
A non-time series approach to
vehicle related time series problems

Jonathan R. Wells1, Kai Ming Ting1 and Chandrasiri P. Naiwala2

1Gippsland School of Information Technology
Monash University, Australia

Email: {jonathan.wells,kaiming.ting}@monash.edu

2Toyota InfoTechnology Center Co., Ltd., Japan
Email: np-chandrasiri@jp.toyota-itc.com

Abstract

This paper shows that some time series problems can
be better served as non-time series problems. We used
two unsupervised learning anomaly detectors to anal-
yse a vehicle related time series problem and showed
that non-time series treatment produced a better out-
come than a time series treatment. We also present
the benefits of using unsupervised methods over semi-
supervised or supervised learning methods, and rule-
based methods.

1 Introduction and Motivation

Time series data treatments rely on the relationship
between the points which are in a sequential time or-
der; whereas, non-time series data treatments treat
each point independently. Time series data conform
to a natural ordering and the data indices often ap-
pear at a regular time step interval. Examples of time
series applications are stock market, tracking an out-
break of a disease, a heart monitor or weather time
series.

However, do all data, with a natural ordering
based on time, need to be treated as a time series
problem? In this paper, we look at a vehicle related
time series problem to examine whether it can be
solved as a non-time series problem.

We propose to use two anomaly detectors to solve
this problem in a non-time series setting rather than
in a time series setting. This paper shows that:

(i) A vehicle related time series problem is better
treated as a non-time series problem and it can be
effectively and efficiently solved using unsupervised
learning anomaly detectors.

(ii) Rule-based approach, currently used in a non-
time series setting, produces a set of rules in the form
of a fixed linear model where some parameters mod-
ify the decision globally in the feature space. Any
methods (e.g., McLaughlin et al., 2009; Knipling et
al., 1993; Kiefer et al., 1999; Brunson et al., 2002)
using this approach either cannot make or have diffi-
culty in making these changes locally. The proposed
approach can easily retrain a new model to cater for
a new situation that has local changes only.

The key advantage of the proposed approach is
that a time series problem becomes a simpler prob-
lem when treated as a non-time series problem. As

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 10th Australasian Data Mining Conference
(AusDM 2012), Sydney, Australia, December 2012. Confer-
ences in Research and Practice in Information Technology (CR-
PIT), Vol. 134, Yanchang Zhao, Jiuyong Li, Paul Kennedy, and
Peter Christen, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

a result, a simpler model can be used to solve this
problem. The two anomaly detectors we employed,
iForest (Liu, Ting, and Z.-H. Zhou, 2008) and ORCA
(Bay and Schwabacher, 2003), provide further advan-
tage in providing flexibility in retraining a new model
to suit different situations and users.

A vehicle related time series problem has all the
characteristics of a time series problem with one
unique property: a projection of any given data point
can be determined, using the law of physics, by as-
suming that there are no further changes to the cur-
rent actions between the driver and the approaching
object. With this property, we can determine if there
is a potential collision and issue an alert when require.
This naturally leads to a non-time series analysis.

In this paper, features such as weather or road
conditions are outside the scope because the main fo-
cus is to illustrate that a vehicle related time series
problem could be solved as a non-time series problem.

We review related work in the next section. Sec-
tion 3 describes the relationship between time series
and non-time series treatments for a vehicle related
time series problem. Section 4 provides a brief de-
scription of two anomaly detectors we employed to
solve a vehicle related time series problem. Section 5
outlines the data sets and the feature selection pro-
cess, and the type of models generated for evaluation.
This is followed by the empirical evaluation in Section
6. We provide the conclusions in the last section.

2 Related Work

This section reviews two existing approaches to vehi-
cle related time series problems. The first approach
is represented by non-time series rule-based methods
while the second approach is represented by time-
series semi-supervised methods.

McLaughlin et al. (2009) evaluated three differ-
ent collision avoidance systems to prevent rear-end
crashes using a subset of the 100-car study (Neale et
al., 2002; Dingus et al., 2006). The three different
algorithms are rule-based methods using the time se-
ries data in a non-time series setting that treats each
time step as an independent data point. Up to four
sensor readings (range, speed, acceleration, and rela-
tive velocity) of the ‘following’ vehicle and up to two
computed values (acceleration and velocity) for the
‘leading’ vehicle are used in each of the methods.

The first method, Knipling (Knipling et al., 1993),
is a straight rule-based method with a constant al-
lowing for the driver reaction time plus the braking
time. The second method, CAMP Linear (Kiefer et
al., 1999), adds to the model a set of coefficients
which are derived from a regression analysis to ac-
commodate different driver characteristics. The final

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

61

Rule-based Non-time series - unsupervised Time series - semi-supervised

feature space Use the original feature space Feature space transformation

labels No labels required Labels are needed for some time series events

model No model is built; cannot be
retrained.

Model is built and it can be retrained when needed.

complexity Simplest because there are no
models requiring to be built.
Just plug in the values into a
pre-defined model.

Simpler. Build a model using
existing anomaly detectors and
predictions are made from the
model.

Complex as a new feature space needs to
be constructed before building a model; and
the model is non-linear and requires complex
learning procedures.

Table 1: Differences between rule-based, non-time series unsupervised and time series semi-supervised methods

method, NHTSA (Brunson et al., 2002) which incor-
porates both the above features, has an additional
feature that allows a driver to set different alert sen-
sitivity settings.

The first two methods compute a warning range
and compare this value to the actual sensor range
value. An alert is issued when the actual range falls
below the computed range. The third method com-
putes a distance for the following vehicle to avoid a
collision with the leading vehicle. This is combined
with a threshold computed based on the velocity of
the following vehicle. If the computed distance is less
than the computed threshold then an alert is issued.

However, all these methods are ‘hard-coded’ lin-
ear model and do not allow for the changes in driver
characteristics over time apart from the three differ-
ent alert sensitivity levels in NHTSA.

Ning et al. (2010) presented a semi-supervised
time series approach where each time series event is
labelled ‘crash’ (if it actually happened) or ‘safe’ (if
there are no crashes during the whole event). From
a transformed feature space, a temporal difference
learning (a form of reinforcement learning) is used to
learn a ‘danger level’ function from training events,
which exhibits low values if the vehicle approaches a
crash point, and high values for safe events. A thresh-
old can be used to trigger an alert if the output of the
‘danger level’ function is lower than the threshold.
Their proposed non-linear method is found to per-
form better than a linear method, logistic regression
and linear regression.

However, training a non-linear model is computa-
tionally expensive. Wang, Zhu, and Gong (2010) at-
tempted to overcome the long training time by using
faster parameter updating schemes instead. Other-
wise, their approach is similar to Ning et al. (2010)
in that both transformed the feature space in a simi-
lar manner and then modelled a danger level function
from training events with two ‘known’ states.

The advantage of our proposed method over the
rule-based methods are that i) we use an unsupervised
learning method to train a model for prediction; and
ii) the model can be retrained to allow for changes of
driver characteristics over time. The advantages over
the semi-supervised methods are that the problem is
treated as non-time series and no labels are required
which make the problem simpler. Table 1 summaries
these advantages.

3 Treating time series as non-time series

The vehicle related time series problem (Neale et al.,
2002; Dingus et al., 2006) that we investigated con-
tains a number of driving sessions. Each session is a
time series recording of the vehicle’s states and any
approaching objects detectable by the radars installed
in the vehicle. A session starts from the time that a
driver begins a journey until the vehicle has stopped

due to either an unforeseen circumstance, such as
a crash, or the driver has reached their destination.
Each driving session is labelled: near crash or crash
(if they occurred), or an incident-free event.

Although time series analysis had been used in the
vehicle related time series problem (Ning et al., 2010;
Wang, Zhu, and Gong, 2010), it can be treated as
non-time series problem because the law of physics
govern the vehicle and any impending objects at each
time step during the driving session. This allows us to
utilise the data in a non-time series setting because we
can determine what the outcome would be at any data
point, independent of other data points. Although
we need to make an assumption that all conditions of
that point remain constant, the calculated outcome is
still valid to allow a vehicle warning system to issue
an alert if there is an impending collision.

As such, every point in the time series is treated as
an independent point using the law of physics; and it
can be categorised into one of the following three la-
bels: (i) ‘unsafe’ as a driver has minimal or no time to
react to any impending collision between the vehicle
and an approaching object, (ii) ‘safe’ as a driver has
plenty of time to avert a crash, or (iii) ‘alert’ to avoid
a crash if a driver is given a warning on time to take
actions. We use a simple rule to define these three
regions in a feature space in which a vehicle can be,
in relation to an approaching object. The following
two equations are used.

T =
d

v
(1)

T =
v

a
+ c (2)

where T is the time to impact between the vehicle and
an approaching object; d and v are the distance and
the relative velocity, respectively, between the vehicle
and the object; v

a is the vehicle deceleration time with
the assumption that a certain deceleration rate a has
been applied (due to timely braking of the vehicle).
T is the minimum time required to avoid a crash. In
order to avoid a crash, T must be greater than T .

c in Equation 2 is the driver’s response time to
brake in order to avoid any potential collisions. It
consists of the driver reaction time, R, plus an extra
alert time W . The driver’s response time is expressed
as follows:

c = W +R (3)

Solve for v using equations 1 and 2 gives:

v =
a(
√
c2 + 4d

a − c)
2

(4)

Using equation 4, we can plot different curves
defining the boundaries between regions of potentially

CRPIT Volume 134 - Data Mining and Analytics 2012

62

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

Deceleration Rate: a = 11 fpsps

No alert or reaction time
c = 0s alert +1.5s reaction
c = 1s alert +1.5s reaction
c = 1s alert +2.5s reaction

(a)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

Deceleration Rate: a = 15 fpsps

No alert or reaction time
c = 0s alert +1.5s reaction
c = 1s alert +1.5s reaction
c = 1s alert +2.5s reaction

(b)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

Deceleration Rate: a = 32 fpsps

No alert and reaction time
c = 0s alert +1.5s reaction
c = 1s alert +1.5s reaction
c = 1s alert +2.5s reaction

(c)

Figure 1: Using equation 4, these charts show the
different values for a, c, and d. The different a val-
ues represents the different deceleration rates for the
driver ability to stop a vehicle. 11 fpsps is a conser-
vative figure. 15 fpsps is the general figure. 32 fpsps
is the figure for professional car racing drivers.

‘unsafe’ and ‘safe’ regions. Figure 1 shows the differ-
ent curves for driver’s ability to stop a standard ve-
hicle and their response times in a given event. The
figures show the effect of using different values for a
and c (A Policy on Geometric Design of Highways
and Streets 2004; McLaughlin et al., 2009). The re-
gion above the top curve is the ‘unsafe’ region. For
different c values, the region below the ‘c’ curve is
the ‘safe’ region; and the region between the ‘c’ curve
and the top curve, is the alert region. A professional
racing driver will have the ability to stop a vehicle
much quicker than an average driver; therefore, has

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

Figure 2: The different zones as determined by the
simple rule. The hashed zone, at the bottom, signi-
fies the safe region. The white zone signifies the alert
region which also contains the driver reaction time.
The hashed zone, at the top, signifies the unsafe re-
gion.

a greater ‘safe’ region than an average or beginner
driver. This is reflected in the graphs.

The following constants are used to derive a sim-
ple rule. Deceleration rate a is set to 15 fpsps (feet
per second per second) as outlined in A Policy on Ge-
ometric Design of Highways and Streets (2004) and
the driver reaction time, R, is set to 1.5 seconds which
represents the reaction time for 75% of the population
(McLaughlin et al., 2009). An alert time, W , of 1 sec-
ond is also set. Figure 2 shows the zones that were
created by the simple rule. The hashed zone, at the
top, is the area to be considered ‘unsafe’ according to
the rule if there are no further changes to the driver’s
current action or the approaching object. The white
zone is the area where an alert will be given and the
hashed zone, at the bottom, shows the area where it
is considered ‘safe’.

The simple rule uses the unit measure of ‘time’ to
determine whether a collision is imminent; whereas,
the three non-time series methods (Knipling et al.,
1993; Kiefer et al., 1999; Brunson et al., 2002), de-
scribed in Section 2, use the unit measure of ‘distance’
to determine whether a collision is imminent. Both
measures, time and distance, are derived using the
same law of physics.

4 Unsupervised learning approach

In this research, we used two anomaly detectors called
iForest (Liu, Ting, and Z.-H. Zhou, 2008) and ORCA
(Bay and Schwabacher, 2003). We provide a brief
description of each of these detectors in the following
two sections.

4.1 iForest

Anomalies can be characterised by two quantitative
properties: the number of anomaly points is small and
these points have values that are significantly different
to those of normal points (Liu, Ting, and Z.-H. Zhou,
2008).

Traditionally, anomaly detectors model the profile
of the normal points and then identify points that
do not conform to the normal profile as anomalies.
However, these detectors are optimised for normal
points and not for anomalies. Liu, Ting, and Z.-H.
Zhou (2008) introduced a different kind of anomaly

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

63

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

x0

x1

x2

(a) Showing 20% of the crash data reported in Section 5. x0 is in
the lower left region; x1 is in the middle of the data cloud; x2 is at
the edge of the data cloud.

2

4

6

8

10

12

14

16

1 10 100 1000

A
ve

ra
ge

p
at

h
le

n
gt

h

Number of trees

x0

x1

x2

(b)

Figure 3: The result of isolating x0, x1 and x2 using a
number of iTrees. The average path length required
to isolate x0, x1 and x2 converged to 12.7, 8.5 and
4.8, respectively.

detector called Isolation Forest or iForest that iso-
lates anomalies from normal points rather than mod-
elling normal points. Given a data cloud, Liu, Ting,
and Z.-H. Zhou (2008) show that anomalies can be
isolated faster than normal points because anomalies
are more susceptible to isolation than normal points.

The isolation mechanism using partitioning can
be implemented using a random tree called Isolation
Tree or iTree. iTree is a binary tree that is con-
structed as follows. An attribute is randomly selected
at each node; then a random split point is chosen that
divides the data space into two sub-regions. This is
repeated until every point is isolated from the rest of
the points. Points that are isolated quickly will ap-
pears at the top of the iTree. Therefore, anomalies
are defined as those points that have shorter average
path lengths than normal points for a given set of
iTrees.

To provide an example, Figure 3 shows that the
average path length required to isolate x0, x1 and x2,
from data showed in Figure 3(a). The average path
length converged to 12.7, 8.5 and 4.8, respectively, as
the number of iTrees increases; where x0 is a point at
the middle of a data cloud; x1 is in the middle ring
and x2 is at the fringe.

iForest is an unsupervised learning method that
constructs an ensemble of iTrees. The parameters
required are: number of iTrees in the ensemble and

the training subsample size used to build each iTree.
Note that each iTree can be trained using a subsample
size significantly smaller than the given data set. This
allows iForest to be built fast and makes iForest one
of the fastest anomaly detectors available. For ease of
reference, the algorithms used to build an iForest are
re-produced from Liu, Ting, and Z.-H. Zhou (2008)
in the Appendix.

4.2 ORCA

The second anomaly detector we used is a k-nearest
neighbour based anomaly detector called ORCA (Bay
and Schwabacher, 2003). The algorithm uses a pair of
nested loops with a pruning rule. This pruning rule is
designed to speed up the nearest neighbour search by
removing data points which fall below a threshold. It
uses a distance metric to find the k nearest neighbours
and then it computes an anomaly score to evaluate
each point. The anomaly score can be any nearest
neighbour based function such as the distance to the
kth nearest neighbour or the average distance of the k
nearest neighbours. Readers are referred to Bay and
Schwabacher (2003) for other details of the algorithm.

4.3 Applying anomaly detectors to vehicle
related time series problems

In applying a batch mode anomaly detector to a vehi-
cle related time series problem, we must first represent
it as a non-time series problem where every point is in-
dependent of each other. We can then use an anomaly
detector to identify rare events, such as crash or near
crash, as anomalies; and common no-incident events
as normal points. Here, we hypothesise that drivers
will be in the no-incident events most of the time and
will be in the crash or near crash events a few times
and far between events. This hypothesis fits in with
the definition of what anomalies are.

However, for this type of application, we can also
use the anomaly detector in a slightly different way.
Here, the emphasis is not detecting anomalies but to
define boundaries between unsafe and safe regions as
defined in Figure 2.

4.4 Semi-supervised versus unsupervised

The type of anomaly detectors we explored in this
paper are different from those employed in the liter-
ature e.g., Wang, Zhu, and Gong (2010); Y. Zhou et
al. (2007); Ning et al. (2010). The existing methods
mainly employ supervised and semi-supervised learn-
ing methods which require labelled data. The type of
anomaly detectors we explore are unsupervised learn-
ing methods which do not require labelled data. The
labels defined in Section 3 (provided by the simple
rule) are required for verification and computation of
detection performance measure only, and they are not
used to train iForest and ORCA.

We are unable to compare with semi-supervised
learning approaches described in Ning et al. (2010)
and Wang, Zhu, and Gong (2010) because neither
their software nor the data sets used are available.

5 Data sets used and their characteristics

5.1 Data and attribute selection

We use two existing data sets from the Virginia Tech
Transport Institute (VTTI)1. These data sets were
collected from a study of approximately 100 vehicles

1http://www.vtti.vt.edu/

CRPIT Volume 134 - Data Mining and Analytics 2012

64

Radar # of crashed events # of near crashed events

Front 57 (84%) 644 (85%)
Rear 61 (90%) 688 (91%)
Either 66 (97%) 754 (99%)

Table 2: The values represent the number of events
that the radars are active. ‘Either’ indicates that one
of the radars is active for a given event. Each figure
in bracket is the percentage of events from the total
of 68 crash events or 760 near crash events.

driven by 241 primary and secondary drivers who had
driven approximately 3.2 million vehicle kilometres in
approximately 43,000 hours over a period of twelve
months (Neale et al., 2002; Dingus et al., 2006).

The first data set consists of 68 crash events and
the second data set consists of 760 near crash events.
Each event contains a snapshot of approximately forty
seconds; and it is broken down into thirty seconds
before the crash (or near crash) and ten seconds af-
ter. The data is made up of three distinct sections:
sensors, video and the manually added information.
The sensor data consists of seven components: ped-
als (accelerator and brake), indicators (left and right),
motion (lateral, longitudinal and yaw), lane tracking,
radar (front and rear), light intensity and GPS. The
video data consists of the recording from five cam-
eras in the vehicle cabin showing the four different
views outside the vehicle and a single view of the
driver’s hands and feet, steering wheel and the instru-
ment panels. The manual data is added by an analyst
studying the video footages and recording what the
driver was doing at the time of the event, the condi-
tions of the road, traffic, weather, time of day (day or
night time) and analyst’s analyses.

The focus of our research is on the sensor data.
The radar data appears to be the best component for
this research because it contains all of the necessary
information required to determine whether there will
be any impending crashes. The radar data consists
of two streams of data: the front radar for tracking
objects in front of the vehicle and the rear radar for
tracking objects behind the vehicle. Each radar is
capable of tracking up to seven objects to a distance
of approximately one hundred metres. Each radar
provides the following measurements relative to the
vehicle: the range to the object (distance), the rate
of change (relative velocity) and azimuth (angle).

We analysed the data sets to see if we have enough
data. The result of the initial analysis on the radar
data are summaries in Table 2. For this research, we
can use over 97% of the available crash event data and
over 99% for near crash event data. The remaining
two crash and six near crash events were detected by
other means such as an analyst studying the video. It
should be pointed out that only one of the two radars
need to be active in order to predict an impending
collision provided that the approaching object is in
the radar zone of detection.

5.1.1 Non-Time Series Treatment

The non-time series treatment employs two at-
tributes: distance and relative velocity. It treats ev-
ery point as independent.

5.1.2 Time Series Treatment

For the time series analysis, we constructed a new
feature space from the sensors data using the method

100-Car Study Wang, Zhu, and Gong (2010)

lane distance - left
driver’s lateral lane position

lane distance - right
vehicle composite speed driver’s longitudinal velocity

yaw rate steering angle
longitudinal acceleration longitudinal acceleration due

and brake = off to throttle
longitudinal acceleration longitudinal acceleration due

and brake = on to brake

radar range - forward
minimum range - opposite

direction

radar range - rear
minimum range - same

direction
not available throttle depression fraction
not available braking depression fraction

Table 3: Corresponding attributes between the 100-
car study (Neale et al., 2002; Dingus et al., 2006) and
the study by Wang, Zhu, and Gong (2010).

as outlined by Wang, Zhu, and Gong (2010). This in-
volved computing the relationship between two con-
secutive data point and then constructing a ‘sliding-
window’ on the computed results. Finally, a series
of statistical analysis are conducted for each window
which produce a set of statistical features.

The selection of attributes is based on the method
described by Wang, Zhu, and Gong (2010). They
selected nine attributes from a set of thirty eight
attributes: lane position, longitudinal acceleration
and deceleration, longitudinal velocity, steering angle,
throttle and brake depression fraction, and the clos-
est object approaching the front or rear of the vehicle.
Table 3 lists the corresponding attributes between the
100-car study (Neale et al., 2002; Dingus et al., 2006)
and the study by Wang, Zhu, and Gong (2010). All
of the attributes except throttle and brake depres-
sion fractions are used. The lane position is separated
into two attributes: left and right side lane marking
details. This produced eight available attributes to
analyse the two data sets.

These eight attributes are then transformed from
the original feature space into a new feature space, as
in Wang, Zhu, and Gong (2010). For each of the eight
attributes, four different attributes are constructed as
follows: the original value (f), the first-order forward
difference (∆f , f2, and ∆f2). This produces a set
of thirty two attributes for one time step. A sliding
window with a length of 10 time steps is then applied.
For each window, the following statistical information
are calculated on each of the thirty two attributes:
minimum, maximum, mean, and standard deviation.
This produces the final set of 128 attributes for each
window.

5.2 Data preparation

The crash data set contains 42,098 individual points
across 68 events which has a total of 28,962 time
steps2. This data set is checked for any abnormalities.
A total of 138 points are removed because of negative
distance measurements; and one point has an impos-
sible velocity reading. Since we are only interested in
points that are approaching the vehicle, 20,068 points
that have objects moving away from the vehicles are
also removed. This leaves 21,891 points to be used
for the non-time series data treatment. We used all
of the 28,962 time steps for the time series data treat-

2A radar can detect up to 7 objects simultaneously for a single
time step. Each object, in the time step, is treated as a single
point.

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

65

Data Format
Labels

Total
Safe Alert Unsafe Not assigned

Crash
Non-Time Series 16,684 3,122 2,085 21,891

Time Series 9,278 2,487 1,526 15,059 28,350

Near Crash
Non-Time Series 418,633 46,178 47,138 511,949

Time Series 158,587 25,492 25,188 126,169 335,436

Table 4: Number of instances in each of the labels as described in Section 5.3.

Model Data Size
Number of Attributes

Notes
Radar New

feature space

1 21,891 2 Attribute used are distance and relative velocity between the
object and vehicle.

2 51,891 2 Same as Model 1 plus a Gaussian distribution, with a mean at
x = 450, y = 0 and variance of 1, consisting of 30,000 points.

A 28,350 128 The 128 attributes are derived from the 8 attributes in the
original feature space.

B 28,350 10 - iForest / 5 - ORCA Number of attributes selected using Forward Greedy Search
from the available 128 attributes.

C 28,350 6 The best six attributes selected by Wang, Zhu, and Gong
(2010, shown in Table III).

Table 5: Training data description. Attributes in the original feature space are the attributes from the 100-car
study. Attributes in the new feature space are derived from the attributes as described in Section 5.1.2.

ment3 which includes objects moving away from the
vehicle in order to maintain the time sequence.

For the near crash data set, there are 897,631 in-
dividual points across 760 events which has a total
of 342,276 time steps. 13,396 are removed because
of negative distance; 12 points are removed because
of impossible velocity readings; and 372,274 points
are removed for objects moving away from vehicle.
This leaves a balance of 511,949 for the non-time se-
ries data treatment. All of the 342,276 time steps are
used for the time series data treatment for the same
reason given above for the crashed data.

5.3 Label assignments

This section describes how the labels are assigned for
the purpose of verification and computation of detec-
tion performances.

5.3.1 Non-time Series

There are three labels: unsafe, alert, and safe. The
individual labels are derived from using the simple
rule (equation 4) with the following parameters. The
boundary between unsafe and alert is defined as c = 0
and a = 15 fpsps (feet per second per second). The
boundary between alert and safe is defined as c = 2.5
seconds and a = 15 fpsps as shown in Figure 2.

5.3.2 Time Series

A label is assigned to each time step using distance
and relative velocity between the vehicle and the near-
est approaching object using the same equation and
parameters as in the non-time series treatment with
one exception, i.e., no label is assigned if there are no
objects being tracked for that particular time step.

Table 4 shows the final class assignments for both
the crash and near crash data sets.

3Actually, this figure is reduced to 28,350 because of the sliding
window effect. This is because each window has a length of 10
points in our setting, and any windows that does not have 10 points
are discarded. This happens at the end of each event (68 * 9 =
612). Note that the near crashed data has the same effect.

6 Empirical Evaluations

The aim is to assess the utility of the time series treat-
ment and the non-time series treatment. The eval-
uation assesses three different time series models in
the new feature space: Model A is constructed using
all of the 128 attributes; Model B is the best model
using a subset of attributes chosen from a Forward
Greedy Search; and Model C is constructed by using
the best attributes as outlined by Wang, Zhu, and
Gong (2010). Two non-time series models are con-
structed with the two attributes obtained from the
radars. Model 1 is constructed using the distance
and relative velocity between the vehicle and an ap-
proaching object. The current distribution of Model
1 is biased because the data sets used consists of the
crash or near crash events only. This does not rep-
resents the true distribution because most events has
majority of the points in the safe region. Model 2 is
constructed by adding a Gaussian distribution, con-
sisting of 30,000 synthetic points, to the lower right
corner of the original data space. The details of all
five models are summarised in Table 5.

iForest and ORCA are employed to generate each
of the above five models to assess the relative per-
formance among the five models and between iForest
and ORCA.

6.1 iForest’s ranking capability

Figure 4 shows iForest’s ranking results of the crash
non-time series data. Figure 4(a) shows the result
of top rankings which includes the first 500 unsafe
points above the top curve. This ranking includes
76 safe points below the bottom curve and 16 alert
points between the top and bottom curves which are
ranked higher than the top 500th ranked unsafe point.
Each of the following figures, 4(b) to 4(d), contains
the next set of top rankings which includes the next
set of 500 unsafe points along with alert and safe
points which were ranked higher than the correspond-
ing 500th ranked unsafe points. The final figure, 4(e),
shows the remaining 85 unsafe points along with the
other points.

CRPIT Volume 134 - Data Mining and Analytics 2012

66

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

(a)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

(b)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

(c)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

(d)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

V
el

o
ci

ty
(f

p
s)

Distance (feet)

(e)

Figure 4: The ranking results of iForest, trained using the crash non-time series data. Figure (a) shows the
first 500 unsafe points plus the additional alert and safe points. Figure (b) through to figure (d) are the next
subsequent sets of 500 unsafe points respectively. Figure (e) shows the last 85 unsafe points.

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

67

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) Model 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Model 2

Figure 5: Contour maps of iForest for Models 1 and 2. They are produced using the anomaly scores output
from iForest. The anomaly scores range from 0 to 1. The anomaly score function can be found in the Appendix.

Detector

Crash Near Crash

Time Series Non-Time Series Time Series Non-Time Series

Model A Model B Model C Model 1 Model 2 Model A Model B Model C Model 1 Model 2

AUC
iForest 0.7244 0.8997 0.6631 0.9531 0.9955 0.6873 0.8576 0.5259 0.9696 0.9963
ORCA 0.7579 0.8883 0.6724 0.9389 0.9372 0.6339 0.8384 0.4980 0.9917 0.8359

Time
iForest 12 502 2 1 2 100 21 22 22 21
ORCA 478 55,446 10,049 26 7720 6,314 9,135 222,416 606 164,991

Table 6: The AUC and timing results using two different anomaly detectors. For ORCA, each best k value
is searched from 5, 10, 20, 40, 60, 80, 150, 250, 300, 500, 1000, 2000, 3000, and 4000 while using the crash
data. The best k values are 10, 10, 4000, 80, 4000 for Model A, Model B, Model C, Model 1 and Model 2,
respectively. The same corresponding k values, for each of the models, are used for the near crash data. For
iForest, there are no parameter search. The timing results are given in seconds.

iForest ORCA

Iter # Attribute # Attribute Name Stats AUC Attribute # Attribute Name Stats AUC

1 109 min dist front min ∆f2 0.8724 106 min dist front mean ∆f 0.8043
2 109,99 min dist front std dev f 0.8878 106,109 min dist front min ∆f2 0.8705
3 109,99,95 Decel std dev f2 0.8943 106,109,93 Decel min ∆f2 0.8859
4 109,99,95,32 vehicle velocity max f 0.8928 106,109,93,125 min dist rear min ∆f2 0.8870
5 109,99,95,32,58 yaw mean ∆f 0.8950 106,109,93,125,61 yaw min ∆f2 0.8883
6 109,99,...,58,106 min dist front mean ∆f 0.8958 106,109,...,61,45 vehicle velocity min ∆f2 0.8883
7 109,99,...,106,126 min dist rear mean ∆f2 0.8970 106,109,...,45,29 right lane marker min ∆f2 0.8880
8 109,99,...,126,45 vehicle velocity min ∆f2 0.8987 106,109,...,29,13 line lane marker min ∆f2 0.8879
9 109,99,...,45,104 min dist front max ∆f 0.8970 106,109,...,13,127 min dist rear std dev ∆f2 0.8874
10 109,99,...,104,71 acceleration std dev f2 0.8997 106,109,...,127,119 min dist rear std dev f2 0.8871

Table 7: The AUC results of Model B for the Forward Greedy Search using iForest and ORCA.

CRPIT Volume 134 - Data Mining and Analytics 2012

68

The current data distribution has the highest con-
centration of points to the lower left corner, and the
anomalies are around the perimeter to the top and
right of the data cloud. Based on this data distribu-
tion, the results shown in Figure 4 demonstrated that
iForest has correctly ranked all these data points—
the most normal points are at the center of the data
cloud which are ranked at the bottom of the list and
the most outlying points are ranked at the top.

The contour maps of iForest for Models 1 and 2 are
shown in Figure 5(a) and Figure 5(b), respectively.
Note that the centre of the data cloud shifted from
the bottom-left corner, in Figure 5(a), to the bottom-
right corner, in Figure 5(b). This is a result of in-
troducing a Gaussian distribution of synthetic points
described in Section 6. Also note that Model 2, shown
in Figure 5(b), can now better model the two bound-
aries shown in Figure 4.

6.2 AUC and runtime comparisons

We measure the detection performance of anomaly
detectors in terms of area under ROC curve (AUC).
In order to calculate AUC, the three labels need to be
converted to a two-label problem. We are only inter-
ested in determining the anomalies — unsafe points.
Alert is merged with safe to become the second la-
bel — safe. A perfect AUC score will have all of the
unsafe points ranked at the top of the list.

Table 6 shows the AUC results for both iForest
and ORCA. The time series results clearly show that
Model B, using features selected from the Forward
Greedy Search, outperformed Models A and C.

Table 7 shows the results for Model B using the
first ten attributes selected by the Forward Greedy
Search in the first ten iterations. iForest produces the
best Model B result using 10 attributes and ORCA
uses 5 attributes.

However, Model B in time series treatment still
performs worse than Models 1 or 2 in non-time series
treatment in terms of AUC, as shown in Table 6. This
is the same for both crash and near crash data sets,
regardless of iForest or ORCA is used.

The results also show that iForest runs signifi-
cantly faster than ORCA, up to five orders of magni-
tude faster.

These results reveal that it is unnecessary to per-
form the tasks in time series which requires more
features, additional computation and feature space
transforming; whereas, treating each point indepen-
dently as in a non-time series problem works well.

6.3 Summary

This paper investigates whether anomaly detectors
can be used to alert a driver of an impending crash.
We show that anomaly detectors can correctly rank
outlying points of the given data distribution. Be-
cause the current data sets are collected solely from
crash or near crash events only, the data distribution
is bias and does not represent the true distribution.
However, we have demonstrated that iForest can be
easily trained with a different data distribution (ie.
adding a Gaussian distribution to the existing data)
to correct the data distribution bias and provide a
better ranking result for this type of application. The
current result also implies that an anomaly detector
could potentially become the core of a vehicle warn-
ing system that has the flexibility to allow car manu-
facturers as well as car drivers to tailor the system
to suit individual needs. This is because such an
anomaly detector can be easily retrained to adapt to

new requirements of individual users. A vehicle warn-
ing system based on a rule-based approach (Knipling
et al., 1993; Kiefer et al., 1999; Brunson et al., 2002)
lacks this kind of flexibility; and the one based on
a semi-supervised time series model is unnecessary
complicated and may not work as well.

7 Conclusions

In this paper, we presented a study to examine
whether a time series problem can be solved more
effectively as a non-time series problem. In a ve-
hicle related time series problem, we found that it
can be solved as a non-time series problem with sig-
nificantly improved AUC result compared to that
achieved in time series. We also highlighted the dis-
advantages of existing methods: the rule-based ap-
proach is ‘hard-coded’, and the semi-supervised ap-
proach requires labels and significantly more features
and a feature transformation, making the problem un-
necessarily complex with no additional benefits.

We have demonstrated that anomaly detectors can
be used in a way to create boundaries between safe
and unsafe regions. These boundaries can be locally
altered from time to time when required to adapt to
the individual driver requirements which are hard or
not possible to do with rule-based methods.

Although both iForest and ORCA show compara-
ble AUC results, iForest is preferred because it runs
significantly faster than ORCA, up to five orders of
magnitude faster in our experiments.

Compare to the rule-based and semi-supervised
approaches and ORCA, we conclude that iForest is
the best algorithm to be incorporated into a vehicle
warning system to provide alerts to drivers for any im-
pending collisions because of its fast execution, sim-
plicity and flexibility.

References

A Policy on Geometric Design of Highways and
Streets (2004). 5th. American Association of State
Highway and Transportation Officials (AASHTO).

Bay, Stephen D. and Mark Schwabacher (2003). Min-
ing distance-based outliers in near linear time with
randomization and a simple pruning rule. In: Pro-
ceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery in Data Min-
ing (KDD-03). ACM, pp. 29–38.

Brunson, S., E. Kyle, N. Phamdo, and G. Preziotti
(2002). Alert algorithm development program —
NHTSA rear-end collision alert algorithm - Final
report. Tech. rep. DOT-HS-809-526. Washington,
DC: National Highway Traffic Safety Administra-
tion.

Dingus, T. A. et al. (2006). The 100 Car Naturalistic
Driving Study, Phase II — Results of the 100 Car
Field Experiment. Tech. rep. DOT HS 810 593.
Virginia Tech Transportation Institute.

Kiefer, R.J., D. LeBlanc, M. Palmer, J. Salinger, R.
Deering, and M. Shulman (1999). Forward Col-
lision Warning Systems: Development and Vali-
dation of Functional Definitions and Evaluation
Procedures for Collision Warning/Avoidance Sys-
tems. Tech. rep. DOT-HS-808-964. Washington,
DC: National Highway Traffic Safety Administra-
tion.

Proceedings of the Tenth Australasian Data Mining Conference (AusDM 2012), Sydney, Australia

69

Knipling, R., M. Mironer, D. Hendricks, L. Tijerina,
J. Everson, J. Allen, and C. Wilson (1993). Assess-
ment of IVHS countermeasures for collision avoid-
ance: Rear-end crashes. Tech. rep. DOT-HS-807-
995. Washington, DC: National Highway Traffic
Safety Administration.

Knuth, D. E. (1998). Art of Computer Program-
ming, Volume 3: Sorting and Searching. 2nd Ed.
Addison-Wesley Professional.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou
(2008). Isolation Forest. In: Proceedings of the 8th
IEEE International Conference on Data Mining
(ICDM 08). IEEE Computer Society, pp. 413–422.

McLaughlin, Shane B., Jonathan M. Hankey, Thomas
A. Dingus, and Sheila G. Klauer (2009). Develop-
ment of an FCW Algorithm Evaluation Method-
ology With Evaluation of Three Alert Algorithms.
Tech. rep. DOT HS 811 145. Virginia Tech Trans-
portation Institute.

Neale, V.L., S.G. Klauer, R.R. Knipling, T.A. Dingus,
G.T. Holbrook, and A. Petersen (2002). The 100
Car Naturalistic Driving Study, Phase 1 — Ex-
perimental Design. Tech. rep. DOT HS 809 536.
Virginia Tech Transportation Institute.

Ning, H., W. Xu, Y. Zhou, Y. Gong, and T. S.
Huang (2010). A general framework to detect un-
safe system states from multisensor data stream.
In: IEEE Transactions on Intelligent Transporta-
tion Systems 11.3, pp. 4–15.

Wang, Jinjun, Shenghuo Zhu, and Yihong Gong
(2010). Driving Safety Monitoring Using Semisu-
pervised Learning on Time Series Data. In: IEEE
Transactions on Intelligent Transportation Sys-
tems 11.3, pp. 728–737.

Zhou, Y., W. Xu, H. Ning, Y. Gong, and T. Huang
(2007). Detecting unsafe driving patterns using
discriminative learning. In: Proceedings of 2007
IEEE International Conference Multimedia Expo
(ICME 2007), pp. 1431–1434.

Appendix – iForest Algorithms

Algorithms 1 and 2 show the steps required to train an
iForest. The tree height for each iTree is set automat-
ically to l = ceiling(log2 ψ) which is an approxima-
tion of the average tree height (Knuth, 1998), where
ψ is the sub-sampling size. Each iTree is grown up
to the average height because we are only interested
in data points that have shorter-than-average path
length.

Algorithm 1 : iForest(X, t, ψ)

Inputs: X - input data, t - number of trees, ψ - sub-
sampling size
Output: a set of t iTrees

1: Initialise Forest
2: set height limit l = ceiling(log2 ψ)
3: for i = 1 to t do
4: X ′ ← sample(X,ψ)
5: Forest← Forest ∪ iT ree(X ′, 0, l)
6: end for
7: return Forest

Algorithm 3 shows how to compute the path
length for a given data point. c(ψ) is defined as fol-
lows.

c(ψ) = 2H(ψ − 1)− (
2(ψ − 1)

ψ
). (5)

where H(i) is a harmonic number and it is estimated
by ln(i) + 0.5772156649 (Eulers constant).

Algorithm 2 : iTree(X, e, l)

Input: X - input data, e - current tree height, l -
height limit
Output: an iTree

1: if e ≥ l or |X| ≤ 1 then
2: return exNode{Size← |X|}
3: else
4: let Q be a list of attributes in X
5: randomly select an attribute q ∈ Q
6: randomly select a split point p from max and

min values of attribute q in X
7: Xl ← filter(X, q < p)
8: Xr ← filter(X, q ≥ p)
9: return inNode{Left← iTree(Xl, e+ 1, l),

10: Right← iTree(Xr, e+ 1, l),
11: SplitAtt← q,
12: SplitV alue← p}
13: end if

Algorithm 3 : PathLength(x, T, e)

Inputs : x - an instance, T - an iTree, e - current
path length; to be initialized to zero when first called
Output: path length of x

1: if T is an external node then
2: return e+c(T.size) {c(.) is defined in Equation

5}
3: end if
4: a← T.splitAtt
5: if xa ≥ T.splitV alue then
6: return PathLength(x, T.right, e+ 1)
7: else {xa < T.splitV alue}
8: return PathLength(x, T.left, e+ 1)
9: end if

To find out the anomaly score for a data point, the
path length is first obtained and then the anomaly
score is computed by using equation 6.

s(x, ψ) = 2−
E(h(x))
c(ψ) (6)

where h(x) is the path length from a single iTree;
E(h(x)) is the expected path length of iForest.

CRPIT Volume 134 - Data Mining and Analytics 2012

70

