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Abstract 
Recently, ontology engineering has become ever more 
important when it comes to conceptualize knowledge. 
However, writing software applications that operate on 
ontological knowledge still suffers from a lack of 
connectivity provided by available ontology management 
systems. Interfaces of ontology management systems are 
either based on error prone programming language 
agnostic remoting protocols or they are restricted to one 
particular programming language. We implemented an 
ontological Knowledge Base Server, which can expose 
the functionality of arbitrary off-the-shelf ontology 
management systems via arbitrary remoting protocols. 
Based on XML Schema Definition, we defined a full-
fledged API for processing OWL ontologies. Client 
access code can be generated automatically for virtually 
any object oriented programming language. Using 
Description Logics terminology, the Knowledge Base 
Server API was formally specified, such that it could be 
used to validate implementations based on three different 
adapted ontology management systems.. 

Keywords:  Web Ontology Language (OWL), Description 
Logics, Ontology Management. 

1 Introduction 
In recent years, Semantic Web technologies like RDF(S) 
(RDF), DAML+OIL (DAML+OIL), and their common 
Description Logics (DL) (Baader, Calvanese, McGuiness, 
Nardi, and Patel-Schneider 2003) based successor OWL 
(OWL) have paved the way for standardized formal 
conceptualizations of all kinds of knowledge. Numerous 
ontologies have been developed to conceptualize a 
plethora of domains of discourse (Ontology Library). 
Since corporations from all sectors have braced to define 
company specific knowledge using Semantic Web 
technologies, ontology engineering has become a 
business model for a number of companies. 

As the underlying standards have matured, tools for 
ontology engineering have emerged both in commercial 
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as well as in academic fields. Knowledge acquisition 
systems like Protégé (Protégé) make it particularly easy 
to construct domain ontologies and to enter data. 
Ontology management systems like the IBM Semantic 
Network Base (SNOBASE) or HP Labs’ Jena (Jena) can 
be used for loading ontologies from files and via the 
Internet and for creating, modifying, querying, and 
storing ontologies. Inference engines like RACER 
(RACER) provide support for query answering. There is 
an incessantly growing set of tools, projects, and 
applications for ontology languages like OWL. However, 
processing ontological information programmatically is 
still laborious and error prone. From our experience, this 
is caused by two main problems. 

Firstly, there are no formal specifications that fully define 
the semantics of ontology management APIs. This is 
particularly problematic since typical interface methods 
(e.g. listSubclasses, addIndividual) are 
closely related to the semantics of the formal foundations 
of ontology languages (e.g. Description Logics). 

Secondly, existing off-the-shelf ontology management 
systems only provide limited connectivity with respect to 
native support for programming languages and remoting 
protocols. Hence, it is particularly difficult to use 
ontology management systems remotely or along with a 
variety of different programming languages (i.e. in 
heterogeneous distributed computing environments). 
More gravely, it may be unfeasible to replace an ontology 
management system by alternative products without 
altering significant parts of client code. 

This paper describes a pluggable architectural model for 
an ontological Knowledge Base Server, which can expose 
the functionality of arbitrary off-the-shelf ontology 
management systems via a well defined API. XML 
Schema Definition (XSD) data types and Description 
Logics terminology were used to formally specify the 
result sets and side effects of each method. 

The architectural model of our Knowledge Base Server 
facilitates adding and replacing hosts for remoting 
protocols and replacing the access code for arbitrary off-
the-shelf ontology management systems dynamically at 
runtime. Different implementations of the Knowledge 
Base Server API can automatically be tested for 
coherence to the specification using a JUnit (JUnit) based 
testing framework. In order to make it particularly easy 
for programmers to use the exposed API, we developed a 
code generation tool, which automatically generates 



client access code for object oriented programming 
languages. 

The ontological Knowledge Base Server along with the 
code generation technologies as described in this paper is 
actively used in the CHIL research project. This is why it 
will be referred to as CHIL Knowledge Base Server in the 
rest of this paper. The CHIL research project aims to 
introduce computers into a loop of humans interacting 
with humans, rather than condemning a human to operate 
in a loop of computers. In order to implement unobtrusive 
user friendly services, a semantic middleware is being 
developed that fusions information provided by so called 
perceptual components in meaningful ways. Each 
perceptual component (e.g. image and speech 
recognizers, body trackers, etc.) contributes to the 
common domain of discourse. The Web Ontology 
Language (OWL) is being used to replace previous 
domain models based on particular programming 
languages. The CHIL Knowledge Base Server is used as 
the backend of an extensive semantic middleware 
(Pandis, Soldatos, Paar, Reuter, Carras, and Polymenakos 
2005). 

Whereas there are several approaches that aimed to 
provide programming language independent APIs for 
processing ontological knowledge bases, to the best of 
our knowledge, this paper presents the first work that 
combines the following three features. 

• The CHIL Knowledge Base server API is solely 
based on XML Schema Definition primitive data 
types and it is remotely accessible by virtually 
every programming language capable of parsing 
strings and of TCP socket communication. 

• Description Logics terminology was used to 
formally specify the result sets and side effects 
of each interface method. 

• A JUnit based testing framework was developed 
for automatically validating implementations of 
the CHIL Knowledge Base Server API for 
coherence to the specification. 

The outline of this paper is as follows. Section 2 will give 
an overview of the connectivity capabilities and API 
specifications of some of the most widely used ontology 
management systems. Section 3 will elucidate the 
architectural model and the implementation of the CHIL 
Knowledge Base Server. Section 4 will describe the 
design of the CHIL Knowledge Base Server API and how 
this API is remotely accessible via several different ports. 
Examples of formal specifications of CHIL Knowledge 
Base Server interface methods and a testing framework, 
which can be used to automatically validate 
implementations of the CHIL Knowledge Base Server 
API, will be introduced in Section 5. A conclusion and an 
overview of ongoing- and future work will be given in 
Section 6 followed by acknowledgements in Section 7. 

2 Related Work 
This section gives an overview of some widely used 
ontology management systems and reasoning engines 
along with a bird’s eye view of some generic interface 

specifications for DL systems and related attempts to 
improve the remoting capabilities of such APIs. 

2.1 Off-the-shelf Ontology Management 
Systems 

This subsection gives an overview of existing off-the-
shelf ontology management systems that can be used to 
manage RDF(S) data. In particular, the following three 
dimensions are considered. Firstly, remoting capabilities 
are assessed based on the number of supported remoting 
protocols (e.g. Java RMI, SOAP, and CORBA). 
Secondly, the extent of native support for programming 
languages such as Java or C++ is considered. Thirdly, the 
way how API specifications were devised is listed. 

KAON 2 (KAON) is an open source ontology 
management infrastructure targeted for business 
applications. It ships as a Java library file. The core of the 
KAON 2 Java library are two APIs for RDF and the 
KAON ontology language. These APIs are represented by 
Java interfaces for which several implementations exist. 
Remote access is supported but limited to the Java 
programming language. Moreover, additional application 
server software is required, which may be impractical in 
practice. KAON 2 comes with plain text specifications of 
its RDF and KAON ontology language APIs. 

HP Labs’ Jena 2 (Jena) provides an ontological 
framework for the Java language environment. The 
internal representation of ontological data in Jena is 
tightly bound to the RDF model of triples. Originally 
designed for DAML+OIL, but later adopted to OWL, 
Jena 2 ships with a layered API. On the upper layers, it 
offers a unified view onto the features of the DAML+OIL 
and OWL languages, while providing access to specific 
ontology language dependent constructs via specific 
ontology models. Jena 2 makes it possible to configure 
and to replace the underlying reasoning engine, which is 
why there are only informal specifications of the exposed 
Jena 2 API. Remote access is not supported. 

Ont. 
Mgmt. 
System. 

Remoting 
support 

Programming 
Languages 

API 
Specification 

KAON 2 Limited to Java Java Java Docs 

Jena 2 No Java Java Docs 

Snobase No Java Java Docs 

Protégé No Java Java Docs 

Sesame HTTP Java, Python Java Docs 

RACER HTTP, Sockets Java, Lisp DIG 

Table 1: Off-the-shelf ontology management systems 

The IBM Ontology Management System (also known as 
SNOBASE, for Semantic Network Ontology Base) 
(SNOBASE) is a Java framework that provides a 
mechanism for querying ontologies and an easy-to-use 
programming interface for interacting with vocabularies 
of standard ontology specification languages such as 
OWL. Applications can query against the created 
ontology models and the inference engine deduces the 



answers and returns result sets similar to JDBC (Java 
Data Base Connectivity) result sets (JDBC). In theory, 
Java based remote access is possible but not available yet. 

Stanford University School of Medicine’s Protégé 
(Protégé) is an interactive Java application with a GUI 
that focuses on creating and editing ontologies. Having 
started as a project before OWL was available; it was 
designed to support a variety of different ontology 
languages. For ontology management Protégé focuses on 
user input through the graphical user interface. It also 
supports an API for plug-ins that essentially can be used 
as a management API. However, there is no support for 
remote access and the Protégé OWL API is specified only 
by example. 

Sesame (Sesame) is an open source RDF database with 
support for RDF(S) inferencing and querying. It can be 
deployed on top of a variety of storage systems and offers 
a significant number of wrappers that facilitate HTTP 
based access to the Sesame system for a number of 
programming languages. However, the semantics of the 
Sesame API for processing OWL data are defined by 
third party extensions, which up to now only implement 
fragments of the OWL specification. 

RACER (RACER) is a Semantic Web inference engine 
for query answering over RDF documents, and, with 
respect to specified RDF(S)/DAML ontologies, 
registering permanent queries. RACER implements a 
Description Logics reasoning system with support for 
TBoxes with generalized concept inclusions, ABoxes, 
and concrete domains. It supports native access from Java 
and Lisp and implements the DIG protocol (Bechhofer 
2002) via XML-over-HTTP. 

2.2 Knowledge Base Interface Specifications 
The DIG protocol, which is a simple API for a general 
Description Logics system, is one representative of a 
class of interface definitions that consist of simple 
mechanisms to tell and ask DL knowledge bases. These 
mechanisms follow foundational aspects that have been 
well-studied over time (Levesque 1984). Many previous 
frame-oriented knowledge representation systems such as 
the Generic Frame Protocol (Chaudhri, Farquhar, Fikes, 
Karp, and Rice 1997) and OKBC (Open Knowledge Base 
Connectivity) (Chaudhri, Farquhar, Fikes, and Karp 
1998) also embody such distinctions. 

Although well defined, the DIG specification merely 
defines an XML schema that has to be used along with 
HTTP as the underlying communication protocol. There 
is no specific support for a particular programming 
language. In contrast, the KRSS specification (Patel-
Schneider and Swartout 1993), which is an earlier 
approach to define a number of tell- and ask operations 
that a DL system should implement, was tightly bound to 
the LISP (Graham 1995) syntax, which may not be 
adequate for programmers who prefer other languages 
such as Java or C#. 

In addition to RACER, the FaCT reasoner (Horrocks 
1998, Horrocks 1999) from the University of Manchester 
is another implementation of the DIG 1.0 interface 

specification, which also requires further application 
server software. 

Bechhofer et al. proposed a CORBA interface to the 
FaCT system (Bechhofer, Horrocks, Patel-Schneider, and 
Tessaris 1999). Beyond the fact that CORBA may not be 
an appropriate remoting technology in today’s service 
oriented- and XML based computing environments, 
Bechhofer et al. note that “the CORBA IDL does not 
support the definition of the kinds of recursive data types 
that may be required for the representation of DL 
concepts and roles”. This is why an XML based 
workaround was devised to pass ontological concepts and 
roles as single data items. Previous approaches to 
augment DL knowledge base interfaces with remoting 
capabilities include the wines- (Brachman, McGuinness, 
Patel-Schneider, Resnick, and Borgida 1991) and stereo 
(McGuiness, Resnick, and Isbell 1995) configuration 
demonstration systems. 

Common to all mentioned DL knowledge base interface 
specifications is the lack of support for arbitrary state-of-
the-art remoting protocols and adequate error- and 
exception handling. In particular, there are no detailed 
error messages passed to clients in case invalid requests 
are passed to the ontology management system. 

3 CHIL Knowledge Base Server Architectural 
Model 

The CHIL Knowledge Base Server is an adapter written 
in Java for off-the-shelf ontology management systems 
that implements a formally specified and well defined 
API to client components that may be written in a variety 
of different programming languages. Moreover, it 
supports dynamic replacements of adapted reasoners and 
ontology management systems. 

3.1 Technical Requirements 
For the CHIL Knowledge Base Server, the following 
most crucial requirements had to be met. Since the server 
is targeted for a distributed system, it must be accessible 
both locally and remotely through a single interface. 
Since client components in the CHIL research project 
may be written in a variety of different languages (e.g. 
Java, C#, C++, Python, Tcl/Tk), the remote interface 
must be programming language independent. Data 
representation must be architecture independent, such that 
mixed use of architectures with little-endian and big-
endian byte order does not lead to interoperability issues. 
The CHIL Knowledge Base Server must be capable of 
handling multiple, potentially competing incoming 
requests in parallel without corrupting the underlying 
database (i.e. thread-safe server design). Since in the 
CHIL research project the Web Ontology Language 
OWL is used, the CHIL Knowledge Base Server API 
should be tailored specifically to OWL, rather than 
providing a more verbose and potentially error-prone 
interface to a more general ontology model. Finally, it 
must be possible to dynamically replace adapted ontology 
management systems. 



3.2 Implementation 
The architectural model on a class level of the CHIL 
Knowledge Base Server is partly depicted in Fig. 1. It 
makes extensive use of the Factory Design Pattern 
(Gamma, Helm, Johnson, and Vlissides 1995) and 
reflection capabilities of the Java programming language 
in order to be able to plug in hosts for arbitrary remoting 
protocols dynamically at runtime. 

 

Fig. 1: Architectural model of the CHIL Knowledge 
Base Server 

Ontology management system adapter classes implement 
the interface IOntology, which extends 
IAskingABox, IAskingTBox, ITellingABox, 
and ITellingTBox. Currently, about 150 methods are 
defined to manipulate and query OWL ontologies. 

The green coloured exemplary class OntologyJena2 
would adapt the Jena 2 Semantic Web Framework. The 
interface IKnowledgeBase extends the interfaces 
IOntology and java.rmi.Remote to identify it as 
an interface whose methods may be invoked from a non-
local Java virtual machine (for performance reasons the 
Java RMI remoting port is not implemented as a distinct 
KnowledgeBaseServer remoting host). 

There is only one instance of the class 
KnowledgeBase at a time. This instance handles all 
incoming requests from Java RMI and all remoting hosts 
aggregated by the KnowledgeBaseServerHost 
instance. 

The abstract base class KnowledgeBaseServer 
defines methods to bind and unbind the respective 
remoting host and to query status information. By 
dynamically binding and unbinding remoting hosts at 
runtime it is possible to update implementations with 
newer versions. 

Persistence capabilities are defined by the 
IPersistence interface inheriting to 
IKnowledgeBase. IPersistence implementations 
can either use persistence capabilities of the underlying 

ontology management system or extend these features. It 
is possible to use off-the-shelf inference-, manipulation-, 
and persistence features from a variety of different 
systems to combine the best of several worlds. 

3.3 Implementation as an Eclipse Plug-In 
The front-end of the CHIL Knowledge Base Server was 
implemented as an Eclipse plug-in (Eclipse). This 
decision was taken to benefit from the capabilities and the 
standard behaviour provided by the Eclipse Rich Client 
Platform and to make it particularly easy to manage both 
software application- as well as ontology projects in one 
single Eclipse workspace. 

 

Fig. 2: CHIL Knowledge Base Server Eclipse plug-in 

Fig. 2 shows a screenshot of a running instance of the 
CHIL Knowledge Base Server. A project type 
“Knowledge Base Server” was added to Eclipse. 
Ontology projects are created using a “New Knowledge 
Base Wizard” as shown. This wizard searches specific 
library folders for Java class files that contain 
implementations of the interfaces 
IKnowledgeBaseFactory and 
IKnowledgeBaseServerFactory. Thus, both the 
CHIL Knowledge Base Server Eclipse plug-in as well as 
additional implementations of ontology management 
system adapters and remoting protocol hosts can easily be 
xcopy-deployed to Eclipse installations. 

4 CHIL Knowledge Base Server API 
The CHIL Knowledge Base Server is designed to locally 
and remotely store, manage, and retrieve arbitrary 
ontological data that meets OWL DL. Originally designed 
for use in the highly distributed, heterogeneous 
environment of the CHIL research project, special 
emphasis was put on good connectivity. Moreover, Sect. 
5.1 will explain – for the most part by example – how the 
API was formally specified in order to make it possible to 
consistently adapt off-the-shelf ontology management 
systems. 

4.1 Implementation 
The CHIL Knowledge Base Server exposes its API via 
several ports. It is natively accessible via Java and Java 
RMI. A remoting technology and a code generation tool 

Ontology management system 



called LORA were developed to automatically generate 
client code for virtually every object oriented 
programming language. Finally, an XML-over-TCP 
interface is provided as a port for basically every 
programming language capable of parsing strings and of 
TCP socket communication. 

The CHIL Knowledge Base Server API was defined 
using XML Schema Definition (XSD). A root element 
KnowledgeBaseServerAPI contains six child nodes 
IAskingABox, IAskingTBox, ITellingABox, 
ITellingTBox, IPersistence, and IOntQL for 
asking and telling the ABox and TBox of an OWL DL 
based ontology, for persistency functionality, and for 
executing an ontology query language, respectively. 

As an example, Fig. 3 depicts the XML schema fragment 
presenting the definition of the 
listDirectSubClasses method that takes as input 
the identifier of an OWL class and returns all direct 
subclasses in case the input concept is properly defined in 
the ontology and the query to the underlying ontology 
management system succeeds. An 
UndeclaredConceptException is thrown in case 
the concept does not exist. 

 

Fig. 3: XML Schema Definition based API definition 

Using XSL Transformations (XSLT), Java interface code 
was automatically generated from the XML Schema 
Definition based method definitions. The above 
listDirectSubClasses definition resulted in the 
following Java code. 
  interface IAskingTBox { 

    public String[] 
      listDirectSubClasses(String owlClass) 

    throws UndeclaredConceptException; 

  } 

We want to emphasize that in contrast to other OWL API 
approaches, the CHIL Knowledge Base Server API does 
not depend on programming language specific data types. 
Thus, the automatically generated Java interface is 
completely remotable and can easily be exported via Java 
RMI. Moreover, the entire interface definition is rather 
service oriented, which does also facilitate integration 
with non object oriented client programming languages. 

Such kinds of clients can use the XML-over-TCP port of 
the CHIL Knowledge Base Server. We decided to use 
TCP/IP via the socket interface because in state-of-the-art 
operating systems, local TCP/IP connections are usually 
routed via loop back or similar devices that bypass most 
of the TCP/IP stack; the advantage of having a single 
interface for local and remote communication when using 
the socket interface even for local communication 
therefore fully outweighs any marginal performance 
slowdown or latency imposed by socket communication. 

Language independence was achieved by a two-step 
approach. Firstly, all communication is performed by 
transmitting and receiving XML messages over TCP/IP, 
rather than building upon some language dependent RPC-
based mechanism. Data values are encoded with XSD 
data types, rather than using programming language-
specific data types. While with XML messages based on 
XSD data types we achieve a highly programming 
language independent communication mechanism, we do 
not want to put the burden of generating and parsing 
XML messages on client programmers. Therefore, as a 
complementary step of our approach, for a selected set of 
programming languages, client libraries are provided that 
handle all XML-related work. Up to now client libraries 
are available for C#, C++, and Python. 

The CHIL Knowledge Base Server handles multiple 
incoming requests with standard socket calls (i.e. listen 
on server port, accept request, rebind to different port). 
Each request is rebound to a different port and delegated 
to a thread of its own. In this way another connection on 
the server port can be accepted while the previous one is 
still being processed. In order to avoid corruption of the 
managed knowledge base data by concurrent access, 
without relying on the capabilities of the underlying 
ontology management system, all incoming requests are 
strictly serialized before they are executed on live data. 

A remoting technology called LORA, which includes 
code generation features, was developed in order to make 
it particularly easy to reflect changes in the XSD based 
CHIL Knowledge Base Server API once these changes 
have been implemented in Java. 

Both LORA remoting hosts as well as the XML-over-
TCP port were devised as implementations of the 
KnowledgeBaseServer class (see Sect. 3.2). 

4.1.1 Automatic Cross Language Client 
Integration with LORA 

This subsection elucidates how client code for object 
oriented programming languages is automatically 
generated from the CHIL Knowledge Base Server API 
specification using LORA (Lightweight Object Remote 
Access), a novel and easy-to-use framework for accessing 
distributed objects locally or through the Internet 
(Schaeffer 2005). 

LORA was developed as an alternative to existing 
remoting technologies in order to perfectly suit the 
requirements of the CHIL Knowledge Base Server API. 
In particular, we decided against the use of CORBA 
(CORBA) since there is not definitive reference 
implementation. Moreover, the CORBA specification has 
shown several defects that led to a number of revisions of 
the specification, which were not backward-compatible 
with existing implementations. Furthermore, the CORBA 
IDL does not cope well with recursively defined data 
types. 

LORA is XML-based and offers advanced features such 
as automatic proxy class code generation and client 
session management. With LORA, every serializable 
class of an object oriented programming language can be 



used as a distributed object to offer its public methods to 
remote clients. In the CHIL Knowledge Base Server, 
LORA makes the IKnowledgeBase interface 
introduced in Sect. 3 accessible to remote clients. Up to 
now, LORA was implemented for Java and .NET 
programming languages. However, it does not depend on 
features exclusively offered by these two platforms. Any 
object oriented programming language with reflection 
capabilities could be used with LORA as well. 

To use a class as a distributed object, LORA requires the 
class to inherit from the abstract base class 
RemoteAccessible. Public class methods can be 
annotated in a way, which is most suitable for the given 
programming language, to make them available for 
remote invocation. For example, for Java and C# 
annotations and attributes are used, respectively. 

As method parameters and return types, LORA supports 
primitive language types and indexed or named 
compositions, which allow passing complex data 
structures through recursion. For each distributed class, 
proxy source code can be auto-generated for supported 
target languages. After transferring proxy code files to the 
client, the remote object can be transparently used as if 
the class was local. 

5 CHIL Knowledge Base Server Testing 
Framework 

Based on Description Logics terminology formal 
specifications were devised for methods of the CHIL 
Knowledge Base Server interfaces IAskingTBox, 
IAskingABox, ITellingTBox, and 
ITellingABox. Using these formal specifications and 
a reference ontology along with given result sets and side 
effects for particular method calls, a JUnit (JUnit) based 
testing framework was designed and implemented in 
order to automatically test adaptations of ontology 
management systems for consistency with the CHIL 
Knowledge Base Server API. 

5.1 A Formal Specification of the CHIL 
Knowledge Base Server API 

A formal specification of the CHIL Knowledge Base 
Server API was devised in order to make it possible to 
consistently adapt off-the-shelf ontology management 
systems. In particular, ambiguities had to be resolved that 
may be caused by informal specifications like “This 
method returns all super classes of the given class”. In 
such cases it mostly remains unclear if the result set will 
contain the OWL top level concept 
http://www.w3.org/2002/07/owl#Thing or 
not. 

With a more rigid specification, it would be clear if in an 
adapter class the top level concept from the result set of 
an adapted method had to be removed in case the 
underlying ontology management system yields it. In 
addition, a more formal specification is machine readable, 
such that result sets could be validated according to the 
specification. 

For the formal specification of the CHIL Knowledge 
Base Server API, we used the Z notation (Spivey 1992, 
ISO/IEC Information Technology 2002). Since the CHIL 
Knowledge Base Server API is specific to Description 
Logics, we added to the Z notation the syntax and 
semantics of Description Logics. Additionally, the 
semantics of the ‘ ⊑ ’-sign, which in Z denotes a sub-bag 
relation, was overwritten, such that it stands for the 
subsumption relation as defined by Description Logics. 

Following, four examples are given how methods from 
the CHIL Knowledge Base Server interfaces 
IAskingTBox, IAskingABox, ITellingTBox, 
and ITellingABox were formally specified. 

The method listDirectSubClasses(String 
owlClass) from the IAskingTBox interface, which 
returns all classes that are directly subsumed by the given 
class owlClass, was defined as shown in Fig. 4. 

The method listPropertyValues-
OfIndividual(String role, String 
individual), which is defined in the IAskingABox 
interface, yields all values of role R of individual IND. 
The result set returned by this method was defined as 
depicted in Fig. 5. 

 

Fig. 4: Method listDirectSubClasses 

 

Fig. 5: Method listPropertyValuesOfIndividual 

The interface ITellingTBox comprises methods that 
can be used to modify the set of terminological axioms, 
which are defined in a knowledge base. The method 
addClass(String class, String 
superClass) adds a class class, which is subsumed 
by the class superClass, to the ontology. Accordingly, 
the axiom class ⊑ superClass where 

classI ⊆ superClassI is added to the knowledge 
base as shown in Fig. 6. 

The method addPropertyValue-
OfIndividual(String role, String 
individual, String value), which is defined in 

Ξ  KnowledgeBase 
role? : String 
individual? : String 
propertyValues! : ℙ String 

propertyValues! = { val.toString() | ∃ role.D 
propertyValues! = { ∧ ∃ val.(individual, val) ∈ roleI  
propertyValues! = { ∧ val ∈ DI } 

  listPropertyValuesOfIndividual 

Ξ  KnowledgeBase 
owlClass? : String 
subClasses! : ℙ String 

subClasses! = { X.toString() | X ⊑ owlClass ⋀  
subClasses! = { ∀ X,Y.Y ⊑ X ⇒ X ≡ Y } 

  listDirectSubClasses 



the ITellingABox interface, can be used to add a role 
assertion as depicted in Fig. 7. 

 

Fig. 6: Method addClass 

 

Fig. 7: Method addPropertyValueOfIndividual 

The next subsection will elucidate how these formal 
specifications were exploited by a testing framework in 
order to validate particular implementations of the CHIL 
Knowledge Base Server API. 

5.2 A JUnit Based Testing Framework 
The CHIL Knowledge Base Server explicitly supports 
replacing adapted off-the-shelf ontology management 
systems with different reasoning- and ontology 
management engines. In order to make these changes 
transparent, it is crucial to preserve the semantics of the 
CHIL Knowledge Base Server API according to the 
specifications as introduced in the previous subsection. A 
JUnit (JUnit) based testing framework as depicted in Fig. 
8 was developed in order to automate the testing of 
particular adaptations. 

Together with a reference ontology, the formal 
specification of the CHIL Knowledge Base Server API 
was taken to manually compute the result sets and side 
effects of each interface method. The same kind of output 
is computed by the adaptation of an off-the-shelf 
ontology management system. Both results are 
automatically compared with each other in order to 
validate the adapter. 

The JUnit based testing component was implemented as 
an Eclipse plug-in. Thus, it can be managed in the same 
workspace along with the CHIL Knowledge Base Server 
and the adapter project. 

 

Fig. 8: JUnit based testing framework 

Current work includes the adaptations of HP Labs’ Jena 
2, of the IBM Semantic Network Base, and of the KAON 
2 ontology management infrastructure, which has been 
completed for significant portions of the CHIL 
Knowledge Base Server API. 

5.3 Building the Reference Ontology and 
Choosing Test Cases 

The design of the reference ontology and the set of test 
cases were crucial in order to validate the CHIL 
Knowledge Base Server API as complete as possible. 

The reference ontology had to comprise both a TBox and 
an ABox. Moreover, special effort was put in covering 
ontology features that are specific to SHIQ Description 
Logics on which the Web Ontology Language OWL is 
based  (e.g. transitive roles, transitivity of the 
subsumption relation and nominals ). 

Test cases were chosen in a similar way, such that, with a 
presumably minimal number of method calls, a maximum 
of reasoning- and ontology management features could be 
covered. Hence, for a TBox C1 ⊑ C2 ⊑ C3 the method 
listSubClasses(String owlClass) is rather 
called with concept C3 and not with C2 in order to be 
able to check for the indirectly subsumed subclass C1 as 
well. 

We would like to emphasize, that the testing framework 
is not to validate the behaviour of off-the-shelf ontology 
management systems against the specification of the Web 
Ontology Language. Rather, adapters of such systems are 
tested to comply with the specification of the CHIL 
Knowledge Base Server API with respect to one given 
reference ontology. 

6 Conclusion and Outlook 
We developed and implemented a pluggable architectural 
model for an ontological knowledge base server, which 
can be used to adapt off-the-shelf ontology management 
systems. 

Δ  KnowledgeBase 
role? : String 
individual? : String 
value? : String 

role?  ∈  KnowledgeBase 
individual?  ∈  KnowledgeBase 
KnowledgeBase’ =   KnowledgeBase ∪ {  
KnowledgeBase’ =   role(individual, value) } 
KnowledgeBase’ =   where (individualI, valueI)  
KnowledgeBase’ =   ∈ roleI 

  addPropertyValueOfIndividual 

Δ  KnowledgeBase 
class? : String 
superClass? : String 

class?  ∈  KnowledgeBase 
superClass?  ∈  KnowledgeBase 
KnowledgeBase’ =   KnowledgeBase ∪  
KnowledgeBase’ =   { class ⊑ superClass } 

  addClass 

Reference 
ontology 

Formal specification of 
the CHIL Knowledge 
Base Server API 

Result sets and 
side effects 
according to the 
specification 

Manual 
processing 

Result sets and side 
effects as a result of the 
adapted ontology 
management system 

Automatic 
processing 

= 
? 



Based on XML Schema Definition and on a combination 
of the Z notation and formal Description Logics 
terminology, a programming language independent API 
was defined as a common interface to the CHIL 
Knowledge Base Server. The API supports forwarding of 
exception information to clients in order to provide 
programmers with as much information as possible 
without being restricted to one particular programming 
language. 

The well defined ontology management API proved to be 
suitable both for developing auxiliary Eclipse plug-ins 
(e.g. for ontology visualization) and for accessing the 
CHIL Knowledge Base Server from a variety of 
perceptual components in the CHIL research project. 

A code generation tool was devised to automatically 
generate client access code for object oriented 
programming languages. An Eclipse front-end was 
implemented in order to make it particularly easy to 
manage both software- and ontology projects in one 
single Eclipse workspace, which proved to be a good 
experience. 

A JUnit based testing framework was developed in order 
to automatically validate adaptations of different ontology 
management systems, which include HP Labs’ Jena 2, 
KAON 2, and the IBM Semantic Network Base. 

Up to now, the reference ontology and the set of test 
cases had to be devised manually. Future work will 
include research on to what extent test cases could be 
generated automatically considering particular ontology 
features. 
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