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Abstract

For a connected graph, a subset of vertices of least
size whose deletion increases the number of con-
nected components is the vertex connectivity of the
graph. A graph with vertex connectivity k is said to
be k-vertex connected. Given a k-vertex connected
graph G, vertex connectivity augmentation deter-
mines a smallest set of edges whose augmentation to
G makes it (k + 1)-vertex connected. In this paper,
we report our study of connectivity augmentation
in 1-connected graphs, 2-connected graphs, and k-
trees. For a graph, our data structure maintains
the set of equivalence classes based on an equiva-
lence relation on the set of leaves of an associated
tree. This partition determines a set of edges to be
augmented to increase the connectivity of the graph
by one. Based on our data structure we present
a new combinatorial analysis and an elegant proof
of correctness of our linear time algorithm for opti-
mum connectivity augmentation. While this is the
first attempt on the study of k-tree augmentation,
the study on other two augmentations is reported in
the literature. Compared to other augmentations re-
ported in the literature, we avoid recomputation of
the associated tree by maintaining the data struc-
ture under edge additions.
Keywords: Connectivity, connectivity augmenta-
tion, 1-connected graphs, 2-connected graphs, and
k-trees.

1 Introduction

Finding optimum connectivity augmentation in
graphs is a classical topic of combinatorial optimiza-
tion. Vertex connectivity augmentation of a graph
adds the smallest set of edges to reach a given ver-
tex connectivity. A special case of this study is to
increase the connectivity by one. i.e., given a k-
connected graph G, find a minimum number of edges
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to be augmented to G to increase its connectivity
to k + 1. This was an open problem for the past
three decades, only recently, it was shown by Vegh
in (Vegh 2010) that it is polynomial time solvable.
Although, the complexity of this problem was open
for several years, special cases of this problem have
attracted many researchers. This study was initi-
ated by Eswaran and Tarjan (Eswaran et al. 1976)
and in (Eswaran et al. 1976) they presented bicon-
nectivity augmentation of 1-connected graphs. A
different algorithm for the same problem is given in
(Hsu et al. 1976, Rosenthal et al. 1977). Watanabe
and Nakamura (Watanabe et al. 1988) presented an
algorithm for finding a smallest augmentation to tri-
connect a graph. A linear time algorithm for the
same problem is proposed in (Hsu et al. 1991). Hsu
(Hsu 2000) presented an algorithm for four connect-
ing a 3-connected graph. For fixed k, Jackson and
Jordan presented in (Jackson et al. 2005) a poly-
nomial time algorithm to k-vertex connect a given
graph and the run time of the algorithm is O(n6).
For a graph G with arbitrary connectivity, they pre-
sented a min-max formula involving the number of
edges to be augmented to G so that G is k-vertex
connected. In what follows, the combinatorial anal-
ysis and the complexity of the vertex connectivity
augmentation in general are one of the most chal-
lenging open questions of this area. In other words,
whether the decision version of the problem, is in P
or NP is still open. Recently, Vegh in (Vegh 2010)
presented a polynomial time algorithm for optimum
(k + 1)-connectivity augmentation of k-connected
graphs. Analogous to vertex connectivity augmenta-
tion, edge connectivity augmentation is another well
studied problem in the literature. The general k-
edge connectivity augmentation problem was solved
by Watanabe and Nakamura (Watanabe et al. 1987).
The same problem was solved by Cai and Sun (Cai
et al. 1989). The other basic augmentation prob-
lems namely to make a digraph k-vertex connected
(Frank et al. 1995) and a digraph k-edge connected
(Frank 1992) are shown to be polynomial time solv-
able. Frank’s survey (Frank 1994) is an excellent
source for more results on connectivity augmenta-
tion. Interestingly, these problems are also of prac-
tical interest in network reliability and fault-tolerant
computing (Steiglitz et al. 1969, Frank et al. 1970,
Jain et al. 1986).



Our Contribution: Given a graph, our framework
first finds the associated tree by understanding the
structural decomposition of graphs with respect to
vertex separators. For example, given a 1-connected
graph G, we construct the associated biconnected
component tree where each node is a cut vertex or
a biconnected component of G. The tree obtained
by this approach is unique. In all three augmenta-
tions reported in this paper, we focus our combina-
torial analysis on the associated tree to decide an
optimum connectivity augmentation set. Our new
data structure maintains a partition of the set of
leaves of the tree and this partition determines the
edge to be augmented to the graph at each iteration.
In short, this partition guarantees a recursive sub-
problem and it is sufficient to maintain this partition
for finding an optimum connectivity augmentation
set in graphs. To the best of our knowledge such
a data structure has not been maintained to solve
augmentation problems, and we believe that this is
the main contribution of our paper.
To exemplify our framework, we present three case
studies. The three problems reported in this pa-
per are, biconnectivity augmentation of 1-connected
graphs using biconnected component trees, tricon-
nectivity augmentation of 2-connected graphs using
3-block trees, and (k+1)-connectivity augmentation
of k-trees using minimum vertex separator trees. For
each of the three augmentations reported here, we
first discuss lower bound results for optimum connec-
tivity augmentation, and based on the new frame-
work we provide a new proof of tightness and an
elegant linear time algorithm. Further, this paper is
the first attempt in studying k-tree augmentation,
for any k. While (Hsu et al. 1976, Hsu 2000) pre-
sented a linear time algorithm for the other two case
studies, our novelty is in the data structure that
yields an elegant linear time algorithm and an el-
egant combinatorial analysis.
Preliminaries: We follow standard graph theoretic
definitions and notation, see (West 2003, Golumbic
1980). Let G = (V,E) be an undirected non
weighted graph where V (G) is the set of vertices
and E(G) ⊆ {{u, v} | u, v ∈ V (G), u 6= v}. The
neighborhood of a vertex v in a graph G is the set
{u | {u, v} ∈ E(G)} and is denoted by NG(v). The
degree of a vertex v, denoted as degG(v) is the size of
NG(v). δ(G) denotes minimum degree in G. ∆(G)
denotes maximum degree in G. A path P on the
vertex set V (P ) = {u = v1, v2, . . . , vn = v} (where
n ≥ 2) has its edge set E(P ) = {{vi, vi+1} | 1 ≤
i ≤ n − 1}. Such a path is denoted by Puv. Note
that a path on 2 vertices is just an edge. For a
connected graph G, a vertex separator of G is a set
S ⊆ V (G) such that the induced subgraph, denoted
by G−S, on the vertex set V (G) \S has more than
one connected component. The vertex connectivity
of a graph G, written κ(G), is the minimum cardi-
nality of a vertex set S (minimum vertex separator)
such that G−S is disconnected or has only one ver-
tex. A graph is k-connected if its connectivity is
k. For a k-connected graph G, a connectivity aug-
mentation set is a smallest set of edges whose aug-
mentation to G makes it (k + 1)-connected. We use

Emin(G) to denote such a set of minimum cardinal-
ity.

2 Biconnectivity Augmentation in Trees: A
New Approach

Given a tree, this section presents a new approach
to find an optimum augmenting set which makes the
tree biconnected. We first discuss the lower bound
on the size of optimum augmenting set, followed by a
new proof of tightness. In this proof, we identify an
equivalence relation on the set of leaves of the tree.
Using the partition of the set of leaves, namely, the
set of equivalence classes we describe an approach
to find an optimum biconnectivity augmenting set.
We also show that it is sufficient to maintain this
partition at each iteration of the algorithm. This
new framework also guarantees a tree at each iter-
ation and hence we obtain a recursive sub-problem
efficiently. It is now natural to extend tree augmen-
tation approach to augmentation in graphs which
have tree like structure. Since trees are a subclass
of singly connected graphs, a natural extension is
to study augmentation in singly connected graphs
by representing them by the associated trees. The
standard approach in the literature for biconnectiv-
ity augmentation of singly connected graphs is to
maintain a tree that captures the biconnected com-
ponents, cut vertices, and bridges of a singly con-
nected graph. After the choice of an edge to be
added is made, a new tree is computed, and the pro-
cedure stops when the tree becomes a single node.
Our framework avoids recomputation of the associ-
ated tree at each iteration and this new approach is
fundmentally different from the results reported in
(Eswaran et al. 1976, Hsu et al. 1976). This new data
structure and combinatorial analysis gave an insight
into the study of connectivity augmentation in other
graphs which have an associated tree like structures
to represent their vertex connectivity. In particular
our methods naturally extend to connectivity aug-
mentation in k-trees, and this does not seem to be
easily feasible using the approach of Tarjan et. al.
(Eswaran et al. 1976) and Hsu et. al. (Hsu et al.
1976). We also present a new algorithm for tricon-
nectivity augmentation of biconnected graphs using
our new data structure.
Lower Bound on Biconnectivity Augmenta-
tion in trees: Given a tree T we now present the
lower bound on optimum biconnectivity augmenting
set. It is a well known fact that in any 2-connected
graph, for any pair of vertices, there exists two vertex
disjoint paths between them. This fact is useful in
determining the lowerbound on the optimum bicon-
nectivity augmenting set. Let l denote the number
of leaves in T . Clearly, to biconnect T we must aug-
ment at least d l2e edges. Another lower bound is due
to the number of components created by removing
a cut vertex of T . Note that the number of compo-
nents created by a cut vertex x of T is precisely the
degree of x in T . This shows that in any biconnec-
tivity augmentation of T , for each cut vertex x, one
must find at least degT (x)− 1 new edges in the aug-



menting set. Therefore, we must augment at least
∆(T )− 1 edges to biconnect T . Therefore, by com-
bining the two lower bounds, the number of edges
to biconnect T is at least max{d l2e,∆(T )− 1}. This
lower bound is indeed tight as shown in (Eswaran
et al. 1976, Hsu et al. 1976).
In the next section, we present a new proof of tight-
ness. In this proof, we identify an equivalence re-
lation on the set of leaves of the tree, and show
that adding edges among appropriately chosen leaf
pairs naturally results in a recursive sub-problem
in which the lower bound value is one lesser. The
main contribution here is the identification of the
equivalence relation which consequently guarantees
easy construction of the recursive sub-problem. The
equivalence relation and therefore the set of equiva-
lence classes yields an elegant algorithm to compute
Emin(G), an optimal biconnectivity augmenting set.
This approach is fundamentally different from the
results presented in (Hsu et al. 1976, Hsu 2002). We
present an algorithm by focussing our combinato-
rial arguments on the set of equivalence classes. We
further prove that the number of edges augmented
by our algorithm is precisely the lower bound men-
tioned in this section.

2.1 Equivalence Classes: Definition and
Structural observations

We now define a relation R on the set L(T ) =
{x1, x2, . . . , xl} of leaves in T . Leaf x is related to
leaf y, y 6= x if there exists at most one vertex of de-
gree at least 3 in Pxy and it is written as xRy. If x
is not related to y in R then it is written as xR̃y. In
other words, the path Pxy contains at least two ver-
tices z and z′ such that deg(z) ≥ 3 and deg(z′) ≥ 3.
Proof of Lemma 2.1 is omitted in this paper.

Lemma 2.1 R is an equivalence relation.

Since R is an equivalence relation, R induces a set
Xec of equivalence classes on the set L(T ) of leaves in
T . The following fact highlights a structural prop-
erty of each equivalence class in Xec. Fact: Each
equivalence class is associated with a unique ver-
tex(representative) of degree at least 3 in T . By the
definition of our relation, leaf x and leaf y are re-
lated if there exists at most one vertex z of degree
at least 3 in Pxy. This implies that z is the first ver-
tex of degree at least 3 in Pxy and every other vertex
in Pxz and Pyz is of degree at most 2 in T . Since
R partitions the set of leaves into set of equivalence
classes, we observe that, for each equivalence class
X ∈ Xec there is an associated unique vertex, de-
noted by w(X) such that w(X) is the nearest vertex
of degree at least 3 on the path from each element
of X. We refer to w(X) as the representative asso-
ciated with X.
Before we present our algorithm we highlight one
more fact which describes a special tree. If the tree
T is such that T has exactly one vertex of degree at
least 3 then by the definition of R, we get exactly
one equivalence class containing all the leaves in T .
The tree in this case is a star like tree. We call such

a special tree as star.
A Generic Approach to Augmentation Algo-
rithm: To decide upon the edge to be augmented
at each iteration, we perform the following: from
the set of equivalence classes, we identify two equiv-
alence classes X and Y such that degree of its repre-
sentatives are maximum and second maximum, add
the edge {u, v}, u ∈ X and v ∈ Y and update the
set of equivalence classes. The tail condition of this
procedure is when there is exactly one equivalence
class and we know from our earlier discussion that
there is exactly one special tree namely star and aug-
mentation for star is done separately.

2.2 Augmentation using Equivalence
Classes

In this section, we present our linear time algo-
rithm to find an optimum biconnectivity augment-
ing set in trees. Let Xec = {X1, . . . , Xr} denote
the set of equivalence classes with w(Xi) being the
associated representative of Xi ∈ Xec. Let M0 =
max{d l2e,∆(T ) − 1}. We use ∆(T ) and ∆ inter-
changeably and the tree to which it is associated will
be clear from the context. Let ∆i denote the value
of ∆(T ) at the end of i-th iteration of the algorithm.
Similarly, li denotes the number of leaves in the tree
at the end of the i-th iteration. At the end of i-th it-
eration of the algorithm, let Mi = max{d li2 e,∆

i−1}.
The following key lemma is presented in (Hsu et al.
1976) and this key observation leads to an optimum
algorithm reported in (Hsu et al. 1976). We present
our key observation in Lemma 2.3 and this obser-
vation yields an elegant combinatorial analysis for
finding optimum connectivity augmentation.

Lemma 2.2 (Hsu et al. 1976) Let T be a tree with
l ≥ 3. If ∆(T ) > d l2e then there exists at most two
cut-vertices v1, v2 ∈ V (T ) whose degree is ∆(T ).

From the above lemma we observe the following re-
sult and this observation is used in the proof of
Lemma 2.4

Lemma 2.3 Let T be a tree with l ≥ 3 and z be
a vertex in V (T ). If deg(z) = ∆ > d l2e then
there exists an equivalence class X ∈ Xec such that
w(X) = z.

Proof Suppose there does not exist X such that
w(X) = z. Then there are at least two leaves in
each of the trees in the forest obtained by removing
z. Also, by our hypothesis each component is neither
an isolated vertex nor a path in T \{z}. This implies
that each component is a tree with at least two leaves
and each of these leaves, except theNT (z) is indeed a
leaf in T . Since deg(z) = ∆ > d l2e, it follows that the
number of leaves is at least 2∆ > l. A contradiction.
Therefore, there exists an equivalence class X ∈ Xec
such that w(X) = z.

Lemma 2.4 Let T be a tree such that T is not a
star. Then M1 = M0 − 1.



Algorithm 1 Biconnectivity Augmentation in
Trees: tree-augment(Tree T)

if there are exactly two leaves x and y then
Add the edge {x, y} and return the biconnected
graph

else
Compute the set Xec of equivalence classes
if |Xec| > 1 then
/* T is not a star */
Yec=non-star-augment(Xec)
star-augment(Yec)

else
/*T is a star */
star-augment(Xec)

end if
end if
———————————————————–

Algorithm 1(b) Biconnectivity Augmen-
tation in star: star-augment(eclass-list
Xec)

Let X = {x1, . . . , xl} be the set of leaves in T such
that X ∈ Xec
Add |X| − 1 edges to T , i.e add {{xi, xi+1} | 1 ≤
i ≤ |X| − 1, xi ∈ X}.
———————————————————–

Algorithm 1(c) Biconnectivity Augmentation
in non-star Trees: non-star-augment(eclass-
list Xec)

1: while |Xec| ≥ 2 do
2: Let X1 and X2 are two equivalence classes in

Xec such that deg(w(X1)) ≥ deg(w(X2)) ≥
deg(w(Xi)), i ≥ 2

3: Add the edge {x, y}, x ∈ X1, y ∈ X2. Remove
x from X1 and y from X2.

4: Remove the path from x to w(X1) and y
to w(X2) from T /* This yields a tree
after augmentation */

5: Update Xec
6: end while
7: return Xec /*Xec has single equivalence

class and the associated tree is star
*/

Proof Given that T is a tree such that T is not a
star implies that |Xec| ≥ 2. Since, the maximum de-
gree does not increase from one iteration to the next,
and the number of leaves strictly reduces, clearly,
M1 ≤ M0. We prove that M1 = M0 − 1 by contra-
diction. Suppose M1 6= M0 − 1. This implies that
M1 = M0. We know that l1 = l0−2. Since M1 = M0

and l1 = l0−2 it must be the case that ∆1−1 > d l12 e.
We prove this observation by contradiction. Sup-
pose, ∆1−1 ≤ d l12 e = d l02 e−1. Consequently, M1 =
max{∆1 − 1, d l12 e} = d l02 e − 1. Further, M1 = M0

implies that d l02 e − 1 = M1 = M0 ≥ d l02 e, and this
is a contradiction. Therefore, our observation that
∆1 − 1 > d l12 e is true. Further, since l1 = l0 − 2
and M1 = M0, it must be that ∆1 = ∆0. Therefore,
∆0 − 1 > d l02 e − 1 and hence ∆0 > d l02 e. Therefore,

now applying Lemma 2.2 we know that there can
be at most two vertices v1, v2 ∈ V (T ) of degree ∆0.
Further, from Lemma 2.3 a cut-vertex of maximum
degree is the representative associated with an equiv-
alence class. Since the biconnectivity augmentation
adds an edge between x ∈ X1 and y ∈ X2 such that
deg(w(X1)) ≥ deg(w(X2)) ≥ deg(w(Xi)), 2 ≤ i ≤ r,
it follows that the degrees of the associated repre-
sentatives also reduce by one. Since the maximum
degree vertices have degree more than d l2e, there are
at most two of them (by Lemma 2.2), both are asso-
ciated representatives of two equivalence classes (by
Lemma 2.3), and the algorithm adds an edge be-
tween two vertices in these two equivalence classes,
it follows that the maximum degree reduces by 1.
That is, ∆1 = ∆0 − 1 and this contradicts our ear-
lier conclusion that ∆1 = ∆0. Therefore, our start-
ing premise, M1 = M0 is wrong, M1 = M0 − 1.

Theorem 2.5 Let T be a tree. The minimum
biconnectivity augmentation of T uses M0 =
max{d l2e,∆− 1} edges.

Proof The algorithm guarantees that at the end
of each iteration we always have a tree. Further,
we know from lemma 2.4 that if |Xec| ≥ 2, then
M1 = M0 − 1. Therefore, let us assume that while-
loop of the function non-star-augment is called p
times, after which star-augment is called once. Then
Mp = M0 − p. In otherwords, in the tree obtained
after p calls to while-loop of non-star-augment there
is a single equivalence class. In such a situation,
we know from our earlier discussion that the result-
ing tree obtained from non-star-augment is a star.
We know that for star ∆p = lp, and by definition
Mp = ∆p−1. star-augment function biconnects this
tree using Mp edges. Therefore, the total number of
edges added is Mp+p = M0−p+p = M0. It is also
easy to see by induction on p that the set of edges
added is a biconnectivity augmentation set. The
base case is when p = 0, and clearly, star-augment
biconnects the tree T . After the first iteration, the
resulting tree goes through a strictly smaller num-
ber of iterations, and we assume by induction on the
number of iterations that the algorithm returns a bi-
connectivity augmentation set using M0 − 1 edges.
The first iteration counts one more edge that en-
sures an additional path between the unaccounted
vertices of degree at most two, thus guaranteeing bi-
connectivity. Note that the unaccounted vertices are
two paths in the tree each originating at a distinct
leaf from two distinct equivalence classes, namely X1
and X2.

2.3 Linear Time Implementation of non-
star-augment() using a Novel Data
Structure

The important steps to be analyzed in our algorithm
are computing the set of equivalence classes, finding
two equivalence classes such that degree of its repre-
sentatives are maximum and second maximum, and
updating of equivalence classes after edge addition.



We below mention possible situations that may arise
on execution of line (3) and line (4) of Algorithm 1(c)
and the specific tasks to be taken in updating the set
of equivalence classes.
• For an equivalence class X, if deg(w(X)) = 2

and |X| = 1 then by definition, w(X) is no
longer a representative vertex of X. The update
in this case is the identification of the new rep-
resentative of X. The update is done by iden-
tifying a nearest vertex z of degree at least 3
from w(X). Since deg(z) ≥ 3, there must be
an equivalence class Y (possibly empty) such
that w(Y ) = z. We say that X merges with the
equivalence class Y . To identify such a z effi-
ciently, we maintain an additional information
at each leaf x to ensure that the search for z
does not happen on the path from w(X) to x.
We call this additional information as parent-
indicator for each leaf x in T . For a leaf x ∈ X,
the parent-indicator of x is a vertex x′ such that
x′ ∈ NG(w(X)) and x′ ∈ Pxw(X). The purpose
of parent-indicator is that the search for z must
avoid Px′x as every vertex in Px′x is of degree
two.

• The other possible situations are |X| = 0 or
|X| ≥ 2 or |X| = 1 and deg(w(X)) ≥ 3. In
this case, the update must reorganize the equiv-
alence classes based on the degree of the repre-
sentatives.

We propose an abstract data type(ADT) to main-
tain the set of equivalence classes. We call the ADT
as Equivalence-Class-List and using the operations
listed in Table 1, we present a linear time implemen-
tation of the above reorganization steps. We use two
basic data types namely, eclass-list to refer the data
type of Xec and node to refer the data type of a ver-
tex x. Let L be an object of type eclass-list.
Data Structures Used: The main data structure
which is populated by Set-up-eclass() is a table of
records, which we call table-eclass. For each ver-
tex of degree at least 3 in T there is a record in
table-eclass. Each record has three fields, the la-
bel of a vertex w of degree at least 3, the degree of
w in T , and the subset of leaves in the equivalence
class associated with w. The method Set-up-eclass()
fills entries in table-eclass by performing Depth First
Search(DFS) on T . During the DFS, for each ver-
tex w, deg(w) ≥ 3, we find the equivalence class of
w. We also store the parent-indicator of each ele-
ment in the equivalence class associated with vertex
w (i.e., for each leaf in T ). Since each vertex is vis-
ited at most twice during the DFS, construction of
table-eclass takes at most 2|E(T )| and hence O(n)
time. With this table, ADT methods Insert, Re-
trieve, and Parent-Representative-Indicator can be
implemented in constant time.
To index table-eclass to locate the record labelled w,
in constant time, we use index-table[ ] array to store
the position of w in table-eclass table. This imple-
ments the ADT method Locate in constant time.
The subroutines get-top-two-representative and
update-eclass implement line (2) and line (5), respec-
tively of Algorithm 1(c). These subroutines make

use two additional data structures. The data struc-
ture initial-active-eclass[ ] array contains vertices x
in non-increasing order of their degrees such that
there is a non empty equivalence class associated
with x. This can be achieved by running radix
sort on the associated set and it runs in O(n) time.
sorted-vertex[i] which contains a list of vertices x of
degree i in T . Initially, sorted-vertex[i] is filled using
elements of initial-active-eclass[ ].
Run-Time Analysis: The overall time complexity
of non-star-augment algorithm is given as follows:
Depth First Search(DFS) on the given tree to fill
table-eclass incurs O(n) time. Running radix sort
and creating an entry in sorted-vertex[ ] takes O(n)
time. With supporting data structures, we incur
constant time effort for the subroutine get-top-two-
representative. For the subroutine update-eclass, we
are analyzing the total effort involved over all itera-
tions. If there is a merging then to identify the near-
est vertex of degree at least 3, the total time spent
for the above operation over all iterations is O(n),
as we visit each vertex exactly once. This is possi-
ble because of parent-indicator information stored at
each leaf. If there is no merging then we incur con-
stant time effort to reorganize the set Xec. As per
our algorithm, each vertex of degree at least 3 is vis-
ited at most the size of equivalence class associated
with that vertex. Since the sum of the size of all
equivalence classes is at most the sum of degrees in
the tree, the time spent in identifying the augmenta-
tion set is O(n). When the tree is star, star-augment
incurs an additional O(n) time. Therefore, the total
time complexity of tree-augment algorithm is O(n),
linear in the input size.

3 Application to Biconnectivity, Triconnec-
tivity and k-tree Augmentations

In this section, we report our study of augmentation
in three graph classes using the equivalence classes
from the associated tree. We first, generalize tree
augmentation results and present an augmentation
in 1-connected graphs. Second, we discuss triconnec-
tivity augmentation results in biconnected graphs.
Finally, we report augmentation in k-trees which are
a natural extension of trees.

3.1 Biconnectivity Augmentation using
Equivalence Classes

As mentioned earlier, the approach is to represent
a 1-connected graph by an appropriate tree and
find an optimum augmentation set of 1-connected
graphs by using the results presented in Section
2. We represent the given 1-connected graph by a
tree, namely, the biconnected component tree. A
biconnected component is a maximal 2-connected
subgraph of a given graph. A biconnected compo-
nent tree T is a tree constructed from the given
graph G as follows: each vertex in T denotes either
a biconnected component of G or a cut-vertex of
G. For a vertex x ∈ V (T ), the associated label
label(x) = {c}, c is a cut-vertex in G or label(x) = S,



Table 1: Operations Defined on Equivalence-Class-List ADT
Set-up-eclass() This creates the set of equivalence classes from the tree. This

is the first method to be called to populate the data structure
Locate(L, w) Return from L, the location of equivalence class whose repre-

sentative is w
Insert(L, pos, l) Insert the leaf node l into the equivalence class whose position

in L is pos and return the updated list L
Retrieve(L, pos) Return from L, an element of the equivalence class whose po-

sition is pos
Parent-Representative-Indicator(L, x) Return from L, the parent-indicator of leaf x

S ⊆ V (G) such that G[S] is a maximal 2-connected
subgraph in G. V (T ) = B ∪ B′ where B =
{x | label(x) is a biconnected component in G }
and B′ = {x | label(x) is a cut vertex in G}.
The adjacency between a pair of vertices
in T is defined as follows: for x, y ∈ V (T ),
{x, y} ∈ E(T ) if one of the following is true
• x ∈ B and y ∈ B′ such that label(y) ⊂ label(x)

• Both x, y ∈ B′ and there is a {c, c′} cut-edge in
G such that label(x) = {c} and label(y) = {c′}

• x ∈ B and y ∈ B′ such that label(x) is a
trivial biconnected component(|label(x)| = 1)
and there is a {u, v} cut-edge in G such that
label(x) = {u} and label(y) = {v}.

An example of a biconnected component tree is
shown in Figure 1. Lower Bound on Biconnec-
tivity Augmentation in 1-connected Graphs:
We use the well known fact that in any 2-connected
graph, for any pair of vertices, there exists two ver-
tex disjoint paths between them. Let X denote the
set of biconnected components having exactly one
cut-vertex in G. Note that by our construction of
T , each element of X corresponds to the label of a
leaf in T . Clearly, to biconnect G we must aug-
ment at least d |X|2 e edges and therefore we need at
least d l2e edges, l denotes the number of leaves in
T . Another lower bound is due to the number of
components created by removing a cut vertex of G.
Note the one-one correspondence between the num-
ber of components created by a cut vertex of G and
the degree of a vertex x ∈ B′. This shows that
in any biconnectivity augmentation of G, for each
x ∈ B′, one must find at least degT (x) − 1 new
edges in the augmenting set. Therefore, we must
augment at least ∆c(T ) − 1 edges to biconnect G,
where ∆c(T ) = max

x∈B′
deg(x). Therefore, by combin-

ing the two lower bounds, the number of edges to
biconnect G is at least max{d l2e,∆c(T ) − 1}. This
lower bound is indeed tight as shown in (Hsu et al.
1976, Eswaran et al. 1976).
Note the similarity between this lower bound and
the one presented in the previous section. ∆c(T )
appears here instead of ∆(T ). Because of similar-
ity between the two lower bounds and the associ-
ated representation is a tree, all combinatorial anal-
ysis presented in the previous section naturally ex-
tends in the study of biconnectivity augmentation

in 1-connected graphs. Hence, we get a new proof
of tightness which leads to a new linear time algo-
rithm for finding biconnectivity augmentation set in
1-connected graphs. The equivalence relation and
therefore the set of equivalence classes yields an
elegant algorithm (Algorithm 2) that avoids com-
pletely the recomputation of the associated tree at
each iteration, unlike, the results presented in (Hsu
et al. 1976, Rosenthal et al. 1977). Let M0 =
max{d l2e,∆c(T )− 1}. Observe that ∆c(T ) appears
in this expression instead of ∆(T ). With this obser-
vation we see that Lemmas 2.2,2.3, and 2.4 are true
in biconnected component tree T . We only present
a proof of Theorem 3.1.

Theorem 3.1 Let T be a biconnected component
tree. The minimum biconnectivity augmentation of
G uses M0 = max{d l2e,∆c − 1} edges.

Proof The algorithm guarantees that at the end
of each iteration we always have a tree. Further,
we know from lemma 2.4 that if |Xec| ≥ 2, then
M1 = M0 − 1. Therefore, let us assume that while-
loop of the function non-star-augment of Section
2 is called p times, after which bc-star-augment is
called once. Then Mp = M0 − p. In otherwords,
in the tree obtained after p calls to while-loop of
non-star-augment there is a single equivalence class.
If that equivalence class is associated with a cut-
vertex of G then the resulting tree obtained from
non-star-augment is a c-star. We know that for c-
star ∆p

c = lp, and by definition Mp = ∆p
c − 1. bc-

star-augment function biconnects this tree using Mp
edges. Therefore, the total number of edges added is
Mp+p = M0−p+p = M0. If that equivalence class is
associated with a biconnected component of G then
the resulting tree obtained from non-star-augment
is a b-star. The total number of edges added in this
case is d l−lp2 e + d lp2 e = d l2e. It is also easy to see
by induction on p that the set of edges added is a
biconnectivity augmentation set. The base case is
when p = 0, and clearly, bc-star-augment biconnects
the graph G. After the first iteration, the resulting
tree goes through a strictly smaller number of itera-
tions, and we assume by induction on the number of
iterations that the algorithm returns a biconnectiv-
ity augmentation set using M0 − 1 edges. The first
iteration counts one more edge that ensures an addi-
tional path between the unaccounted vertices of de-
gree at most two, thus guaranteeing biconnectivity.



Note that the unaccounted vertices are two paths in
the tree each originating at a distinct leaf from two
distinct equivalence classes, namely X1 and X2.

The overall time complexity of our algorithm is given
as follows: Depth First Search(DFS) on the given
graph can be used to compute the biconnected com-
ponent tree in O(n + m) time (Tarjan 1972). The
number of nodes in the biconnected component tree
is O(n). We know from previous section that non-
star-augment can be implemented in O(n) time.
Hence, the total time complexity of our algorithm
is O(n+m), linear in the input size.

3.2 Triconnectivity Augmentation using
Equivalence Classes

We present an elegant linear time algorithm that
finds a minimum set of edges whose augmenta-
tion to a 2-connected graph makes it 3-connected.
We work with the standard 3-block tree of a 2-
connected graph (Hsu et al. 1991). Given a 2-
connected graph G, the vertex set of 3-block tree T ,
V (T ) = {x | label(x) is a triconnected component
in G or a 2-sized vertex separator or a polygon or
a vertex of degree 2 }. For convenience, we use the
following notation. V (T ) consists of four kinds of
vertices called σ vertices, π vertices, α vertices, and
β vertices. We create a σ vertex for each 2-sized ver-
tex separator such that components separated by the
vertex separator is either a triconnected component
or a polygon, a π vertex for each polygon, a α vertex
for each vertex of degree 2, and a β vertex for each
triconnected component. A vertex of degree 2 (α
vertex) is the only trivial triconnected component.
Note that the set of α vertices is a subset of the set
of β vertices. The adjacency between a pair of ver-
tices in V (T ) is defined as follows: for x, y ∈ V (T ),
{x, y} ∈ E(T ), if one of the following is true.

• x ∈ σ and y ∈ β and label(x) ⊂ label(y).

• x ∈ σ and y ∈ π and label(x) ⊂ label(y).

• x ∈ α and y ∈ σ such that label(y) = NG(x).

Note that we do not create a σ vertex for each pair
of non adjacent vertices in a polygon (π vertex), we
create a σ vertex for a pair in the polygon if it is
involved in the tutte split. More information about
tutte split and merge can be found in (Tutte 1966).
Let ∆σ(T ) = max

x∈σ
deg(x) and l denote the number

of leaves in T . A 3-block tree is illustrated in Figure
2. Lower Bound on Triconnectivity Augmen-
tation: Given a 2-connected graph G and a 3-block
tree T of G, the number of edges to triconnect G is
at least max{d l2e,∆σ(T ) − 1}. This lower bound is
indeed tight as shown in (Watanabe et al. 1988, Hsu
et al. 1991). We omit the proof here and a proof
similar to Section 3.1 can be given.
Note the similarity between this lower bound and the
one presented in Section 2. ∆σ(T ) appears here in-
stead of ∆(T ). Because of similarity between the two
lower bounds and the associated representation is a
tree, all combinatorial analysis presented in Section

2 naturally extends in the study of triconnectivity
augmentation of 2-connected graphs. Hence, we get
a new proof of tightness which leads to a new linear
time algorithm (Algorithm 3) for finding triconnec-
tivity augmentation set in 2-connected graphs. This
approach is fundamentally different from the results
presented in (Watanabe et al. 1988, Hsu 2000).
Sketch of the Algorithm: Compute the set Xec
of equivalence classes of 3-block tree T . If |Xec| ≥ 2
then find augmenting set using the subroutine non-
star-augment of Section 2. The tail condition is
when there is exactly one equivalence class and such
a tree is a star shaped tree. In this case, we get three
special trees depending on the label of the represen-
tative vertex z. z can be β (a triconnected com-
ponent) or σ (a vertex separator of size 2) or π (a
polygon) vertex of T and accordingly we call T as t-
star, s-star, and p-star, respectively. Augmentation
for tail condition is done separately. With this new
approach we simplify our triconnectivity augmen-
tation algorithm by calling non-star-augment sub-
routine with 3-block tree as the input. A proof
similar to Theorem 3.1 can be given to prove that
the number of edges augmented by our algorithm
is max{d l2e,∆σ(T ) − 1} and the resulting graph is
3-connected. From (Hopcroft et al. 1973) we know
that 3-block tree can be constructed in linear time
and from Section 2, we know that triconnectivity
augmentation set can be obtained in linear time as
well. Therefore, overall time complexity to tricon-
nect a biconnected graph is linear in the input size.

3.3 Augmentation in k-trees using Equiva-
lence Classes

Given a k-tree G, we find a minimum set of edges
whose augmentation toGmakes it (k+1)-connected.
We represent the given k-tree using a minimum ver-
tex separator tree. For a given k-tree, minimum ver-
tex separator tree is unique and it is different from
the standard tree decomposition tree. A k-tree is
defined recursively as follows: a k + 1 clique is a
k-tree, if G′ is a k-tree, the graph G = G′ ∪ {v}
such that NG(v) is a k-clique in G′ is a k-tree. A
vertex v ∈ V (G) is simplicial if NG(v) induces a
clique. Note that in every k-tree, every minimum
vertex separator(MVS) is a k-clique and hence k-
trees are k-connected. Also every maximal clique is
of size k + 1. For a given k-tree G we construct a
Minimum Vertex Separator tree(MVS tree) T asso-
ciated with G as follows: M(G) = {S ⊂ V (G) | S
is a minimum vertex separator in G} and K(G) =
{K ⊂ V (G) | K is a k + 1 clique in G}. For a
vertex x ∈ V (T ), the associated label label(x) is
a subset of V (G) such that label(x) ∈ M(G) or
label(x) ∈ K(G). Let VM = {x | label(x) ∈ M(G)}
and VK = {x | label(x) ∈ K(G)}. V (T ) = VM ∪VK .
For x, y ∈ V (T ), adjacency between x and y is de-
fined as follows: {x, y} ∈ E(T ) if x ∈ VM and
y ∈ VK such that label(x) ⊂ label(y).



3.3.1 A lower bound on k-tree augmentation

Let l denote the number of leaves in T and s denote
the number of simplicial vertices in G. By our con-
struction, it is easy to see that l = s. The degree of a
minimum vertex separator S ∈M(G) is the number
of k+1 cliques in G that contain S and it is denoted
by deg(S). deg(S) = |{K | K ∈ K(G) ∧ S ⊂ K}|.
Let Smax = max

S∈M(G)
deg(S). Let x ∈ VM is such

that deg(x) = Smax. Also ∆k(T ) = deg(x) such
that deg(x) = Smax. A proof of Lemma 3.2 and
Lemma 3.3 is omitted in this paper.

Lemma 3.2 For any optimum solution Emin(G) of
G, |Emin(G)| ≥ max{d s2e, S

max − 1}.

For the MVS tree T the above lower bound trans-
lates into max{d l2e,∆k(T ) − 1} edges. We observe
that the MVS tree is very similar to the bicon-
nected component tree. A node x ∈ VM corre-
sponds to an element in B′ and x ∈ VK corre-
sponds to an element in B. With this observation
we simplify our k-tree augmentation algorithm (Al-
gorithm 4) by calling 1-connect-augment with MVS
tree as the input. Since MVS tree can be con-
structed in linear time from the construction order
of k-trees, ktree-augment() runs in linear time. Let
A = {{x, y} | x, y are leaves in T } be the set of
edges returned by our algorithm. Let Ea(G) the
corresponding set of edges in G, Ea(G) = {{u, v} |
{x, y} ∈ A and u ∈ label(x) is a simplicial vertex in
G and v ∈ label(y) is a simplicial vertex in G}.

Lemma 3.3 Let Gaug be the graph obtained from G
by augmenting Ea(G). Gaug is (k + 1)-connected.

Theorem 3.4 Let G be a k-tree. An optimum (k+
1)-connectivity augmentation of G uses |Ea(G)| =
max{d s2e, S

max − 1} edges.

Proof We know that our algorithm augments
|Ea(G)| edges. Therefore from Lemma 3.3 it follows
that G augmented with Ea(G) is (k+ 1)-connected.
Hence the theorem.
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Algorithm 2 Augmentation in 1-connected graphs:
1-connect-augment(Graph G)

1: Compute the biconnected component tree T of
G

2: if there are exactly two leaves x and y in T then
3: Add the edge {x, y} and return the bicon-

nected graph
4: else
5: Compute equivalence classes Xec = {X | X

is an equivalence class with associated vertex
w(X)}

6: if |Xec| > 1 then
7: /* T is not a star-like graph */
8: Yec=non-star-augment(Xec) /* Call to

non-star-augment() of Section 2,
returns Yec */

9: bc-star-augment(Yec) /* Yec has
exactly one equivalence class. The
associated tree is a star */

10: else
11: /*T is a star-like graph */
12: bc-star-augment(Xec)
13: end if
14: end if
15: For each edge {x, y} added into T , add {u, v} to

G such that u ∈ label(x) and v ∈ label(y) and u
and v are non-cut vertices in G

—————————————————–
Biconnectivity Augmentation in
stars: bc-star-augment(List-of-eclass
Xec)

1: Let X = {x1, . . . , xl} be the set of leaves in T
such that X ∈ Xec

2: if T is a c-star then
3: /* T is star-like with a central

vertex corresponding to a cut-vertex
in G */

4: Add |X| − 1 edges to T , i.e add {{xi, xi+1} |
1 ≤ i ≤ |X| − 1, xi ∈ X}.

5: else
6: /* T is star-like with a central

vertex corresponding to a
biconnected-component in G */

7: if l is even then
8: Add {{xi, xl−i+1} | 1 ≤ i ≤ l

2} to T
9: else

10: Add {{xi, x(l−1)−i+1} | 1 ≤ i ≤ l−1
2 } ∪

{x1, xl} to T
11: end if
12: end if

Algorithm 3 Augmentation in 2-connected graphs:
2-connect-augment(Graph G)

1: Compute the 3-block tree T of G
2: if there are exactly two leaves x and y in T then
3: Add the edge {x, y} and return the tricon-

nected graph
4: else
5: Compute equivalence classes Xec = {X | X

is an equivalence class with associated vertex
w(X)}

6: if |Xec| > 1 then
7: /* T is not a star-like graph */
8: Yec=non-star-augment(Xec) /* Call to

non-star-augment() of Section 2,
returns Yec*/

9: tsp-star-augment(Yec) /* Associated
tree is a star with a single
equivalence class */

10: else
11: /*T is a star-like graph */
12: tsp-star-augment(Xec)
13: end if
14: end if
15: For each edge {x, y} added into T , add {u, v} to

G such that u ∈ label(x) and v ∈ label(y) and u
and v are elements of β vertex and not elements
of σ vertex in G

——————————————————–
Triconnectivity Augmentation in
stars: tsp-star-augment(List-of-eclass
Xec)

1: Let X = {x1, . . . , xl} be the set of leaves in T
such that X ∈ Xec

2: if T is a s-star then
3: /* T is star-like with a central

vertex corresponding to a σ vertex */
4: Add |X| − 1 edges to T , i.e add

{{xi, xi+1} | 1 ≤ i ≤ |X| − 1, xi ∈ X}.
5: else
6: /* T is star-like with a central

vertex corresponding to a π vertex or
β vertex */

7: if l is even then
8: Add {{xi, xl−i+1} | 1 ≤ i ≤ l

2} to T
9: else

10: Add {{xi, x(l−1)−i+1} | 1 ≤ i ≤ l−1
2 } ∪

{x1, xl} to T
11: end if
12: end if

Algorithm 4 k-tree connectivity Augmentation:
ktree-augment(Tree T)
/* T is the MVS-tree of a k-tree G */
Perform (k + 1)-connectivity augmentation of G
using 1-connect-augment(T)
For each edge {x, y} added into T , add {u, v} to
G such that u ∈ label(x) and v ∈ label(y) and u
and v are simplicial vertices in G
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Figure 2: 2-connected graph and its 3-block tree


