
A Request Oriented Model for Web Services

Gaurav Mitra1, Xuan Zhou2, Athman Bouguettaya3, Xumin Liu4

1Research School of Computer Science, Australian National University, Australia
2School of Information, Renmin University, China

3 School of Computer Science and Information Technology, RMIT, Australia
4Department of Computer Science, Rochester Institute of Technology, USA

Abstract

The existing service modeling methodologies, such
as WSDL and OWL-S, are service-oriented, which
mainly focus on providing formalisms for the impor-
tant features of a web service, including its functional-
ity and QoS parameters. Conforming to these mod-
els, users need to first find what the available ser-
vices are, go through the descriptions, and then shape
the request specifications based on the functionality
of these services. These modeling methodologies do
not cope with the ever-increasing number and vari-
ety of web services, which introduces significant dif-
ficulties to users when discovering and selecting ser-
vices in a large scale and heterogeneous environment.
To address this issue, we propose a request oriented
model, where the formalisms focus on user expecta-
tions and experiences on the usage of services, i.e.,
what a user wants as the result of accessing to ser-
vices and what the user will experience during the
service invocations. The model lays out a founda-
tion for efficient and personalized service selection.
It also provides formalisms for describing a service
functionality, which supports service reasoning tasks
to improve automation of service selection and usage.
Based on the model, we propose a Web Service Re-
quest Language (WSRL), which allows users to specify
their requests in a declarative way. We also present
the reasoning procedure that mediates the interac-
tions between users and web services.

1 Introduction

The Internet today has a widespread distribution
of e-marketplaces offering diverse products to con-
sumers. Websites usually represent consumer-vendor
interfaces of such online markets. Consumers navi-
gate to websites and specify their needs via intuitive
features and options offered by these websites. In a
typical scenario, a consumer would go through the fol-
lowing steps to purchase a product from the Internet
: (i) Using a web directory or a web search engine,
a consumer locates a suitable website that meets the
needs; (ii) The consumer navigates to the website and
attempts to understand its structure, available op-
tions and suitability; (iii) The consumer expresses his
or her needs, determines whether they will be satis-
fied, explores payment and security options, and pos-
sibly completes a business transaction. Companies

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 1st Australasian Web Conference (AWC
2013), Adelaide, South Australia, January-February 2013.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 144, Helen Ashman and Quan Z. Sheng
and Andrew Trotman, Ed. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

hosting the websites typically have a specialized do-
main. For instance, airlines offer flight reservation,
hotels offer room booking, vehicle agencies offer car
rentals. In case a consumer’s needs cannot be fulfilled
by any single website, e.g., booking a travel package
including all above services, he or she will have to re-
peat the above steps for each corresponding website,
which is tedious, time consuming, and error-prone.

Service Oriented Computing (SOC) offers a means
to alleviate users from tedious work of manually se-
lecting and interacting with web-based services by
automating service discovery and invocation [20, 7].
Service composition techniques are also considered
as a promising tool to generate and deliver value-
added services, by integrating multiple services into
workflows. The standardization efforts, the key en-
abler of SOC, significantly improve interoperability
in a heterogeneous environment. Such standards in-
clude Simple Object Access Protocol (SOAP) [15],
the Extensible Markup Language (XML), the Web
Service Description Language (WSDL) [17], the Uni-
versal Description, Discovery and Integration (UDDI)
repositories [16], Business Process Execution Lan-
guage (BPEL) [11] , and so on.

As SOC keeps gaining significant interests and at-
tentions from both industry and academia, many re-
search efforts have been conducted aiming to reduce
the human efforts in service usage, such as efficient
service discovery, and automatic service composition.
These works are supported by several formal service
oriented models, where the formalisms focus on de-
scribing the features of a web service, such as its func-
tionality and performance parameters [3, 19, 12, 21].
User requirements need to be specified in a way that
conforms to these models to be processed. This leads
to a service oriented interaction pattern, where users
need to first find what the available services are and
then shape their request specifications based on the
description of these services. Driven by the popular-
ity of SOC, the amount and variety of web services
have been tremendously increased. Meanwhile, ser-
vice composition technologies allow to dynamically
generate a value-added service by composing multiple
services together, which exponentially increases the
number and the kinds of services available for users.
This introduces great difficulties in discovering, se-
lecting, composing, and accessing services based on
the existing service oriented models.

To address the above issue, we propose a request
oriented model, where the formalism focuses on user
expectations and experiences on the usage of services,
i.e., what a user wants as the result of accessing ser-
vices and what the user will experience during the
service invocations. The model lays out a founda-
tion for efficient and personalized service selection.
It also provides formalisms for describing a service

Proceedings of the First Australasian Web Conference (AWC 2013), Adelaide, Australia

13

functionality, which supports service reasoning tasks
to improve automation of service selection and usage.
Guided by user expectation and experience, matched
services will be selected and invoked. Services will
also be composed if needed in a static (e.g., prede-
fined business processes) or dynamic way. On top of
the model, we propose a Web Service Request Lan-
guage (WSRL), which allows a formal and declarative
specification of user requirements. More specifically,
users do not need to specify which services will be in-
volved and how to access the services when describing
their requirements. This frees users from the tedious
work of reading service documentations to learn the
technical details for service selection and invocation.
Moreover, if a user’s requirement demands the com-
position of several services, i.e., a value-added service,
the proposed framework will automatically select re-
lated services and orchestrate them together.

The rest of the paper is organized as follows. We
describe a laptop purchase scenario as a running ex-
ample to motivate and illustrate the proposed ap-
proach in Section 2. We concentrate on defining the
request oriented model and the request language in
Section 3. In Section 4 we provide an overview of
the request framework and how the request system
is used. In Section 5 we provide a brief description
of the implementation of the WSRS. In Section 6, we
discuss some representative related work and describe
how this work is different from them. We finish with
a conclusion in Section 7.

2 A Laptop Purchase Scenario

In this section, we describe a laptop purchase scenario
to show how a Web Service Request System (WSRS),
a supporting framework of WSRL, works. We also
use it as a running example to illustrate the important
concepts and approach proposed in this paper.

As depicted in Figure 1, suppose a user wants to
buy a laptop equipped with a 15-in screen and an
Intel processor, and with a high rating in customer
review. At this point, the user does not know what
services are available, what services are related, and
what formats are needed to follow to invoke the ser-
vices. He follows WSRL format for his request spec-
ification, which is not linked to any concrete service.
Once he submits the request, the system will analyze
it and process it.

By performing some service reasoning tasks, the
system will locate several services, including a laptop
review service for finding a desirable laptop, a cus-
tomer purchase service for performing the purchase
process, and a delivery service for arranging the lap-
top delivery. After invoking the laptop review service,
the system returns a list of matched laptops to the
user. Once the user selects a laptop and submits the
decision, the system orders the laptop by invoking a
computer purchasing service with the input obtained
from the user. A receipt will be generated as the re-
sult of the invocation and be forwarded to the user
by the WSRS. Once the receipt is ready, the WSRS
system will automatically invoke a delivery service for
the shipment.

During the entire process, there is no direct inter-
action between the user and the three services. This
significantly alleviates the efforts and knowledge re-
quired from users. In general case, such a WSRS
system can potentially be deployed to any specific
business domains, as a single entry point to multi-
ple related web services. More importantly, with the
request oriented model, WSRS allows a flexible and
customized service delivery on a large scale.

3 A Request Oriented Model and Web Ser-
vice Request Language

In this section,we propose a novel model for web ser-
vices as a formal grounding of user-service interac-
tions. We use the running example, the laptop pur-
chase scenario, to illustrate the concepts in the model.

In the literature, the proposed web service mod-
els, are mainly service-oriented and do not describe a
web service from a user’s perspective. To provide a
complete view, our model defines two types of infor-
mation, which are described below.

• User state: A user’s state is defined and traced
once he/she enters a WSRS system. The state
is altered every time when the user invokes
a web service through the system. The ini-
tial state of a user shows his/her expectation
on using the system. The transitions of the
state shows his/her experience, i.e., how the
expectation gets fulfilled. It is worth knowing
that there are dependent constraints between
user states. For example, a user cannot
have such a state, where purchasedlaptop
= false && initiatedDelivery=true.
That is, initiatedDelivery depends on
purchasedlaptop. In this section, we formally
define a user state and the dependency between
states.

• Web service: We define a web service from a
user’s perspective. We differentiate two types of
services, abstract services and concrete services,
where abstract services focus on the service func-
tionality and concrete services focus on service
implementation. A service functionality is de-
fined in two aspects, transforming input to out-
ptut (i.e., data related), and altering user states
(i.e., state related).

3.1 The User State Model

To design a request oriented model, it is important
to understand a service, single or composed, from a
user’s point of view. In a typical scenario, a user con-
siders two types of features of a service, functional
and non-functional. For the functional features, a
user’s perspectives include: the state transition by
invoking a service, the information retrieved from in-
voking a service. For the non-functional features, a
user concerns the quality delivered by a service, such
as duration, fee, reliability, and security. Therefore,
it is reasonable to say that a users expectation on
his/her interactions with services is centred around
these features. Along with this line, we define a user
state variable as follows.

Definition 1 (User State Variable): A user
state variable represents an attribute of a user state.
It is defined as a triple, var =< Name, Val, T >
where:

• Name is the name of the variable.

• Val is value of the variable.

• T is the type of the variable. Our model considers
two types of variables:

1. Information Variable < info > : repre-
senting data used by a service, i.e. a ser-
vices input and output messages.

2. Functionality Variable < fn > : repre-
senting whether a functional goal is achieved
in the business process. It is usually
Boolean.

CRPIT Volume 144 - The Web 2013

14

Figure 1: Purchasing A Laptop Via The Request System

In our laptop purchase example, the information
variables would include ComputerType, RequiredRat-
ing, Processor, ScreenSize, DeliveryAddress, Comput-
erModelNo, Computer-Rating, ComputerPrice, Pur-
chaseReceipt and TrackingNumber. They are used
as inputs and outputs of the laptop review service,
computer purchase service and the delivery service.
The functionality variables would include gotRatings,
purchasedLaptop, initiatedDelivery. Each of the func-
tionality variables represent the status of the opera-
tions of these services. We formally define a user state
as follows:

Definition 2 (User State): A user state can
be defined as a tuple, S =< ID, V arfn, V arInfo >
where:

• ID is a unique global identifier for the state. ID
= 0 indicates the root state.

• V arfn is a set of instantiated functionality vari-
ables.

• V arinfo is a set of instantiated information vari-
ables.

A user can change the state by invoking services.
When an atomic service is executed, its effects and
outputs would change the values of one or many user
state variables, so that the user is transferred to a
different state. This is demonstrated in Figure 2(a),
where invocation of the getRatings operation results
in the change of user state variables by the laptop re-
view service. The functionality variable correspond-
ing to the invoked service is given value true as a re-
sult of the invocation, and the information returned
by the invoked service (i.e. output messages of the in-
voked operation) is incorporated into the information
variables. We model the transitions between states as
state dependencies, which are defined as follows:

Definition 3 (User State Dependency): A
user state dependency can be defined as a triple,
SDep =< Spred, Ssucc, Compfn > where:

• Spred is the predecessor (or previous) state .

• Ssucc is the successor (or next) state .

• Compfn is an atomic service. Its invocation can
transfer a user from state Spred to state Ssucc.

User state dependencies connect user states into a
user state graph, which is defined as follows:

Definition 4 (User State Graph): A user state
graph is a directed acyclic graph (DAG) with a single
root, denoted by a triple USG =< r, V, E > where:

• r is the root user state, representing the state
when a user first enters the system.

• V is a set of user states that are the nodes of the
DAG.

• E is a set of user state dependencies that are the
edges of the DAG.

The purpose of the user state graph is to show all
the possible execution sequences of a dynamic busi-
ness process. The detailed user state graph cannot be
generated at design time as the values of information
variables are unknown until the actual invocation of
services. However, the values of functionality vari-
ables are usually predictable based on functionality
descriptions of a service. It is possible to generate
an abstract user state graph at design time, where
the functionality variables are completely bound and
the information variables remain unbound. Our ser-
vice request system generates this abstract graph as
a pre-computing step. Figure 2 (b) shows an example
of an abstract user state graph for the laptop review
service, computer purchase service and the delivery
service. To generate an abstract user state graph,
we need the descriptions of functionalities of web ser-
vices. A service operation functionality is usually
modeled as pre and post-conditions. We define these
aspects in the functionality component of the web ser-
vice description model in section 3.2.

Proceedings of the First Australasian Web Conference (AWC 2013), Adelaide, Australia

15

Figure 2: Examples of User State, User State Dependency and User State Graph

3.2 The Web Service Description Model

The purpose of the web service description model
is to describe the operations, messages, data types,
port bindings and policy parameters of atomic web
services, in order to create a composite service auto-
matically based on user requirements. The model is
subdivided into two parts, i.e. the model of an ab-
stract service and that of a concrete service. An ab-
stract service represents a class of services of the same
functionality and interface [8]. A concrete service is
an actual instantiation of an abstract service. Each
abstract service is usually created by a service de-
signer and stored in a local repository. Each concrete
service is implemented by a specific service provider
with or without being aware of the corresponding
abstract service description. In the latter case, the
mapping between abstract services and concrete ser-
vices should be generated in a manual or dynamic
way [9]. In principle, each abstract service can have
multiple service providers, and can therefore corre-
spond to multiple concrete services. The abstract ser-
vice model we propose in this paper consists of two
components, namely the information and functional-
ity components, which correspond to the two types
of user state variables defined in section 3.1, i.e. the
information and functionality variables.

1. Information Component: This component is used
to describe the input and output messages for the
atomic service that this component represents,
in the form of information variables in the user
state model. It specifies exactly which informa-
tion variables are required by this atomic service
as input and which ones are required as output.

2. Functionality Component: This component rep-
resents an atomic service operation. This compo-
nent provides the pre and post conditions of the
operation in the form of first order logic propo-
sitions. Each logic proposition is composed of
a set of functionality variables of the user state
model. This is precisely the semantic informa-
tion required to generate the user state graph.

Some examples of abstract service descriptions are
given in Figure 3 (a). To define concrete services, we
first introduce concrete service variables.

Definition 5 (Concrete Service Variable): A
concrete service variable represents an attribute of an
executable service offered by a provider. It is defined
as a tuple, var =< Name, V al, T > where:

• Name is the name of the variable.

• Val is the value of the variable.

• T is the type of the concrete service variable.
There are two types of variables :

1. Policy Variable < pol >: Represents a
WS-Policy attribute of a web service. This
includes quality of service, security and ver-
sioning information.

2. Implementation Variable < impl >
: Represents the service provider, ab-
stract service and service implementation
elements such as network address and port
bindings.

The mapping between abstract services and con-
crete services is made by an implementation variable
e.g. the Abstract Service variable in Figure 3 (b). The

CRPIT Volume 144 - The Web 2013

16

Figure 3: Examples of Web Service Descriptions

concrete description model also has two components,
namely the policy and implementation components:

• Implementation Component: This component
contains the implementation variables, such as
the name of the service provider, and port
binding information for the service implementa-
tion. They can be mapped to WSDL descrip-
tion elements, such as <binding>,<port> and
<service>.

• Policy Component: This component describes
the Quality of Service, security protocols, and
service versioning information in a list of policy
variables. Attributes in WS-Policy can be incor-
porated into this component [2].

Figure 3 (b) illustrates some concrete services in-
volved in our laptop purchase example.

3.3 The Web Service Request Language

WSRL allows a user to express a service request in
terms of service variables and specify the target state
the user wants to arrive at (i.e. goal state). When
expressing a service request, we assume that the user
is presented with all user state variables and concrete
service variables in the system and the user has ade-
quate knowledge about the variables and their respec-
tive purposes. This is a reasonable assumption as far
as a normal user is concerned, as the variables are
mostly represented by terms the user would be well
versed in. Users express constraints on service vari-
ables to reflect their service requirements, through our
service request language.Formally defining a variable
constraint, we have:

Definition 6 (Variable Constraint): A vari-
able constraint is defined as a logical expression de-
scribed in propositional calculus. To form an atomic
variable constraint, a variable and its possible value
are combined by an equational logic connective (i.e.,
<, >, =, <=, >=) . Two atomic variable constraints
can be combined using a propositional logic connective
(i.e.,∨,∧,¬)to form a compound variable constraint.

A web service request is formed by variable con-
straints.

Definition 7 (Web Service Request): A
web service request is defined as a tuple R =<
V arinfo, V arfn, V arimpl, V arpol, Ret >, where:

• V arinfo is a set of variable constraints on infor-
mation variables.

• V arfn is a set of variable constraints on func-
tionality variables.

• V arimplis a set of variable constraints on imple-
mentation variables.

• V arpol is a set of variable constraints on policy
variables.

• Retis a set of information variables that the re-
quest defines as return values.

Except the variables in Ret, each constraint is as-
sociated with one of the unary operators require and
optional, indicating whether it is a mandatory con-
straint or an optional constraint.

An example service request for a laptop computer,
with a 15 screen, an intel processor, a five star rat-
ing, and a maximum $10 fee for the services invoked,
would be:
request{

require<info> Laptop : : ComputerType = “ Laptop ”
and Laptop : : Processor = “Intel”
and Laptop : : RequiredRating =“5”
and Laptop : : ScreenSize = “15 in ”

require<fn> Laptop : : initiatedDelivery
require<pol> Laptop : : ServiceFee < “$10”
return Laptop : : PurchaseReceipt

}
The semantics of WSRL operators are clearly defined in

Table 1.

4 The Web Service Request Framework

The web service request framework is responsible for gener-
ating the user state graph as a pre-computing step and then
translating a service request given by a consumer into a web
service execution plan. The execution plan can then be directly
executed to deliver the results desired by the consumer. The
translation is conducted in four steps, which are described as
follows.

First, a request encoder translates a request written in the
request language to a web service request conforming to Defi-
nition 7. This encoded request is a set of variable constraints

Proceedings of the First Australasian Web Conference (AWC 2013), Adelaide, Australia

17

Table 1: THE OPERATORS OF WSRL

WSRL Operator Purpose
n :: var Express the variable var as part of the service namespace n
request {p1, ..., pn} Express ordering of variable constraints p1 to pn in a service request
require < var > p Express a mandatory variable constraint p on a variable of type var. Here var ∈

{info, fn, pol, impl}
if p1 then p2 [else p3] Express a conditional binary (if p1 then p2) or ternary (if p1 then p2 else p3) variable

constraint?
optional p Express a variable constraint as optional, i.e. not mandatory for the satisfaction of the

request?
prefer p1 to p2 Express a variable constraint as a preference to another i.e. if p1 is satisfied then p2 does

not hold, else p2 needs to be satisfied
return p Express a variable constraint p on information variables, as a return value for the satisfaction

of a service request.

given in Definition 6. These constraints are passed on to a re-
quest mapper algorithm, which maps them to an abstract user
state, called goal state. The functionality variables of the goal
state are instantiated with boolean values that agree with the
functionality variable constraints in the request. The informa-
tion variables of the goal state remain unbound.

Second, the goal state is passed on to a path finder, which
finds a path in the abstract user state graph that takes the root
user state to this goal state. This path is called the goal state
path. A goal state path is defined as follows:

Definition 8 (Goal State Path):
A goal state path for a user state g is defined as a set

Pg = {D1, D2,,Dn}, where Di is a user state dependency,
1 < i < n and D1.Spred = r (root state) and Dn.Ssucc = goal
(goal state).

Third, the goal state path is passed on to an execution
plan generator, which uses the concrete service descriptions
in the system to create a service execution plan. This plan
associates a concrete web service to each edge (or user state
dependency) of the goal state path, and binds its inputs and
outputs to the corresponding information variables. The con-
crete web services are chosen based on the implementation and
policy variable constraints given by the users request. For ex-
ample, in the laptop purchase request given in section 3, the
ServiceFee policy variable has a constraint of being less than
$10. Therefore, the execution plan generator must guarantee
that the aggregated service fee of the selected concrete services
be less than $10. A service execution plan is defined as follows:

Definition 9 (Web Service Execution Plan): A
web service execution plan is defined as a set ExP =
{ExI1, ExI2,,ExIn} where ExIi is a concrete web service,
1 < i < n. Figure 4 shows the set of variable constraints,
the corresponding goal user state, goal state path and service
execution plan for the laptop purchase example.

Fourth, a service executor invokes the services indicated in
the service execution plan. At this stage, when each invoked
service returns results, the information variables in the user
state graph start getting values assigned to them. The con-
straints on information variables are enforced by the service
executor at two stages. Suppose a service is about to change a
set of information variables.

• Stage One: Before executing the service, we first check
whether the service can take the corresponding informa-
tion constraints as inputs. If it does, we feed the con-
straints as input to the service, so that the execution re-
sults would satisfy the constraints directly. For instance,
as the Computer Rating Service takes a constraint on
ScreenSize as input, the service executor feeds the con-
straint ScreenSize = “15 in” to the service.

• Stage Two: After executing a service, we check again
whether the resulting values agree with the information
constraints in the service request. If a list of results are
returned by the service, a single result that satisfies all
the information constraints is selected. The values in the
result are used to instantiate the corresponding informa-
tion variables. For instance, a number of laptop models
may be returned by the Computer Rating Service. Based
on the information constraint RequiredRating = 5, one
of the laptop models rated as 5 would be selected by our
system. In case there is no result satisfying all the in-

formation constraints, the system reports an exception to
the user who may ignore it, or abort the transaction.

5 Implementation

A prototype implementation was created in Java using a model-
view-controller architecture pattern. The model consists of the
implementations of the various elements of the request ori-
ented model such as the abstract and concrete web service
descriptions, functionality and information variables, compo-
nents, user state graph, dependency etc. The controller con-
sists of processes or steps defined in the request framework such
as the user state graph generator and path finder. These pro-
cesses accept user inputs and use objects defined in the model
to produce outputs. The view consists of a user interface that
accepts a web service request in WSRL and generates a ser-
vice execution plan based on the request. A series of empirical
and compound tests based on different scenarios are being con-
ducted to determine the average and worst case computational
costs of the steps in the framework.

6 Related Work

Our work is related to three topics: service modeling, auto-
matic service composition, and customized service delivery,
which are important and interrelated research topics in service
oriented computing. In this section, we discuss some represen-
tative works and differentiate our approach from them.

6.1 Service Modeling

Several semantic web service languages have been proposed
to realize semantic web services to facilitate automatic service
discovery and service composition [10]. Representative works
include WSDL-S [18], OWL-S [3], and WSMO [19]. WSDL-S
extends WSDL, the standard web service description language,
with semantic annotations to its input and output parameters
with OWL concepts. OWL-S is built on OWL. It provides
a set of markup language constructs for describing properties
and functionalities of web services from four aspects, including
service provider, service capabilities (i.e., input, output, pre-
condition, and effect), service execution process, and service
accesses (i.e., service grounding). WSMO is built on WSMF.
It describes a web service from four aspects, including non-
functional properties, used mediators (addressing data and pro-
cess sequence mismatches), capability (i.e., precondition and
postcondition), and interface (describes data flow and control
flow).

Existing semantic web service languages mainly focus on
a service oriented models, which aim at adding machine un-
derstandable annotations to service descriptions. As a result,
users need to first understand a service description and conform
their requests to it. Our approach, on the other side, provides
a modeling methodology from user perspectives. It allows the
specification of user expectation and experience of using a ser-
vice which can be atomic or composite, which will facilitate
customized service selection and composition. More specifi-
cally, instead of modeling and reasoning states of services, we
define states of users, which capture users experiences when
invoking services, to better achieve a customized and flexible
service composition. We also enrich the logical expression of a

CRPIT Volume 144 - The Web 2013

18

Figure 4: Translating a Service Request into a Service Execution Plan

goal by adding a user’s data-related expectation [1]. Therefore,
a user’s expectation is captured in two aspects, data retrieval
and user state alternation, which are used to guide the pro-
cess of service composition. We incorporate the idea proposed
in [6, 22], where services are composed by matchmaking their
input and output on a semantic level.

In [5], a Context-Based Web Service Description Language
(CWSDL) was proposed to incorporate context information in
a service modeling. Context can be internal, which is related to
service features, or external, which is related to user features.
To help better service, CWSDL allows the specification of a
set of context functions, which take context information, such
as a user’s location, as input to evaluate and rank services.
It can also be used to consider user preferences, defined as
context functions, when selecting services. Different from [5],
our approach, having a user-centric modeling theme, provides
more expressive power to describe user preferences on service
selection, which can be data centric and state centric. Data
centric user preference specifies what the information flow a
user prefers to have during the interaction with a service. State
centric user preference specified how a user’s state varies during
the interaction. We use a User State Graph to specify the
dependency between states, which can be used to explore all
possible execution sequences of a dynamic business processes
and then determine a concrete service selection and execution
plan.

In [12], Papazoglou et al. proposed an AI-planning based
language, XML Service Request Language (XSRL) for request-
ing services and performing planning under uncertainty. The
language models the service domain as a nondeterministic state
machine. An XSRL request is encoded into a constraint sat-
isfaction problem and then passed to an AI planner, which
automatically generates a service execution plan. As its basic
model is nondeterministic, the outcome of an execution plan
is usually unknown before the actual execution. To solve this
problem, the authors proposed to continuously monitor and
modify the plan to deliver the best-effort results. The work in
this paper shares the philosophy of XSRL, but aims to provide
a less computationally expensive and user friendly approach.
We model the service domain as a deterministic state machine,
which is only based on services functionality. The unexpected
results are handled by the service executor at run time. In
addition, our model treats information and functionality dif-
ferently. In the request system, only constraints on function-
ality are considered in the planning process, while constraints
on information are considered at run time. This allows us to
substantially reduce the complexity of the model and the com-
putational cost of planning.

6.2 Service Composition

There are many approaches proposed in the literature for au-
tomatic web service composition. [14] provides a survey of
some AI planning based service composition methods. In these
works, a service is modeled as an action, which can be per-
formed to change states. Each action is specified by its precon-
dition and effect, i.e., the states before and after performing the
action, respectively. Once there is a service composition task,
an initial state and final state, i.e., the goal, are described. A
reasoning process is performed to generate the execution order
of actions, so that the system will start at the initial state and
reach the final state. These works are supported by existing
semantic service models, such as OW-S [3] and WSMO [19],
where preconditions and effects are treated as the properties
of a Web service and presented as logical formulas. The lim-
itation of these AI planing based approaches is that a goal is
usually represented as a state. This does not capture a user’s
expectation on retrieving information from accessing services,
which is a very common web service usage.

Aiming to address this issue, some extended AI approaches
to model and automate service composition have been pro-
posed [4, 13]. In [13], automatic service composition is
achieved by automatically mapping process-level composite
service descriptions to knowledge-level service interactions. A
knowledge-level, i.e., data centric, goal is specified. Services
are selected and composed, determined by their inputs and
the transitions from their inputs to outputs, until the goal is
achieved. In [4], the approach allows extensions to a goal spec-
ification, such as numeric variables, temporal constructs, and
maintainability properties. It also allows specifying goals from
two differential aspects: information gathering and state tran-
sitioning. We leverage these service modeling approaches and
follow their reasoning principle, i.e., planing service invocations
to reach a goal.

6.3 Service Delivery

Yu and Bouguettaya present a different perspective to the same
problem in [21]. They proposed a query algebra for users to
issue service requests declaratively. The query algebra aims to
provide optimized access to web services based on their func-
tionality and quality. It uses a relational model that abstracts
web services based on their functionality. A predefined depen-
dency graph is used to generate a service execution plan.

Different from their approach, our model provides an intu-
itive interface for users to specify only their objectives rather
than exactly what abstract services to use. WSRS allows users
to specify their goals in terms of required information and func-
tionality, thereby frees them from specification of services to be
used. This allows the request system with enough data to se-

Proceedings of the First Australasian Web Conference (AWC 2013), Adelaide, Australia

19

lect the most appropriate services at runtime, that may fulfill
the users request.

7 Conclusion and Future Work

This paper proposes a novel modeling approach for web ser-
vices, request oriented model, which provides users a conve-
nient and declarative way to express their requirement on the
usage of web services. We formally define user states and their
dependencies, web service descriptions, and web service re-
quests. Based on the model, we propose a formal language,
Web Service Request Language (WSRL) to express a service
request, which can be automatically handled by a supporting
framework, Web Service Request Framework (WSRF). We have
shown through an example that the proposed WSRF can act as
a new entry point for multiple web services, creating dynamic
service compositions and delivering customized results directly
to users. We illustrated that, by differentiating between infor-
mation and functionality, computational cost involved in ser-
vice composition could be reduced. As the future work, we
plan to perform a comprehensive experimental study, where
real-world services are used, to evaluate our approach. We also
plan to add dynamic service selection component to our sys-
tem, to improve its efficiency and robustness.

References

[1] Serge Abiteboul, Victor Vianu, Brad Fordham, and Ye-
lena Yesha. Relational transducers for electronic com-
merce. In PODS ’98, pages 179–187. ACM Press, 1998.

[2] L. Baresi, S. Guinea, and P. Plebani. Ws-policy for service
monitoring. In 6th VLDB Intl. Workshop on Technologies
for E-Services, volume 3811 of Lect. Notes in Computer
Science, pages 72–83. Springer, 2006.

[3] The OWL Services Coalition. Owl-s: Semantic markup
for web services. In http://www.daml.org/services/owl-
s/1.1B/owl-s/owl-s.html, July 2004.

[4] Eirini Kaldeli, Alexander Lazovik, and Marco Aiello. Ex-
tended goals for composing services. In Alfonso Gerevini,
Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, ed-
itors, ICAPS. AAAI, 2009.

[5] S. M. Kouadr and M. Younas. Context-oriented and
transaction-based service provisioning. International
Journal of Web and Grid Services, (2):194–218, 2007.

[6] F. Lecue, E. Silva, L. Ferreira Pires, and F. Sevigne. A
framework for dynamic web services composition. 2008.

[7] X. Liu, A. Bouguettaya, Q. Yu, and Z. Malik. Efficient
change management in long term composed services. Ser-
vice Oriented Computing and Application (SOCA), 5(2),
2011.

[8] X. Liu and H. Liu. Bootstrapping operation-level web
service ontology: A bottom-up approach. In The 7th In-
ternational Conference on Collaborative Computing (Col-
laborateCom 2011), Orlando, FL, October 2011.

[9] X. Liu and H. Liu. Automatic abstract service generation
fromweb service communities. In ICWS 2012, Hololulu,
HI, June 2012.

[10] S. McIlraith, T.C. Son, and H. Zeng. Semantic web ser-
vices. IEEE Intelligent Systems. Special Issue on the Se-
mantic Web, 16(2):46–53, March/April 2001.

[11] OASIS standard. Business process execu-
tion language (bpel). In https://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsbpel,
2003.

[12] Mike Papazoglou, Marco Aiello, Marco Pistore, and Jian
Yang. Xsrl: A request language for web services. Technical
report, Internet Computing, IEEE, 2002.

[13] M. Pistore. Automated composition of web services by
planning at the knowledge level. In In 19th Intl. Joint
Conferences on Artificial Intelligence, pages 1252–1259,
2005.

[14] Jinghai Rao and Xiaomeng Su. A survey of automated
web service composition methods. In In Proceedings of the
First International Workshop on Semantic Web Services
and Web Process Composition, SWSWPC 2004, pages
43–54, 2004.

[15] W3C. Simple Object Access Protocol (SOAP).
http://www.w3.org/TR/SOAP/, 2003.

[16] W3C. Universal Description, Discovery, and Integration
(UDDI). http://www.uddi.org, 2003.

[17] W3C. Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl, 2003.

[18] W3C. Web service semantics - wsdl-s. In
http://www.w3.org/Submission/WSDL-S/, November
2005.

[19] WSMO Working Group. Web Service Modeling Ontology
(WSMO). http://www.wsmo.org/, 2004.

[20] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. De-
ploying and managing web services: issues, solutions, and
directions. The VLDB Journal, 17:537–572, May 2008.

[21] Qi Yu and Athman Bouguettaya. Framework for web ser-
vice query algebra and optimization. ACM Trans. Web,
2(1):1–35, 2008.

[22] R. Zhang, I. Budak Arpinar, and B. Aleman-meza. B.:
Automatic composition of semantic web services. In Intl.
Conf. on Web Services, Las Vegas NV, pages 38–41, 2003.

CRPIT Volume 144 - The Web 2013

20

