.
Step 5. Calculate Eτ using (18). If τ > T terminate,
otherwise set τ := τ + 1 and go to Step 2.

The neighborhood function h in Step 3 of Algo-
rithm 4 plays an important role in the SOM. Usually
h is a decreasing exponential function of τ . The learn-
ing rate α is a decreasing linear function of τ and σ
reduces the width of the neighborhood function h as
τ → T .

3.1 SOM Initialization Algorithm

Usually the set of SOM neurons Ψ = {w1, · · · , wq} are
initialized randomly (Kohonen 2001). This leads the
network to converge only to local solutions of Problem
(18). Furthermore the SOM suffers from slow conver-
gence. In other words, the number of iterations to
learn the input data become large and the neurons
may not learn some data points correctly. In this sec-
tion we present a new algorithm based on Algorithm
1 and 2 to initialize the neurons of the SOM and then
define a modified topology of neurons at the initial
points.

Algorithm 5 SOM initialization algorithm
Step 0 (Initialization). A set of m input data vectors
A = {x1, · · · , xm}. Set Ψ := ∅ .
Step 1. Calculate the center c∗ of the set A, set w1 :=
c∗ and

Ψ := Ψ ∪ w1.

Step 2. Apply Algorithm 3 on Ψ. This algorithm will
generate a new set Ψ of neurons.
Step 3. Set the final Ψ as initial neurons of the SOM.

Algorithm 5 ensures that the initial neurons are
located in distinct high density area of the input data
space which is found by Algorithm 1. Algorithm 2
guarantees that initial neurons are not close to each
other.

3.2 SOM with Modified Topology

We have the set of initial neurons Ψ = {w1, · · · , wq̂}
applying the SOM initialization algorithm. We gener-
ate a set of e number of neurons uz ∈ IRn, z = 1, . . . , e
using each individual neuron wi, i = 1, · · · , q̂ as fol-
lows:

gi = {uz|wti − λεi ≤ utz ≤ wti + λεi}, (21)

where t = 1, . . . , n, z = 1, . . . , e and λ ∈ IR, λ > 1.
One can see that all the neurons in the set gi are close
to wi to cover up the dense area which is centered by
neuron wi. The use of such neurons allows to decrease
the quantization error (18). In Problem (18) the local
solution is obtained while none of the activated neu-
rons are far from its mapped data points. Therefore,
the set of neurons defined by (21) guarantees that the
SOM learning process escapes from local solutions of
Problem (18) and converges to the global ones.

Usually in the SOM topology, all neighborhood
neurons are connected to each other in order to spread
the adaption to adjacent neurons. For each pair
wi, wj , i, j = 1, . . . , q̂, i 6= j we define the following
integer number:

r̂ij =

⌈
d(wi, wj)

εi + εj

⌉
. (22)

Here dxe is a smallest integer greater than or equal
to x, called its ceiling. Note that the parameter r̂ij
for neurons ui, uj ∈ gk, i, j = 1, . . . , e, i 6= j, k =
1, · · · , q̂ is set to 1. In order to determine the connec-
tivity of neurons we define the threshold r0 ≥ 1 and
say that two neurons wi, wj are connected if r̂ij ≤ r0.
The threshold r0 is defined for the whole data set.
The neurons in the sets gi, i = 1, · · · , q̄ are connected
to their parent neuron wi and to each other as well.
Then we have the following connectivity matrix for
the new topology:

1. con(i, j) ∈ {0, 1}, wi, wj ∈ Ψ.

2. con(i, j) ∈ {0}, ui ∈ gk, uj ∈ gp, k 6= p.

3. con(i, j) ∈ {1}, ui ∈ gk, uj ∈ gp, k = p.

4. con(i, j) ∈ {1}, ui ∈ gk, wj ∈ Ψ, k = j.

5. con(i, j) ∈ {0}, ui ∈ gk, wj ∈ Ψ, k 6= j.

This new topology guarantees that neurons from one
dense area are not connected with those from another
dense area and therefore according to the equation
(20) such neurons do not change each others weight.

wi

uz

gi

Figure 1: Topology of modified SOM.

In Figure 1 the initial neurons are in gray and the
generated neurons around each initial neuron are in
white color. There is no any connection between two
separate set of generated neurons.
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Algorithm 6 SOM topology generation
Step 0. Given: A set of Ψ = {w1, · · · , wq̄} of initial
neurons and a number λ > 1.
Step 1. Select a wi and generate gi using equation
(21).
Step 2. Connect wi all uz ∈ gi.
Step 3. If all wi ∈ Ψ are visited go to Step 4, otherwise
go to Step 1.
Step 4. Select a wi and connect it to all wj ∈ Ψ with
r̂ij < r̄.
Step 5. If all wi ∈ Ψ are visited terminate, otherwise
go to Step 4.

4 The Modified SOM Algorithm and Its Im-
plementation

In this section, we modify Algorithm 4 applying
new initialization algorithm for neurons and modified
SOM topology. The new algorithm can be summa-
rized as follows.

Algorithm 7 Modified SOM algorithm
Step 0. (Initialization) Initialize the maximum num-
ber of iterations T of the network. Set the maximum
number of iterations in the Splitting and Merging al-
gorithm as γmax and the value of the ratio β > 0. Set
the initial value of iteration and ratio to γ0. Set the
step length βs and set the iteration counter τ := 0.
A set of m input data vectors A = {x1, · · · , xm}.
Step 1. (Split and Merge). Apply Algorithm 5 to A
for γ0 → γmax and β0 → βmax to generate the set of
Ψ = {w1, · · · , wq̂} which minimizes the function f in
(1). This set is initial weights of neurons.
Step 2. (SOM topology). Apply Algorithm 6 to the
set Ψ.
Step 3. Select data xi, i = 1, . . . ,m and find its closest

neuron wc ∈ {Ψ
⋃q̂
i=1 gi}, that is

c := argmin
j=1,...,(q̂·e)

‖xi − wj‖. (23)

Step 4. Update the set of neighborhood neurons wj ∈
Nc using the following equation:

wj := wj + α(τ)h(τ)(xi − wj), (24)

where

Nc =

{
gi ∪ wi if wc = uz ∈ gi,
gi ∪ wi ∪ Ξ if wc = wi, wi, wj ∈ Ψ,

subject to

Ξ = {wj |d(wi, wj) < r′, i 6= j}.
Step 5. If all input data are presented to the network
go to Step 6, otherwise go to Step 3.
Step 6. Calculate Eτ using (18). If τ > T terminate,
otherwise set τ := τ + 1 and go to Step 3.

Note that the neighborhood function in equation
(24) of Algorithm 7 is as follows.

h(τ) = exp

(
− r̄2

2σ(τ)2

)
, (25)

subject to

σ(τ) = η
T − τ
τ

, η ∈ IR, (26)

and usually η ≥ 1.
One can see that the Step 3 to 6 in Algorithm 7

is similar to the basic SOM. The only exception is in
Step 4 where the set Nc is defined in order to improve
the approximation of the global solution to the vector
quantization problem.

4.1 Implementation of Algorithm 7

In Algorithm 4, weight vectors wj , j = 1, · · · , q are
initialized randomly. The maximum number of iter-
ations T is set between 20 and 40 for small to large
data set, respectively. Although, for large data sets
more time is required to obtain stable network over
input data. The topology of SOM network is rectan-
gular (Kohonen 2001) with same number of neurons
in each column and row (i.e. n×n). Each interior neu-
ron is connected with 8 neighborhood neurons, how-
ever this number is less than 5 for border neurons.
Furthermore, the radius of map r is set to 2 for small
and 4 for large number of neurons (see Table 1).

Table 1: Initialization of SOM parameters in Algo-
rithm 4.

Data sets Input Size SOM Dim. r T

Small (|A| < 103) 10× 10 2 20

Medium (103 < |A| < 104) 15× 15 3 30

Large
(104 < |A| < 0.5 · 105) 20× 20 4 40

(|A| > 0.5 · 105) 25× 25 3 20

As it is presented in Table 1, the number of neu-
rons, maximum iteration number T and r are chosen
incrementally in order to be applicable to larger input
data sets. The exception is for the data set with size
|A| > 0.5 · 105, where r and T are smaller comparing
to other large data sets to decrease the computational
complexity.

In Step 1 of Algorithm 7, we set values of T same
as in Table 1, 2 ≤ γ ≤ 6 and 0.05 ≤ β ≤ 0.6 with
step length βs to 0.05 for Algorithm 3. In Step 3, the
parameter λ in Algorithm 6 using equation (21) is set
to 1.5 for small and medium size data sets whereas
this value is set to 2.5 for large ones. In Step 4, the
Algorithm 6 generates 9 neurons (|gi|), i.e. e is set
to 9, around all neurons wi ∈ Ψ. Therefore the total
number of neurons is |Ψ| × |gi| + |Ψ|. It should be
noted that for all datasets the parameter r̄ in (22) is
set to 3. Finally, the parameter η in (26) is set to 1
for all data sets.

5 Numerical Results

To demonstrate the effectiveness of the proposed al-
gorithm, numerical experiments were carried out us-
ing a number of real-world data sets. Algorithm 7
was coded in NetBeans IDE under Java platform and
tested on a MAC OSX with 2.7GHz core i7 CPU
and 10GB of RAM. 4 data sets, one small (Iris),
one medium size (Image Segmentation), one large
(Gamma Telescope) and one very large (NE) were
used in experiments. A brief description of data sets
is presented in Table 2, more details can be found in
(Bache & Lichman 2013, Theodoridis 1996, Reinelt
1991).

Table 2: Brief description of the data sets
Data sets Number of Number of

instances attributes

Fisher’s Iris Plant 150 4

Image Segmentation 2310 19

Gamma Telescope 19020 10

NE 50000 2

The results obtained by the Split and Merge algo-
rithm, which is in Step 2 of Algorithm 7 is presented
in Table 3. To define the improvement Eim obtained
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by the proposed algorithm, we use the following for-
mula:

Eim =
ESOM − E
ESOM

· 100%. (27)

where E is the value obtained by the Modified SOM.

Table 3: The results of the Split and Merge algorithm
Data sets β∗ γ∗ |Ψ| fmin t

Fisher’s Iris Plant 0.05 2 23 4.95 ×101 0.02

Image Segmentation 0.10 2 62 3.17 ×107 0.14

Gamma Telescope 0.05 2 87 2.01 ×108 6.61

NE 0.20 2 61 3.66 ×102 4.57

The values of quantization error using equation
(18) for different iterations and different data sets are
presented in Tables 4. From these results one can
see that the Modified SOM outperforms SOM in all
data sets. The Modified SOM reduced the value of
problem (18) significantly in Image Segmentation and
Iris data sets up to 38.28% and 24.82%, respectively.
On other data sets the improvement Eim is between
6.85% and 14.11%. One can see that the Modified
SOM starts with a small value of E comparing to the
SOM. This is due to optimized initialization of the
Modified SOM algorithm. The computational effort
used by the Modified SOM is much less than that
of the SOM in all data sets. The Split and Merge
algorithm that initializes the Modified SOM is very
efficient and it is not time consuming. The new ini-
tialization algorithm which is based on the Split and
Merge algorithm speeds up the convergence of the
Modified SOM and makes it less time consuming than
the SOM. The maximum time reduction by the Mod-
ified SOM was achieved in Gamma Telescope data
sets. On the other hand the minimum computational
time reduction is on very large data set: NE data set.

In Figure 2 the values of E obtained by the Mod-
ified SOM is compared with those obtained by the
SOM on Iris data set. One can see that on Iris data
set the Modified SOM starts with a value of E close to
global one and converge to the optimal value within
the given number of iterations. Since the SOM is ini-
tialized randomly, it takes more time to converge. In
Figure 3 the CPU time required by the SOM and
Modified SOM on Gamma Telescope is presented.
One can see that the Modified SOM requires more
CPU time at the early iterations due to running the
Split and Merge algorithm for initialization. Once the
Modified SOM initialized, the convergence is much
faster than the SOM which is initialized randomly.
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Figure 2: SOM vs Modified SOM using E values (Iris
dataset).

Table 4: Results for all data sets
iter E t E t

Iris

SOM Modified SOM

2 3.17E+00 0.06 2.96E-01 0.02

4 2.05E+00 0.08 2.76E-01 0.03

6 1.95E+00 0.09 2.29E-01 0.03

8 9.70E-01 0.09 2.23E-01 0.05

10 5.56E-01 0.11 2.22E-01 0.05

12 3.51E-01 0.12 2.22E-01 0.05

14 2.88E-01 0.12 2.22E-01 0.06

16 2.86E-01 0.14 2.22E-01 0.06

20 2.86E-01 0.16 2.15E-01 0.08

Image Segmentation

SOM Modified SOM

2 1.82E+07 0.73 1.01E+02 0.40

4 2.41E+03 1.28 8.01E+01 0.62

6 1.84E+02 1.75 2.90E+01 0.84

10 1.42E+02 2.74 1.89E+01 1.26

14 1.02E+02 3.65 1.75E+01 1.68

18 4.55E+01 4.54 1.74E+01 2.09

22 2.69E+01 5.40 1.74E+01 2.51

25 2.69E+01 6.04 1.75E+01 2.84

30 2.69E+01 7.00 1.66E+01 3.35

Gamma Telescope

SOM Modified SOM

2 3.93E+20 10.97 8.28E+01 8.39

4 5.11E+12 21.32 4.08E+01 10.00

6 2.22E+03 31.73 3.46E+01 11.62

10 2.21E+02 53.17 3.15E+01 14.84

18 1.30E+02 95.26 3.02E+01 21.23

22 7.56E+01 116.35 3.00E+01 24.43

26 4.53E+01 137.56 2.99E+01 27.63

30 3.34E+01 158.70 2.99E+01 30.81

40 3.33E+01 210.52 2.86E+01 38.44

NE

SOM Modified SOM

2 2.02E+07 5.18 3.28E+07 6.47

4 3.32E-01 9.86 8.56E+32 8.18

6 3.01E-01 14.56 3.88E-02 9.89

8 2.70E-01 19.25 2.15E-02 11.54

10 2.56E-01 23.93 1.23E-02 13.20

12 1.94E-01 28.52 1.12E-02 14.88

14 5.41E-02 32.99 1.12E-02 16.55

16 1.16E-02 37.46 1.12E-02 18.24

20 1.12E-02 46.30 1.03E-02 21.51

Note that the error E shows the quantization qual-
ity of the network. However, there is a distortion mea-
surement which can be used to calculate the overall
quality of the map. Unlike the quantization error,
the distortion measure ξ considers both vector quan-
tization and topology preservation of the SOM. The
distortion measure is defined as follows (Arous 2010,
Ayadi et al. 2012):

ξ =
∑
xi∈A

∑
wj∈Ψ

hcj‖xi − wj‖2, j 6= c, (28)

where c is the BMU of xi and hcj is the neighborhood
function of neurons c and j defined by Equation (25).

Table 5 presents the distortion measure (28) and
number of active neurons nact for all data sets. One
can see that the distortion error ξ obtained by Modi-
fied SOM is less than that obtained by the SOM in all
data sets. This is due to the topology of the Modified
SOM where the neurons from different dense areas
are not connected. This prevents deterioration of the
network from its optimal value of ξ and E simultane-
ously.
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Figure 3: SOM vs Modified SOM using CPU time
(Gamma Telescope dataset).

Table 5: Results of distortion measure on all data sets
SOM Modified SOM

Dataset ξ nact ξ nact

Iris 1.25×10−6 69 3.62×10−7 92

Image Seg. 3.26×10−4 210 8.73×10−5 490

Gamma Telescope 2.35×10−5 400 1.39×10−5 759

NE 1.66×10−1 375 3.11×10−2 610

6 Conclusion

The aim in this paper was to propose an initializa-
tion algorithm and a new topology for the Modified
Self Organizing Maps which restrict the neighborhood
adaptations to only those neurons that are not in
different dense areas. We introduced the Split and
Merge algorithm to generate such neurons. This al-
gorithm is a part of the initialization algorithm in the
Modified SOM and the numerical experiments show
that the initialization algorithm generates neurons
close to the optimal solution. Consequently we pre-
sented a topology for the SOM to generate neurons in
high dense areas of input data space and do not con-
nect neurons from different dense areas. The experi-
ments show that this restriction reduces the quantiza-
tion and distortion errors. Numerical results demon-
strate the superiority of the proposed algorithm over
the SOM in the sense of accuracy. These results also
show that the Modified SOM converges much faster
than the SOM and in all cases the proposed algorithm
requires less computational time.
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