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Abstract 
Our extensive research has indicated that high-school 
teachers are reluctant to make use of existing instructional 
educational software (Pollard, 2005). Even software 
developed in a partnership between a teacher and a 
software engineer is unlikely to be adopted by teachers 
outside the partnership (Pollard, 2005). In this paper we 
address these issues directly by adopting a reusable 
architectural design for instructional educational software 
which allows easy customisation of software to meet the 
specific needs of individual teachers. By doing this we 
will facilitate more teachers regularly using instructional 
technology within their classrooms. 

Our domain-specific software architecture, Interface-
Activities-Model, was designed specifically to facilitate 
individual customisation by redefining and restructuring 
what constitutes an object so that they can be readily re-
used or extended as required. The key to this architecture 
is the way in which the software is broken into small 
generic encapsulated components with minimal domain 
specific behaviour. The domain specific behaviour is 
decoupled from the interface and encapsulated in objects 
which relate to the instructional material through tasks 
and activities. The domain model is also broken into two 
distinct models - Application State Model and Domain-
specific Data Model. This decoupling and distribution of 
control gives the software designer enormous flexibility 
in modifying components without affecting other sections 
of the design.  

This paper sets the context of this architecture, describes 
it in detail, and applies it to an actual application 
developed to teach high-school mathematical concepts. 

Keywords:  Reference Architecture, Educational 
Software, Instructional Software.   

1 Introduction 

In the mid 1990’s many researchers voiced a need to 
study why there was such a slow uptake of computers 
(and technology in general) in classrooms (Becker and 
Pence, 1996, Marcinkiewicz, 1993, Rosen and Weil, 
1995). The subsequent studies revealed several major 
factors  contributing to the acceptance  or rejection of  the 
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use of computers in classrooms. A summary of these 
factors are: 

• beliefs about teaching and pedagogy (e.g. 
established classroom practices and the intent of 
curriculum and syllabus); 

• access to computers and software; 

• relevancy of software; 

• time to plan instruction; 

• professional and practical computer training; 

• technical and administrative support.  

(Clark, 2000, Ertmer et al., 1999, Forgasz and Prince, 
2001, Norton and Cooper, 2001, Norton et al., 2000, 
Sarama et al., 1998) 

Forgasz and Prince signal in the conclusion of their study 
the importance of establishing why teachers are using 
generic software more extensively than mathematics-
specific software (Forgasz and Prince, 2001). Our case 
study work reveals that teachers desire software which: 

1. teaches concepts they do not feel are effectively 
taught  with current resources, and 

2. are grounded not only in teaching pedagogy in 
general, but in their personal teaching pedagogy.
  

(Pollard and Duke, 2002, Pollard and Duke, 2001, Pollard 
and Duke, 2003)  

It is apparent that most current mathematics-software 
does not meet these requirements. As a consequence 
teachers tend to use generic software which allows them 
the flexibility to personally develop their own lessons/ 
activities on the computer. However this also requires a 
fairly sophisticated level of computer expertise which 
most teachers do not currently posses; they often lack the 
technical skills to personalise/ tailor generic software 
products to their needs. Our proposal is to change the 
software to meet the teachers’ needs, instead of asking the 
teachers to tailor complex software packages or change 
their teaching style to fit the software’s prescribed 
teaching style.  

This is not viewed as a complete solution as we subscribe 
to the view that teachers’ use of technology evolves as 
they gain experience (Hadley and Sheingold, 1993, 
Marcinkiewicz, 1993). Initially teachers require 
technology which closely supports their existing teaching 
styles; this requirement softens over time as their beliefs 
are expanded with personal experience of what is possible 



with the technology (Hadley and Sheingold, 1993, Hyde 
et al., 1994, Marcinkiewicz, 1993, Sandholtz et al., 1997). 
However to facilitate more teachers beginning to 
integrate computers into their classroom lessons, we must 
establish a means of creating educational instructional 
software which, while well grounded in educational 
philosophies and teaching pedagogies, remains flexible 
enough to be tailored to meet each teacher’s individual 
teaching style (Norton and Cooper, 2001).  

We propose a domain-specific software architecture (also 
referred to as a reference architecture) (Hofmeister et al., 
2000) which allows educational software to be decoupled 
into three sections: its interface, the associated 
educational instructional activities, and the domain-
specific data model. We believe software developed using 
this architecture will be able to be readily modified for 
each individual teacher. 

Our architecture is designed for small mathematic-
specific didactic software packages. Didactic packages 
are tightly coupled to the learning of specific 
mathematical topics. They sacrifice the ability to solve 
general mathematical problems in order to concentrate on 
teaching, often incorporating problems and exercises into 
their designs (Pree, 1995, Crowe and Zand). Types of 
didactic packages include assessment, drill, tutorial, 
game, presentation and situational and procedural 
simulations (Pollard, 2005). 

The IAM architecture is intended to be used when 
flexibility to change parts of the interface, activities 
and/or data model is essential, and only small amounts of 
data are to be stored. The implication is that this 
architecture should be used when the interface and 
activities are considered to be more important than the 
efficiency of managing and accessing the underlying data.   

2 Reference Architecture 
The proposed reference architecture, Interface-Activities-
Model (IAM for short), aims to decouple educational 
tasks and activities from their domain-specific data model 
and the interface, to facilitate efficient modification and 
re-use. 

2.1 Overview of the IAM architecture 
A conceptual view of the proposed architecture is given 
in Figure 1. 

 

Figure 1: Conceptual view of the IAM architecture 

Three existing design patterns assist in the formulation   
of this IAM reference architecture, namely the Façade,  
State and Strategy patterns (Gamma et al., 1995).  
 

Their involvement in the structure of the design is 
discussed in Section 3.2. The elements contained within 
the architecture, and their meaning, are explained in 
Table 1. 

 

Interface 

 The overall facade for the interface components 

Concrete Interface Component 

 A self contained component object which is 
responsible for one complete section of the 
interface. (e.g. a panel with a group of textfields.) 

Activities 

 The front handler for the  educational activities 

Concrete Activity 

 A collection of tasks, where a task is a single 
request by the computer to be fulfilled by the 
student (e.g. the computer asks the student to 
convert a table of data points into ordered pairs). A 
Concrete Activity is a collection of these tasks 
which together satisfy one logical educational aim. 

Model 

 The front for all possible domain-specific data 
models. 

Concrete Data Model 

 The domain-specific data model/repository stores 
the underlying data required for the activities. (e.g. 
a collection of information about all the attributes 
of a straight line, gradient, intercepts, etc. or a 
collection of questions and answers.) 

Table 1: Summary of elements 

2.2 Architectural component interactions 
The following four points summarize how the 
architectural components communicate:  

1. Activities can interact with both Interface and 
Model. However Interface and Model have no 
knowledge of each other’s existence. Activities 
retrieves information from the Model and passes 
necessary information to the Interface. 

2. Each Concrete Interface Component informs 
Interface of changes to itself, which in turn informs 
Activities (as per the State pattern). 

3. Each Concrete Activity has a unidirectional link to 
Model (as specified in the Strategy pattern). 

4. Each Concrete Activity has a unidirectional link to 
the Interface façade. 



This is further explained in Figure 2. 

 

Figure 2: Architectural component interaction 

2.3 Example 
A portion of the software, “Exploring the relation 
between line representations”, which was co-designed 
with a high-school mathematics teacher as part of a 
broader case study, is used here to explain the IAM 
architecture. (See (Pollard and Duke, 2003, Pollard, 
2005) for a description of the case study and details of 
how the software was designed.) 

The software aims to assist year 10 students grasp the 
concept that a table of data, ordered pairs, a graph and an 
equation are four different ways of representing the same 
mathematical information. The overall structure of the 
software with relation to the IAM architecture is shown in 
Figure 3. 

 

 

Figure 3: Example of IAM Architecture 

The Set-up object creates Interface, Activities and Model, 
and the relationships between them. These classes then 
initialize their respective concrete components.  

From Activities view the interface of the “Exploring the 
relation between line representations” software would be 
referred to in the following terms (as shown in Figure 4). 

 

Figure 4: Example of how Activities views the 
interface. 

An example of a task, as seen in Figure 5, requires the 
student to input all the values in the Table of Data as 
ordered pairs. The task is complete when all values have 
been correctly entered. 

 

Figure 5: Example of a task 

An example of a completed Concrete Activity 
(specifically Activity Intro) would be when the following 
tasks are fulfilled: 

1. The data table has been expressed as ordered pairs.  

2. The points have been plotted on the graph. 

3. Three x values have been substituted into the 
equation. 

4. Three y values have been substituted into the 
equation. 

These four tasks achieve the overall logical aim of 
relating the table of data to the ordered pairs, to the graph 
and to the equation. The main activity aims to teach 
students to calculate their own x and y values and 
represent them in the four forms. The final activity, 
intercepts, aims to help students calculate the x and y 
intercepts and represent them in the four forms.  

In Summary, each Concrete Activity holds the behaviour 
of the application for an educational instruction. A 
Concrete Activity (a single education exercise) is made 
up of a series of steps/tasks.  

 



Each step has: 

• an initial state (the state in which the interface and 
activity starts, e.g. whether the graph is visible or 
not),  

• conditions for progressing through the step (error 
handling, etc.), and  

• a condition for checking if the step is completed 
(what state the application will be in at the end of 
the step). 

The Model in this example has two possible domain-
specific data models associated with it, Straight Line and 
Parabola. These models are responsible for producing all 
required data about a function whether it is a straight line 
or a parabola. Every time a new straight line function is 
calculated, the information/data in Table 2 is calculated 
and stored for access by the Activities. In this example 
the data model remains unchanged for the duration of its 
life. Once created, the information is accessed, but not 
changed. However, in other applications it may be 
necessary to modify the data model. This would occur 
through Activities sending updates to the Model. 

The formula  

 The values for m,c,a and/or b  
in y = mx + c  or y = ax2 + bx + c. 

The intercepts  

 y0 and x0 when x = 0 and y = 0 respectively. 

Min and Max values  

 The minimum and maximum x and y values of the 
function within the specified range. 

StepX and StepY  

 The incremental steps for  x and y (which depend on 
the function). 

Array of X and an array of Y points 

 A list of x and y points which will be used in the data 
table, ordered pairs to be plotted, etc. 

Table 2: Data Summary 

2.4 Consequences of the IAM Architecture 

The Interface-Activities-Model has the following 
benefits: 

• Activities (and tasks) are encapsulated making 
them easy to rearrange/modify/add or remove, at 
the task or activity level. 

• Interface components can be easily added/removed 
or modified since they contain minimal behavioural 
functionality. (Essentially, little beyond displaying 
information passed to the component and retrieving 
the component’s current internal state is required.)   

• The Model (specifically the data model) can be 
replaced or modified without affecting the Interface 
or Activities as long the data model’s interface 
remains constant.  

The drawback of this design is an increase in the amount 
of information/data required to be passed between 
objects. This is a reasonable sacrifice for instructional 
educational software, which generally has high interface 
costs but low data storage requirements. See Section 4 for 
further discussion of the architecture’s viability. 

3 IAM Architecture and Existing Patterns 

This reference architecture is built on three main design 
patterns, Façade, State and Strategy. It also maintains two 
types of current state information structures and one 
domain specific model. This section describes how the 
design is constructed and governed by the underlying 
design patterns, and the impact of distributing and 
maintaining information. 

3.1 Overview of Information Storage 

To fully understand the significance of our architecture 
one is required to look at the location of information 
storage and what is meant by the terms ‘model’ and 
‘current state’. In this design there are three areas which 
hold information: Concrete Interface Components, 
Activities and Concrete Data Models. The distribution of 
the data is summarized in Figure 6. The information 
stored in each of these locations is very different. 

 

Figure 6: Information storage distribution 

The data storage areas are defined as follows: 

• Component’s State (CS) - is stored within the 
Concrete Interface Components and holds the 
current state of the component e.g. the current 
values of the text-fields in the panel.  

• Application’s State (AS) - is stored within Activities 
and contains the current state of the activity being 
performed, e.g. the questions which a student has 
answered correctly, incorrectly or are currently 
unanswered. 

• Data Model (DM) - is stored within the Concrete 
Data Model and holds the solution and initialization 
data for the activities, e.g. the details of the function 
along with the current set of data points.  

The key to why this architectural design strongly 
promotes component reuse is in how different data is 
stored in the various locations. Concrete Interface 



Components are the easiest to re-use since they store their 
own current state data but rely on other classes to 
determine their behaviour. For example two columns of 
text-fields could be used to collect ordered pairs for 
plotting on a graph. Alternatively two columns of text-
fields could be used to collect odds for a race day sweep, 
storing the horse’s number and their current pay out. How 
the information/data is handled differs greatly, but the 
interface input and display remains the same. The way the 
data is handled is the responsibility of Activities. As such 
the domain specific functionality is totally decoupled 
from the interface components, which ensures that the 
interface components are generic and easy to re-use. 

Activities holds the entire current state of user interaction 
with the educational instruction (Application’s State). As 
a consequence the Concrete Activities are easy to modify. 
Concrete Activity only holds enough information to 
interface with the Application’s State, Interface and Data 
Model. The Concrete Activities are written at a high 
level, focusing on defining the behaviour of the system.  

The final data storage location is the Data Model. The 
Data Model stores a static snapshot of all the data 
required to fulfil the Concrete Activities information 
needs. The Data Model can be likened to a database of 
useful information; a repository. For example the Data 
Model may contain one hundred questions and their 
answers. The Application’s State holds the subset of these 
hundred questions which are currently being presented to 
the student. (Depending on the requirements of the 
software package, the Application’s State may also have 
to hold a history of the previous application states so as to 
facilitate backtracking and other more advanced history 
features.) The important point is that the dynamic state of 
the application is stored in the Application’s State, 
whereas the more static information/data is held in the 
Data Model repository.  

One final point about the Data Model is that the 
information does not have to be static throughout the life 
of the application. An example is a Data Model repository 
of information about straight line functions (as discussed 
in Section 2.3). Each function stores a collection of 
relevant information, (e.g. its gradient, or a set number of 
data points, etc.). The Concrete Data Model holds the 
algorithms for dynamically generating the information 
about a straight line and deposits it into the Data Model 
repository. At a later stage the Concrete Data Model may 
be asked to generate another straight line. This 
information would be placed in the Data Model 
repository, overwriting the previous information in the 
Data Model. So while the Data Model repository itself is 
not static, only one Data Model exists at any given time. 
These dynamic aspects can be exploited by the 
algorithmic qualities of mathematics, where questions can 
be randomly generated to meet a supplied criterion.  

In theory, any dynamically generated Data Model 
repository could be converted into a static Data Model 
repository by adding all the information from a pre-
defined number of iterative initiation calls to the Concrete 
Data Model at the start of the software set up, thus 
forming a single static Data Model repository. For 
example one could call the straight line function Concrete 

Data Model five times and have all the information 
placed in the Data Model repository. However, it is 
simply more efficient on memory and storage space to 
generate each entry of the repository/database as required 
by relating the data to an algorithmic process (stored in 
the Concrete Data Model). 

3.2 Related Design Patterns 

3.2.1 Façade Design Pattern 
The disadvantage of making the interface components so 
generic is that Activities needs to know about the 
interface (e.g. which component holds the data for the 
current x value being substituted into the equation). This 
disadvantage is greatly reduced by utilizing the Façade 
design pattern (Gamma et al., 1995). Interface becomes 
the Façade to the Concrete Interface Components, as 
shown in Figure 7. 

 

Figure 7: Application of the Façade Design Pattern 

The intent of the Façade design Pattern (Gamma et al., 
1995) is to “provide a unified interface to a subsystem. 
Façade defines a higher-level interface that makes the 
subsystem easier to use.” The façade provides the single 
entry into the interface and its components. As a 
consequence the interface holds all possible update and 
retrieval methods which can be used to access the 
interface. This allows the activities to access or change 
the Component State of each of the Concrete Interface 
Components without explicitly or directly having to know 
what components exist and what data they maintain.  

The Interface object forms a very important function. It is 
the façade between the way Activities views the interface 
and how the interface views itself. Why two views? 
Because Interface is the merging junction between two 
different perspectives. The Concrete Interface 
Components are components chosen by software 
engineers and are typically made up of fundamental 
building blocks of programming (e.g. text-fields, sliders, 
radio buttons, etc.) and are subsequently thought about in 
these terms. The Concrete Activities on the other hand are 
descriptions of how the student is to interact with the 
computer and in turn how the computer is to respond to 
the student. At this level we are concentrating on how the 
educational instruction will occur. From Activities’ 
perspective the ideal would be to enable teachers to write 
the educational instruction for the software. For this to 



occur one requires two different views of the interface, 
namely that of the teacher and that of the software 
engineer.  

Taking a concrete illustration from the example presented 
in Section 2.3, there are two similar panels, the Data 
Table and the Ordered Pairs panel. A teacher would refer 
to the interface when describing an educational activity in 
terms like ‘we will ask the students to re-write the points 
in the Data Table as ordered pairs in the Ordered Pairs 
list.’  Since the functionality of the two panels are very 
similar, the underlining interface components do not 
distinguish between the Data Table and the Ordered Pairs 
panel. They are both instances of the Data Display 
component (see Figure 8). The Interface façade allows 
Activities to refer to the Data Table and Ordered Pairs 
panels and matches them up with their subsequent 
instances of Data Display. See Figure 9. 

 

Figure 8: The Interface Façade, Concrete Interface 
Components and Activities 

 

Figure 9: a) Concrete Interface Components naming 
of panels b) Activities reference to panels 

Another example of how the Concrete Interface 
Components differ from the Activities when referring to 
the same objects is the way messages (activity instruction 
and feedback) are handled. For the purposes of re-use and 
ease of referring to parts of the interface, the Interface 
façade provides a conversion between the two views for 
handling the setting and clearing of messages on the 
interface. Interface contains three methods: setMessage, 
clearMessage and clearAllMessage.  

Instead of referring to the messages via the panel (or sub 
panel as in the case for the equation panel), Activities 

refers to them by location (see Figure 10). For example, if 
a message is to appear under the Ordered Pairs panel, a 
Concrete Activity sends the following command to 
Interface - setMessage (“Your message”, Right, Bottom). 
Interface sends the message to be displayed to the display 
panel closest to the specified area. 

 

Figure 10: a) Interface’s internal view of the panels, b) 
Activities’ view of the interface for messages 

3.2.2 State Design Pattern 

Most Concrete Interface Components will typically be 
structured in conformance with the Model-View-
Controller (MVC) pattern (Gamma et al., 1995, Pree, 
1995) (see Figure 11). Because the model in this MVC 
usually contains the “application-specific state and 
behaviour” (Pree, 1995) this is a problem since in our 
case the behaviour is not stored with the specific 
component. Instead the model (or controller) directly 
contacts Activities to request its behaviour. This actually 
makes designing easier since the behaviour of the 
software is described at the (top) level at which the 
student and computer interact, rather then at the lower 
level of inter-component interactions.  

Each Concrete Interface Component informs Activities 
that it has received user input or interactions. The 
Concrete Activity determines the desired response to the 
event and informs the Interface façade of what (if 
anything) has to be updated. This relies on an underlying 
State Pattern (Gamma et al., 1995). The intent of the State 
Pattern is to “allow an object to alter its behaviour when 
its internal state changes. The object will appear to 



change its class.” Figure 12 relates the State pattern to 
the IAM architecture. 

 

Figure 11: MVC and Domain Model 

 

 

Figure 12: Application of the State Design Pattern 

 

This pattern allows the Concrete Interface Components to 
send Activities a message when they are changed, without 
knowing in what way the event will be handled. Activities 
calls on the Concrete Activities to handle the requests 
depending on what state it is in, e.g. in our case study 
whether it is performing Activity Intro or Activity 
Intercept.  

To summarise; a Concrete Interface Component would 
typically be patterned as a MVC, however the model 
would only hold the component’s current state (CS - 
Component State). The component’s behaviour is 
separated from the CS and controlled by Activities. Hence 
controllers in the Concrete Interface Components inform 
Activities if they have been triggered (as well as their 
model and/or view if necessary). Activities holds the 
application’s specific current state (AS - Application 
State) and the behaviour associated with the activities. 
Activities passes events to its concrete state (a Concrete 
Activity) where the event is handled.  

This would normally involve: 

1. collecting any required information from the 
Interface; 

2. comparing the information with the Data Model 
(DM); 

3. updating the Application’s State (AS) in Activities; 
and 

4. updating the Interface to reflect the changes make 
to the Application State (AS). 

3.2.3 Strategy Design Pattern 

Strategy Pattern (Gamma et al., 1995) intends to “define 
a family of algorithms, encapsulate each one, and make 
them interchangeable. Strategy lets the algorithm vary 
independently from clients that use it.” In our 
circumstance this is how Activities accesses the Data 
Model (DM). There may be one or more Concrete Data 
Model and as such the Singleton pattern (Gamma et al., 
1995) may be required to ensure only one Concrete Data 
Model is created at a given time, depending on the 
application. 

The Strategy pattern describes in detail how to achieve 
this aim and the issues associated with the encapsulation 
of the algorithm. The pattern could also be applied to 
situations where the “Concrete Strategy” is not an 
algorithm, but instead a database or another domain-
specific data model, provided that the objects’ interfaces 
all contain commonalities and can therefore be made 
interchangeable. Figure 13 demonstrates how this 
strategy can be applied by the architecture. 

 

 

Figure 13: Application of the Strategy Design Pattern 

3.3 Comparing IAM to MVC 

Interface-Activities-Model (IAM) may appear to be very 
similar to Model-View-Controller (MVC). Wolfgang 
Pree in “Design Patterns of Object-Oriented Software 
Development” (Pree, 1995) defines MVC as in Figure 14. 



 

Figure 14: Figure Copied from “Design Patterns of 
Object-Oriented Software Development” (Pree, 1995) 

 

The Model (in MVC) stores application-specific data. For 
example, a text processing application stores the text 
characters in the Model; a drawing application stores a 
description of the graphic shapes in the Model. 

A View (in MVC) component presents the Model on a 
display, usually the screen. Any number of view 
components might present the Model in different ways. 
Each View has to access the information stored in the 
Model.  

Finally, the Controller (in MVC) handles input events 
such as mouse interaction and key strokes. Each View has 
an associated Controller that connects the particular View 
with input devices such as the mouse and keyboard (Pree, 
1995). When comparing MVC to IAM by aligning View 
with Interface, Controller to Activities and Model to 
Model, the differences between the architectures become 
apparent. 

In MVC the View refers to the drawing of the graphical 
information on the screen. In IAM the Interface controls 
and manages the Concrete Interface Components which 
are responsible for displaying the graphical information.  

In MVC the Controller is responsible for informing the 
Model and/or View of the user’s event actions. In IAM 
Activities does not listen for user events. These events are 
passed to Activities via the controllers in the Concrete 
Interface Components.  

In IAM, Activities determines how the software is to 
respond to the user’s interaction and updates the 
Application’s State. This is the role associated with the 
Model in MVC. However the Model in IAM refers 
specifically to only the domain-specific data (a repository 
of information), not the application’s state or behaviour. 
The Application’s State and responsive behaviour is 
stored in Activities.  

These differences demonstrate that, while there are 
superficial similarities between MVC and IAM, in 
essence IAM is a distinct architecture.  This is further 
amplified when one realises that MVC is designed to 
separate the dependencies within a component whereas 
IAM is designed to decouple components into three 
separate parts. 

3.4 Summary of the structure of IAM 

The IAM architecture is based on a three way split of 
control. The Interface is in charge of creating a unified 
view of the application’s interface, hiding the underlining 
detail. Activities is responsible for providing the 
behaviour of the application and relies on the Model for 
its knowledge base.  

Each Concrete Activity holds the behaviour of the 
application for an educational instruction. A Concrete 
Activity (a single education exercise) is made up of a 
series of steps/tasks. Each step has: 

• an initial state (the state in which the interface and 
activity starts, e.g. whether the graph is visible or 
not),  

• conditions for progressing through the step (error 
handling, etc.), and  

• a condition for checking if the step is completed 
(what state the application will be in at the end of 
the step).  

The checking of the step’s progress relies on accessing 
the information stored in the following three 
locations: 

• the Application’s current State (located in 
Activities), 

• the Data Model (located in the current Concrete 
Model), and 

• the Current State (located in the Concrete Interface 
Components, but accessed through the Interface 
Façade). 

Interface is the façade between the two views of the 
interface; internal (the Concrete Interface Components 
with various naming conventions and various degrees of 
visibility) and external (single unified view of the 
interface based on what the software looks like from the 
outside). The separation of views allows Activities to 
interact at a very high level without being concerned with 
how requests are implemented, resulting in a strong 
decoupling of desired application’s behaviour and the 
actual implementation of these behaviours. The high level 
view makes it simpler to design education instruction, 
which in turn makes the didactic material of instructional 
software quickly changeable. 

Since the Concrete Activities hold the application’s 
behaviour, the Concrete Interface Components are devoid 
of behavioural code dependencies. They are solely 
constructed from: 

• a default state, 

• an ability to update/modify their Current State, 
when informed how, and 

• an ability to inform Interface when changes to their 
Current State occur, and can return requested 
information about their Current State. 



The Concrete Models are repositories of knowledge. In 
most mathematical software they will be based on an 
algorithmic process for generating the data dynamically. 
However, they may also be static databases of 
information. The data/information/knowledge is accessed 
through the Model which acts as an interface/façade if 
there is more than one Concrete Model available. 

4 Testing of the IAM architecture 

This architecture was tested in three ways. Firstly by 
interviewing a collection of high school teachers to 
determine what modification to the software, presented in 
Section 2.3, would they require in order for them to 
consider using the product. Secondly these changes were 
tested against the IAM architecture design by the original 
software engineer. Thirdly, other software engineers were 
asked to identify how to make the suggested changes 
based on the IAM architectural design of the software 
example. The results were as follows: 

The software example from section 2.3, which was 
developed in partnership with a teacher, produced a 
software product that the teacher valued. The partnership 
produced a software package that 78% of the teachers 
interviewed thought was appropriate as a software topic 
for computers and that 67% could see had the potential to 
be applied to their present situations. Despite this, 89% of 
teachers interviewed desired changes to the software. 
There were three types of changes: 

• minor interface changes, 

• new activities, and 

• changes in functionality. 

The most common changes requested related to changing 
the interface. The IAM architecture proved very effective 
at easily facilitating such changes since the architecture 
decouples (as much as possible) the functionality of the 
software from the displaying of the information and there 
are not dependencies between Concrete Interface 
components.  

New Activities typically caused changes in the Interface, 
Activities and the Model. But because of the decoupling 
of the components few changes outside the immediate 
impact area of the activities were required, leaving the 
other activities unaffected. 

Even small changes in functionality typically required 
wide modification to components unless the changes 
were specifically incorporated into the original design of 
the components. Further research needs to be focused on 
identifying what functionality needs to be incorporated 
into the design in order to create good, re-usable 
components.  

The final testing of the architecture involved five test 
subjects with an undergraduate degree in computer 
science. They were shown a selection of screen shots of 
the example software and its class diagram (see Figure 3). 
Without any explanation about the architecture, the test 
subjects were asked to identify which class (or classes) 
they would need to change to achieve the suggested 

modifications, where the modifications were those 
suggested in the section above (in a random order). 

Over half of the classes for the modifications were 
identified successfully. The minor interface changes were 
the most accurately identified. Four of the five test 
subjects grasped the role of Activities in generating 
modifications related to the introduction of new activities 
but typically also named Concrete Interface Components 
which would not need to be changed. 

Changes in functionality were the most revealing of how 
the test subjects interpreted the class diagram. Most test 
subjects did not grasp from the class diagram that the 
Concrete Interface Components are objects which do not 
contain behavioural methods. However after this was 
explained they more accurately identified which 
components needed to change in order to reflect the 
desired changes in functionality.  

The IAM architecture withstood the suggested 
modifications by the interviewed teachers. Less than a 
quarter of the suggested changes required the re-design of 
components, where well over half of these same changes 
would have cause major re-designing if we had used  the 
traditional Frame-Panel architecture. Furthermore, the 
IAM architecture, with the exception of the separation of 
the behaviour of the interface into Activities, proved 
relatively intuitive to other software engineers.  

5 Conclusions 

Our IAM architecture has created a way of developing 
software which can be readily adapted to meet teacher’s 
epistemological and pedagogical orientation and their 
teaching practices. In order to make software adaptable, 
we modified the structure of the software architecture to 
allow for easy coupling and de-coupling of various 
aspects of a software package.  

The IAM architecture decouples software into three 
sections: its interface, the associated educational 
instructional activities, and the domain-specific data 
model. The key to the IAM architecture is the way in 
which the software is broken into small generic 
encapsulated components with minimal domain specific 
behaviour. The domain specific behaviour is decoupled 
from the interface and encapsulated in objects which 
relate to the instructional material through tasks and 
activities. In essence we create two types of objects: those 
with their current state (Concrete Interface Component) 
and those which control the behaviour of other objects 
(Concrete Activities). This is made possible by the 
Concrete Activities accessing the Concrete Interface 
Component through the Interface facade. Hence from the 
behavioural objects (Concrete Activities) perspective, 
they are only defining the behaviour for one object, 
Interface (the Interface façade then passes the behavioural 
information to the appropriate Concrete Interface 
Component). 

The domain model is also broken into two distinct sub-
models: Application State Model and Domain-specific 
Data Model. This decoupling and distribution of control 
provides the software designer with flexibility in 



modifying components without affecting other sections of 
the design.  

The IAM architecture proved to be acceptable to other 
software engineers, with the test sample of software 
engineers correctly identifying more than half of the 
locations within the architecture that needed to be 
modified to implement suggested changes. With full 
documentation of the architecture we are confident that 
software modifications would become even more 
straightforward. The IAM architecture has been proven to 
readily handle: 

• minor interface changes, 

• new activities,  

• changes in functionality, and 

• changes to the type of software. 
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