
A Reference Architecture for Instructional Educational Software

Janelle Pollard and Roger Duke
School of Information Technology and Electrical Engineering

University of Queensland
St Lucia, QLD 4072, Australia

janellep@bigpond.net.au and rduke@itee.uq.edu.au

Abstract
Our extensive research has indicated that high-school
teachers are reluctant to make use of existing instructional
educational software (Pollard, 2005). Even software
developed in a partnership between a teacher and a
software engineer is unlikely to be adopted by teachers
outside the partnership (Pollard, 2005). In this paper we
address these issues directly by adopting a reusable
architectural design for instructional educational software
which allows easy customisation of software to meet the
specific needs of individual teachers. By doing this we
will facilitate more teachers regularly using instructional
technology within their classrooms.

Our domain-specific software architecture, Interface-
Activities-Model, was designed specifically to facilitate
individual customisation by redefining and restructuring
what constitutes an object so that they can be readily re-
used or extended as required. The key to this architecture
is the way in which the software is broken into small
generic encapsulated components with minimal domain
specific behaviour. The domain specific behaviour is
decoupled from the interface and encapsulated in objects
which relate to the instructional material through tasks
and activities. The domain model is also broken into two
distinct models - Application State Model and Domain-
specific Data Model. This decoupling and distribution of
control gives the software designer enormous flexibility
in modifying components without affecting other sections
of the design.

This paper sets the context of this architecture, describes
it in detail, and applies it to an actual application
developed to teach high-school mathematical concepts.

Keywords: Reference Architecture, Educational
Software, Instructional Software.

1 Introduction

In the mid 1990’s many researchers voiced a need to
study why there was such a slow uptake of computers
(and technology in general) in classrooms (Becker and
Pence, 1996, Marcinkiewicz, 1993, Rosen and Weil,
1995). The subsequent studies revealed several major
factors contributing to the acceptance or rejection of the

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the South East Asia Regional Computer
Confederation (SEARCC) 2005: ICT: Building Bridges
Conference, Sydney, Australia, September, 2005. Conferences
in Research and Practice in Information Technology, Vol. 46.
Graham Low, Ed Reproduction for academic, not-for profit
purposes permitted provided this text is included.

use of computers in classrooms. A summary of these
factors are:

• beliefs about teaching and pedagogy (e.g.
established classroom practices and the intent of
curriculum and syllabus);

• access to computers and software;

• relevancy of software;

• time to plan instruction;

• professional and practical computer training;

• technical and administrative support.

(Clark, 2000, Ertmer et al., 1999, Forgasz and Prince,
2001, Norton and Cooper, 2001, Norton et al., 2000,
Sarama et al., 1998)

Forgasz and Prince signal in the conclusion of their study
the importance of establishing why teachers are using
generic software more extensively than mathematics-
specific software (Forgasz and Prince, 2001). Our case
study work reveals that teachers desire software which:

1. teaches concepts they do not feel are effectively
taught with current resources, and

2. are grounded not only in teaching pedagogy in
general, but in their personal teaching pedagogy.

(Pollard and Duke, 2002, Pollard and Duke, 2001, Pollard
and Duke, 2003)

It is apparent that most current mathematics-software
does not meet these requirements. As a consequence
teachers tend to use generic software which allows them
the flexibility to personally develop their own lessons/
activities on the computer. However this also requires a
fairly sophisticated level of computer expertise which
most teachers do not currently posses; they often lack the
technical skills to personalise/ tailor generic software
products to their needs. Our proposal is to change the
software to meet the teachers’ needs, instead of asking the
teachers to tailor complex software packages or change
their teaching style to fit the software’s prescribed
teaching style.

This is not viewed as a complete solution as we subscribe
to the view that teachers’ use of technology evolves as
they gain experience (Hadley and Sheingold, 1993,
Marcinkiewicz, 1993). Initially teachers require
technology which closely supports their existing teaching
styles; this requirement softens over time as their beliefs
are expanded with personal experience of what is possible

with the technology (Hadley and Sheingold, 1993, Hyde
et al., 1994, Marcinkiewicz, 1993, Sandholtz et al., 1997).
However to facilitate more teachers beginning to
integrate computers into their classroom lessons, we must
establish a means of creating educational instructional
software which, while well grounded in educational
philosophies and teaching pedagogies, remains flexible
enough to be tailored to meet each teacher’s individual
teaching style (Norton and Cooper, 2001).

We propose a domain-specific software architecture (also
referred to as a reference architecture) (Hofmeister et al.,
2000) which allows educational software to be decoupled
into three sections: its interface, the associated
educational instructional activities, and the domain-
specific data model. We believe software developed using
this architecture will be able to be readily modified for
each individual teacher.

Our architecture is designed for small mathematic-
specific didactic software packages. Didactic packages
are tightly coupled to the learning of specific
mathematical topics. They sacrifice the ability to solve
general mathematical problems in order to concentrate on
teaching, often incorporating problems and exercises into
their designs (Pree, 1995, Crowe and Zand). Types of
didactic packages include assessment, drill, tutorial,
game, presentation and situational and procedural
simulations (Pollard, 2005).

The IAM architecture is intended to be used when
flexibility to change parts of the interface, activities
and/or data model is essential, and only small amounts of
data are to be stored. The implication is that this
architecture should be used when the interface and
activities are considered to be more important than the
efficiency of managing and accessing the underlying data.

2 Reference Architecture
The proposed reference architecture, Interface-Activities-
Model (IAM for short), aims to decouple educational
tasks and activities from their domain-specific data model
and the interface, to facilitate efficient modification and
re-use.

2.1 Overview of the IAM architecture
A conceptual view of the proposed architecture is given
in Figure 1.

Figure 1: Conceptual view of the IAM architecture

Three existing design patterns assist in the formulation
of this IAM reference architecture, namely the Façade,
State and Strategy patterns (Gamma et al., 1995).

Their involvement in the structure of the design is
discussed in Section 3.2. The elements contained within
the architecture, and their meaning, are explained in
Table 1.

Interface

 The overall facade for the interface components

Concrete Interface Component

 A self contained component object which is
responsible for one complete section of the
interface. (e.g. a panel with a group of textfields.)

Activities

 The front handler for the educational activities

Concrete Activity

 A collection of tasks, where a task is a single
request by the computer to be fulfilled by the
student (e.g. the computer asks the student to
convert a table of data points into ordered pairs). A
Concrete Activity is a collection of these tasks
which together satisfy one logical educational aim.

Model

 The front for all possible domain-specific data
models.

Concrete Data Model

 The domain-specific data model/repository stores
the underlying data required for the activities. (e.g.
a collection of information about all the attributes
of a straight line, gradient, intercepts, etc. or a
collection of questions and answers.)

Table 1: Summary of elements

2.2 Architectural component interactions
The following four points summarize how the
architectural components communicate:

1. Activities can interact with both Interface and
Model. However Interface and Model have no
knowledge of each other’s existence. Activities
retrieves information from the Model and passes
necessary information to the Interface.

2. Each Concrete Interface Component informs
Interface of changes to itself, which in turn informs
Activities (as per the State pattern).

3. Each Concrete Activity has a unidirectional link to
Model (as specified in the Strategy pattern).

4. Each Concrete Activity has a unidirectional link to
the Interface façade.

This is further explained in Figure 2.

Figure 2: Architectural component interaction

2.3 Example
A portion of the software, “Exploring the relation
between line representations”, which was co-designed
with a high-school mathematics teacher as part of a
broader case study, is used here to explain the IAM
architecture. (See (Pollard and Duke, 2003, Pollard,
2005) for a description of the case study and details of
how the software was designed.)

The software aims to assist year 10 students grasp the
concept that a table of data, ordered pairs, a graph and an
equation are four different ways of representing the same
mathematical information. The overall structure of the
software with relation to the IAM architecture is shown in
Figure 3.

Figure 3: Example of IAM Architecture

The Set-up object creates Interface, Activities and Model,
and the relationships between them. These classes then
initialize their respective concrete components.

From Activities view the interface of the “Exploring the
relation between line representations” software would be
referred to in the following terms (as shown in Figure 4).

Figure 4: Example of how Activities views the
interface.

An example of a task, as seen in Figure 5, requires the
student to input all the values in the Table of Data as
ordered pairs. The task is complete when all values have
been correctly entered.

Figure 5: Example of a task

An example of a completed Concrete Activity
(specifically Activity Intro) would be when the following
tasks are fulfilled:

1. The data table has been expressed as ordered pairs.

2. The points have been plotted on the graph.

3. Three x values have been substituted into the
equation.

4. Three y values have been substituted into the
equation.

These four tasks achieve the overall logical aim of
relating the table of data to the ordered pairs, to the graph
and to the equation. The main activity aims to teach
students to calculate their own x and y values and
represent them in the four forms. The final activity,
intercepts, aims to help students calculate the x and y
intercepts and represent them in the four forms.

In Summary, each Concrete Activity holds the behaviour
of the application for an educational instruction. A
Concrete Activity (a single education exercise) is made
up of a series of steps/tasks.

Each step has:

• an initial state (the state in which the interface and
activity starts, e.g. whether the graph is visible or
not),

• conditions for progressing through the step (error
handling, etc.), and

• a condition for checking if the step is completed
(what state the application will be in at the end of
the step).

The Model in this example has two possible domain-
specific data models associated with it, Straight Line and
Parabola. These models are responsible for producing all
required data about a function whether it is a straight line
or a parabola. Every time a new straight line function is
calculated, the information/data in Table 2 is calculated
and stored for access by the Activities. In this example
the data model remains unchanged for the duration of its
life. Once created, the information is accessed, but not
changed. However, in other applications it may be
necessary to modify the data model. This would occur
through Activities sending updates to the Model.

The formula

 The values for m,c,a and/or b
in y = mx + c or y = ax2 + bx + c.

The intercepts

 y0 and x0 when x = 0 and y = 0 respectively.

Min and Max values

 The minimum and maximum x and y values of the
function within the specified range.

StepX and StepY

 The incremental steps for x and y (which depend on
the function).

Array of X and an array of Y points

 A list of x and y points which will be used in the data
table, ordered pairs to be plotted, etc.

Table 2: Data Summary

2.4 Consequences of the IAM Architecture

The Interface-Activities-Model has the following
benefits:

• Activities (and tasks) are encapsulated making
them easy to rearrange/modify/add or remove, at
the task or activity level.

• Interface components can be easily added/removed
or modified since they contain minimal behavioural
functionality. (Essentially, little beyond displaying
information passed to the component and retrieving
the component’s current internal state is required.)

• The Model (specifically the data model) can be
replaced or modified without affecting the Interface
or Activities as long the data model’s interface
remains constant.

The drawback of this design is an increase in the amount
of information/data required to be passed between
objects. This is a reasonable sacrifice for instructional
educational software, which generally has high interface
costs but low data storage requirements. See Section 4 for
further discussion of the architecture’s viability.

3 IAM Architecture and Existing Patterns

This reference architecture is built on three main design
patterns, Façade, State and Strategy. It also maintains two
types of current state information structures and one
domain specific model. This section describes how the
design is constructed and governed by the underlying
design patterns, and the impact of distributing and
maintaining information.

3.1 Overview of Information Storage

To fully understand the significance of our architecture
one is required to look at the location of information
storage and what is meant by the terms ‘model’ and
‘current state’. In this design there are three areas which
hold information: Concrete Interface Components,
Activities and Concrete Data Models. The distribution of
the data is summarized in Figure 6. The information
stored in each of these locations is very different.

Figure 6: Information storage distribution

The data storage areas are defined as follows:

• Component’s State (CS) - is stored within the
Concrete Interface Components and holds the
current state of the component e.g. the current
values of the text-fields in the panel.

• Application’s State (AS) - is stored within Activities
and contains the current state of the activity being
performed, e.g. the questions which a student has
answered correctly, incorrectly or are currently
unanswered.

• Data Model (DM) - is stored within the Concrete
Data Model and holds the solution and initialization
data for the activities, e.g. the details of the function
along with the current set of data points.

The key to why this architectural design strongly
promotes component reuse is in how different data is
stored in the various locations. Concrete Interface

Components are the easiest to re-use since they store their
own current state data but rely on other classes to
determine their behaviour. For example two columns of
text-fields could be used to collect ordered pairs for
plotting on a graph. Alternatively two columns of text-
fields could be used to collect odds for a race day sweep,
storing the horse’s number and their current pay out. How
the information/data is handled differs greatly, but the
interface input and display remains the same. The way the
data is handled is the responsibility of Activities. As such
the domain specific functionality is totally decoupled
from the interface components, which ensures that the
interface components are generic and easy to re-use.

Activities holds the entire current state of user interaction
with the educational instruction (Application’s State). As
a consequence the Concrete Activities are easy to modify.
Concrete Activity only holds enough information to
interface with the Application’s State, Interface and Data
Model. The Concrete Activities are written at a high
level, focusing on defining the behaviour of the system.

The final data storage location is the Data Model. The
Data Model stores a static snapshot of all the data
required to fulfil the Concrete Activities information
needs. The Data Model can be likened to a database of
useful information; a repository. For example the Data
Model may contain one hundred questions and their
answers. The Application’s State holds the subset of these
hundred questions which are currently being presented to
the student. (Depending on the requirements of the
software package, the Application’s State may also have
to hold a history of the previous application states so as to
facilitate backtracking and other more advanced history
features.) The important point is that the dynamic state of
the application is stored in the Application’s State,
whereas the more static information/data is held in the
Data Model repository.

One final point about the Data Model is that the
information does not have to be static throughout the life
of the application. An example is a Data Model repository
of information about straight line functions (as discussed
in Section 2.3). Each function stores a collection of
relevant information, (e.g. its gradient, or a set number of
data points, etc.). The Concrete Data Model holds the
algorithms for dynamically generating the information
about a straight line and deposits it into the Data Model
repository. At a later stage the Concrete Data Model may
be asked to generate another straight line. This
information would be placed in the Data Model
repository, overwriting the previous information in the
Data Model. So while the Data Model repository itself is
not static, only one Data Model exists at any given time.
These dynamic aspects can be exploited by the
algorithmic qualities of mathematics, where questions can
be randomly generated to meet a supplied criterion.

In theory, any dynamically generated Data Model
repository could be converted into a static Data Model
repository by adding all the information from a pre-
defined number of iterative initiation calls to the Concrete
Data Model at the start of the software set up, thus
forming a single static Data Model repository. For
example one could call the straight line function Concrete

Data Model five times and have all the information
placed in the Data Model repository. However, it is
simply more efficient on memory and storage space to
generate each entry of the repository/database as required
by relating the data to an algorithmic process (stored in
the Concrete Data Model).

3.2 Related Design Patterns

3.2.1 Façade Design Pattern
The disadvantage of making the interface components so
generic is that Activities needs to know about the
interface (e.g. which component holds the data for the
current x value being substituted into the equation). This
disadvantage is greatly reduced by utilizing the Façade
design pattern (Gamma et al., 1995). Interface becomes
the Façade to the Concrete Interface Components, as
shown in Figure 7.

Figure 7: Application of the Façade Design Pattern

The intent of the Façade design Pattern (Gamma et al.,
1995) is to “provide a unified interface to a subsystem.
Façade defines a higher-level interface that makes the
subsystem easier to use.” The façade provides the single
entry into the interface and its components. As a
consequence the interface holds all possible update and
retrieval methods which can be used to access the
interface. This allows the activities to access or change
the Component State of each of the Concrete Interface
Components without explicitly or directly having to know
what components exist and what data they maintain.

The Interface object forms a very important function. It is
the façade between the way Activities views the interface
and how the interface views itself. Why two views?
Because Interface is the merging junction between two
different perspectives. The Concrete Interface
Components are components chosen by software
engineers and are typically made up of fundamental
building blocks of programming (e.g. text-fields, sliders,
radio buttons, etc.) and are subsequently thought about in
these terms. The Concrete Activities on the other hand are
descriptions of how the student is to interact with the
computer and in turn how the computer is to respond to
the student. At this level we are concentrating on how the
educational instruction will occur. From Activities’
perspective the ideal would be to enable teachers to write
the educational instruction for the software. For this to

occur one requires two different views of the interface,
namely that of the teacher and that of the software
engineer.

Taking a concrete illustration from the example presented
in Section 2.3, there are two similar panels, the Data
Table and the Ordered Pairs panel. A teacher would refer
to the interface when describing an educational activity in
terms like ‘we will ask the students to re-write the points
in the Data Table as ordered pairs in the Ordered Pairs
list.’ Since the functionality of the two panels are very
similar, the underlining interface components do not
distinguish between the Data Table and the Ordered Pairs
panel. They are both instances of the Data Display
component (see Figure 8). The Interface façade allows
Activities to refer to the Data Table and Ordered Pairs
panels and matches them up with their subsequent
instances of Data Display. See Figure 9.

Figure 8: The Interface Façade, Concrete Interface
Components and Activities

Figure 9: a) Concrete Interface Components naming
of panels b) Activities reference to panels

Another example of how the Concrete Interface
Components differ from the Activities when referring to
the same objects is the way messages (activity instruction
and feedback) are handled. For the purposes of re-use and
ease of referring to parts of the interface, the Interface
façade provides a conversion between the two views for
handling the setting and clearing of messages on the
interface. Interface contains three methods: setMessage,
clearMessage and clearAllMessage.

Instead of referring to the messages via the panel (or sub
panel as in the case for the equation panel), Activities

refers to them by location (see Figure 10). For example, if
a message is to appear under the Ordered Pairs panel, a
Concrete Activity sends the following command to
Interface - setMessage (“Your message”, Right, Bottom).
Interface sends the message to be displayed to the display
panel closest to the specified area.

Figure 10: a) Interface’s internal view of the panels, b)
Activities’ view of the interface for messages

3.2.2 State Design Pattern

Most Concrete Interface Components will typically be
structured in conformance with the Model-View-
Controller (MVC) pattern (Gamma et al., 1995, Pree,
1995) (see Figure 11). Because the model in this MVC
usually contains the “application-specific state and
behaviour” (Pree, 1995) this is a problem since in our
case the behaviour is not stored with the specific
component. Instead the model (or controller) directly
contacts Activities to request its behaviour. This actually
makes designing easier since the behaviour of the
software is described at the (top) level at which the
student and computer interact, rather then at the lower
level of inter-component interactions.

Each Concrete Interface Component informs Activities
that it has received user input or interactions. The
Concrete Activity determines the desired response to the
event and informs the Interface façade of what (if
anything) has to be updated. This relies on an underlying
State Pattern (Gamma et al., 1995). The intent of the State
Pattern is to “allow an object to alter its behaviour when
its internal state changes. The object will appear to

change its class.” Figure 12 relates the State pattern to
the IAM architecture.

Figure 11: MVC and Domain Model

Figure 12: Application of the State Design Pattern

This pattern allows the Concrete Interface Components to
send Activities a message when they are changed, without
knowing in what way the event will be handled. Activities
calls on the Concrete Activities to handle the requests
depending on what state it is in, e.g. in our case study
whether it is performing Activity Intro or Activity
Intercept.

To summarise; a Concrete Interface Component would
typically be patterned as a MVC, however the model
would only hold the component’s current state (CS -
Component State). The component’s behaviour is
separated from the CS and controlled by Activities. Hence
controllers in the Concrete Interface Components inform
Activities if they have been triggered (as well as their
model and/or view if necessary). Activities holds the
application’s specific current state (AS - Application
State) and the behaviour associated with the activities.
Activities passes events to its concrete state (a Concrete
Activity) where the event is handled.

This would normally involve:

1. collecting any required information from the
Interface;

2. comparing the information with the Data Model
(DM);

3. updating the Application’s State (AS) in Activities;
and

4. updating the Interface to reflect the changes make
to the Application State (AS).

3.2.3 Strategy Design Pattern

Strategy Pattern (Gamma et al., 1995) intends to “define
a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.” In our
circumstance this is how Activities accesses the Data
Model (DM). There may be one or more Concrete Data
Model and as such the Singleton pattern (Gamma et al.,
1995) may be required to ensure only one Concrete Data
Model is created at a given time, depending on the
application.

The Strategy pattern describes in detail how to achieve
this aim and the issues associated with the encapsulation
of the algorithm. The pattern could also be applied to
situations where the “Concrete Strategy” is not an
algorithm, but instead a database or another domain-
specific data model, provided that the objects’ interfaces
all contain commonalities and can therefore be made
interchangeable. Figure 13 demonstrates how this
strategy can be applied by the architecture.

Figure 13: Application of the Strategy Design Pattern

3.3 Comparing IAM to MVC

Interface-Activities-Model (IAM) may appear to be very
similar to Model-View-Controller (MVC). Wolfgang
Pree in “Design Patterns of Object-Oriented Software
Development” (Pree, 1995) defines MVC as in Figure 14.

Figure 14: Figure Copied from “Design Patterns of
Object-Oriented Software Development” (Pree, 1995)

The Model (in MVC) stores application-specific data. For
example, a text processing application stores the text
characters in the Model; a drawing application stores a
description of the graphic shapes in the Model.

A View (in MVC) component presents the Model on a
display, usually the screen. Any number of view
components might present the Model in different ways.
Each View has to access the information stored in the
Model.

Finally, the Controller (in MVC) handles input events
such as mouse interaction and key strokes. Each View has
an associated Controller that connects the particular View
with input devices such as the mouse and keyboard (Pree,
1995). When comparing MVC to IAM by aligning View
with Interface, Controller to Activities and Model to
Model, the differences between the architectures become
apparent.

In MVC the View refers to the drawing of the graphical
information on the screen. In IAM the Interface controls
and manages the Concrete Interface Components which
are responsible for displaying the graphical information.

In MVC the Controller is responsible for informing the
Model and/or View of the user’s event actions. In IAM
Activities does not listen for user events. These events are
passed to Activities via the controllers in the Concrete
Interface Components.

In IAM, Activities determines how the software is to
respond to the user’s interaction and updates the
Application’s State. This is the role associated with the
Model in MVC. However the Model in IAM refers
specifically to only the domain-specific data (a repository
of information), not the application’s state or behaviour.
The Application’s State and responsive behaviour is
stored in Activities.

These differences demonstrate that, while there are
superficial similarities between MVC and IAM, in
essence IAM is a distinct architecture. This is further
amplified when one realises that MVC is designed to
separate the dependencies within a component whereas
IAM is designed to decouple components into three
separate parts.

3.4 Summary of the structure of IAM

The IAM architecture is based on a three way split of
control. The Interface is in charge of creating a unified
view of the application’s interface, hiding the underlining
detail. Activities is responsible for providing the
behaviour of the application and relies on the Model for
its knowledge base.

Each Concrete Activity holds the behaviour of the
application for an educational instruction. A Concrete
Activity (a single education exercise) is made up of a
series of steps/tasks. Each step has:

• an initial state (the state in which the interface and
activity starts, e.g. whether the graph is visible or
not),

• conditions for progressing through the step (error
handling, etc.), and

• a condition for checking if the step is completed
(what state the application will be in at the end of
the step).

The checking of the step’s progress relies on accessing
the information stored in the following three
locations:

• the Application’s current State (located in
Activities),

• the Data Model (located in the current Concrete
Model), and

• the Current State (located in the Concrete Interface
Components, but accessed through the Interface
Façade).

Interface is the façade between the two views of the
interface; internal (the Concrete Interface Components
with various naming conventions and various degrees of
visibility) and external (single unified view of the
interface based on what the software looks like from the
outside). The separation of views allows Activities to
interact at a very high level without being concerned with
how requests are implemented, resulting in a strong
decoupling of desired application’s behaviour and the
actual implementation of these behaviours. The high level
view makes it simpler to design education instruction,
which in turn makes the didactic material of instructional
software quickly changeable.

Since the Concrete Activities hold the application’s
behaviour, the Concrete Interface Components are devoid
of behavioural code dependencies. They are solely
constructed from:

• a default state,

• an ability to update/modify their Current State,
when informed how, and

• an ability to inform Interface when changes to their
Current State occur, and can return requested
information about their Current State.

The Concrete Models are repositories of knowledge. In
most mathematical software they will be based on an
algorithmic process for generating the data dynamically.
However, they may also be static databases of
information. The data/information/knowledge is accessed
through the Model which acts as an interface/façade if
there is more than one Concrete Model available.

4 Testing of the IAM architecture

This architecture was tested in three ways. Firstly by
interviewing a collection of high school teachers to
determine what modification to the software, presented in
Section 2.3, would they require in order for them to
consider using the product. Secondly these changes were
tested against the IAM architecture design by the original
software engineer. Thirdly, other software engineers were
asked to identify how to make the suggested changes
based on the IAM architectural design of the software
example. The results were as follows:

The software example from section 2.3, which was
developed in partnership with a teacher, produced a
software product that the teacher valued. The partnership
produced a software package that 78% of the teachers
interviewed thought was appropriate as a software topic
for computers and that 67% could see had the potential to
be applied to their present situations. Despite this, 89% of
teachers interviewed desired changes to the software.
There were three types of changes:

• minor interface changes,

• new activities, and

• changes in functionality.

The most common changes requested related to changing
the interface. The IAM architecture proved very effective
at easily facilitating such changes since the architecture
decouples (as much as possible) the functionality of the
software from the displaying of the information and there
are not dependencies between Concrete Interface
components.

New Activities typically caused changes in the Interface,
Activities and the Model. But because of the decoupling
of the components few changes outside the immediate
impact area of the activities were required, leaving the
other activities unaffected.

Even small changes in functionality typically required
wide modification to components unless the changes
were specifically incorporated into the original design of
the components. Further research needs to be focused on
identifying what functionality needs to be incorporated
into the design in order to create good, re-usable
components.

The final testing of the architecture involved five test
subjects with an undergraduate degree in computer
science. They were shown a selection of screen shots of
the example software and its class diagram (see Figure 3).
Without any explanation about the architecture, the test
subjects were asked to identify which class (or classes)
they would need to change to achieve the suggested

modifications, where the modifications were those
suggested in the section above (in a random order).

Over half of the classes for the modifications were
identified successfully. The minor interface changes were
the most accurately identified. Four of the five test
subjects grasped the role of Activities in generating
modifications related to the introduction of new activities
but typically also named Concrete Interface Components
which would not need to be changed.

Changes in functionality were the most revealing of how
the test subjects interpreted the class diagram. Most test
subjects did not grasp from the class diagram that the
Concrete Interface Components are objects which do not
contain behavioural methods. However after this was
explained they more accurately identified which
components needed to change in order to reflect the
desired changes in functionality.

The IAM architecture withstood the suggested
modifications by the interviewed teachers. Less than a
quarter of the suggested changes required the re-design of
components, where well over half of these same changes
would have cause major re-designing if we had used the
traditional Frame-Panel architecture. Furthermore, the
IAM architecture, with the exception of the separation of
the behaviour of the interface into Activities, proved
relatively intuitive to other software engineers.

5 Conclusions

Our IAM architecture has created a way of developing
software which can be readily adapted to meet teacher’s
epistemological and pedagogical orientation and their
teaching practices. In order to make software adaptable,
we modified the structure of the software architecture to
allow for easy coupling and de-coupling of various
aspects of a software package.

The IAM architecture decouples software into three
sections: its interface, the associated educational
instructional activities, and the domain-specific data
model. The key to the IAM architecture is the way in
which the software is broken into small generic
encapsulated components with minimal domain specific
behaviour. The domain specific behaviour is decoupled
from the interface and encapsulated in objects which
relate to the instructional material through tasks and
activities. In essence we create two types of objects: those
with their current state (Concrete Interface Component)
and those which control the behaviour of other objects
(Concrete Activities). This is made possible by the
Concrete Activities accessing the Concrete Interface
Component through the Interface facade. Hence from the
behavioural objects (Concrete Activities) perspective,
they are only defining the behaviour for one object,
Interface (the Interface façade then passes the behavioural
information to the appropriate Concrete Interface
Component).

The domain model is also broken into two distinct sub-
models: Application State Model and Domain-specific
Data Model. This decoupling and distribution of control
provides the software designer with flexibility in

modifying components without affecting other sections of
the design.

The IAM architecture proved to be acceptable to other
software engineers, with the test sample of software
engineers correctly identifying more than half of the
locations within the architecture that needed to be
modified to implement suggested changes. With full
documentation of the architecture we are confident that
software modifications would become even more
straightforward. The IAM architecture has been proven to
readily handle:

• minor interface changes,

• new activities,

• changes in functionality, and

• changes to the type of software.

6 References

Becker, J. and Pence, B. (1996): Mathematics teacher
development: Connections to change teachers'
beliefs and practices Proc. Proceedings of the
20th Conference of the International Group for
the Psychology of Mathematics Education,
Spain, 103-117

Clark, K. (2000): Urban Middle School Teachers' Use of
Instructional Technology. Research on
Computers in Education 33: 178-196.

Crowe, D. and Zand, H. (2000): Computers and
Undergraduate Mathematics I: setting the scene.
Computers and Education 35: 95-121.

Ertmer, P. A., Addison, P., Lane, M., Ross, E. and
Woods, D. (1999): Examining teachers' beliefs
about the role of technology in the elementary
classroom. Journal of Research on Computing in
Education 32: 54-73.

Forgasz, H. and Prince, N. (2001): Computers for
secondary mathematics: Who uses them and
how? Proc. The Australian Educational
Researcher, Fremantle ACER.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
(1995): Design Patterns: Elements of Reusable
Object-Oriented Software, USA Addison-
Wesley.

Hadley, M. and Sheingold, K. (1993): Commonalties and
distinctive patterns in teachers' integration of
computers. American Journal of Education 101:
261-315.

Hofmeister, C., Nord, R. and Soni, D. (2000): Applied
Software Architecture, USA Addison-Wesley.

Hyde, A., Ormistion, M. and Hyde, P. (1994): In
Professional development for teachers of
mathematics 49-54Reston, USA.

Marcinkiewicz, H. R. (1993): Computers and teachers:
Factors influencing computer use in the
classroom. Journal of Research on Computing in
Education 26: 220-237.

Norton, S., Campbell, J. and Cooper, T. (2000):
Exploring Secondary Mathematics Teachers'
Reasons for Not Using Computers in Their
Teaching: Five Case Studies. Journal of
Research on Computing in Education 33: 87-
109.

Norton, S. and Cooper, T. (2001): Factors influencing
computer use in mathematics teaching in
secondary schools. Proc. Proceedings of the
Mathematics Education Research Group of
Australasia (MERGA) - Numeracy and beyond,
(Eds, Bobis, J., Perry, B. and Mitchelmore, M.),
Australia, 386-393

Pollard, J. (2005): A Software Engineering Approach to
the Integration of Computer Technology into
Mathematics Education. Ph.D. thesis. University
of Queensland, Australia.

Pollard, J. and Duke, R. (2001): Effective Mathematics
Education Software in the Primary School: A
Teachers' Perspective Proc. 6th Asian
Technology Conference in Mathematics,
Melbourne, 177-186 ATCM Inc.

Pollard, J. and Duke, R. (2002): From Maths Problem to
Program: What's the best path? , Brisbane, 195-
206 Post Press.

Pollard, J. and Duke, R. (2003): Revelations in the design
of Educational Mathematical Software Proc. 8th
Asian Technology Conference in Mathematics,
Taiwan, 169-177 ATCM Inc.

Pree, W. (1995): Design Patterns for Object-Oriented
Software Development, USA Addison-Wesley.

Rosen, L. and Weil, M. (1995): Computer availability,
computer experience and technophobia among
public school teachers. Computers in Human
Behavior 11: 9-31.

Sandholtz, J. H., Ringstaff, C. and Dwyer, D. C. (1997):
Teaching with technology: Creating student-
centered classrooms, New York Teachers
College Press.

Sarama, J., Clements, D. and Henry, J. (1998): Network
of influences in an implementation of a
mathematics curriculum innovation.
International Journal of Computers for
Mathematical Learning 3: 113-148.

