

A Two-Phase Rule Generation and Optimization Approach for
Wrapper Generation

Yanan Hao Yanchun Zhang
School of Computer Science and Mathematics

Victoria University
Melbourne, VIC, Australia

haoyn@csm.vu.edu.au

yzhang@csm.vu.edu.au

Abstract
Web information extraction is a fundamental issue for
web information management and integrations. A
common approach is to use wrappers to extract data from
web pages or documents. However, a critical issue for
wrapper development is how to generate extraction rules.
In this paper, we propose a novel two-phase rule
generation and optimization (2P-RULE) approach for
wrapper generation. 2P-RULE consists of internal rule
optimization (IRO) process and external rule optimization
(ERO) process. In IRO, a user, through a GUI interface,
firstly creates a mapping from useful values in web page
to a schema specified by the users according to target web
information. Based on the mapping, the system
automatically generates a rule list for the schema.
Whereas in ERO, the user can create multiple mappings to
generate further rule lists. All the acquired rule lists are
merged and refined into one optimized rule list, which is
expressed with XQuery as the final extraction rules.
Experiments show that our 2P-RULE approach is suitable
for extracting information from web pages with complex
nested structure, and can also achieve better precision and
recall ratio⋅.

Keywords: Web, extraction, wrapper, rule optimization,
XQuery.

1 Introduction
With the rapid development of Internet, World Wide Web
has already become the most important and potential
information resources (Lawrence S. and Giles L. 1999).
HTML language aims at the visual presentation of data in
web browsers, while it lacks of schema and semantic
information for efficient management and retrieval web
information. Most of valuable web information is in
HTML form even though XML has been more and more
popular today. So researchers propose wrappers
technology to extract data from web pages and convert the
information into a structured format. However, a critical
issue for wrapper development is how to generate

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Database
Conference (ADC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

extraction rules for extracting data from web pages having
similar structures.

Many information extraction tools (Alberto H. F. Laender,
Berthier A. Ribeiro-Neto, Altigran S. da Silva, Juliana S.
Teixeira., 2002) have been developed to extract data on
the web. These works can be classified into three
categories: manual approach, automatic approach
(Soderland S. 1999, Arasu, A., Garcia-Molina, H. 2003,
Hu D., Meng X. 2005, Ma L., Shepherd J. 2004) and
semi-automatic approach (Liu L., Pu C., Han W. 2000,
Han W., Buttler D., Pu C. 2001, Arnaud S. and Fabien A.
1999, Sahuguet A. and Azavant F. 1999, Baumgartner R.,
Flesca S., Gottlob G. 2001, Baumgartner R., Ceresna M.,
Gottlob G., Herzog M., Zigo V. 2003, Meng X., Wang H.,
Hu D., Chen L. 2003). In the first category, extraction
rules are programmed manually which can be very hard
for common users; in the second category, (Soderland S.
1999) introduces a machine learning approach. It utilizes
the structures of sentences and relationships between
idioms and words to create rules automatically; (Arasu A.,
Garcia-Molina, H. 2003) and (Hu D., Meng X. 2005)
propose item identification techniques via HTML path
and templates for automatic data extraction from web
pages; (Ma L., Shepherd J. 2004) discovers the semantic
pattern for an identified region of a document via
inference, apposition and analogy. The drawbacks of
these four systems are their limited expressive power of
extraction rules and only suitable for simple record
schema. Semi-automatic approach requires user
interactions to build mappings between schema and
content in web pages, after that extraction rules are
derived for extracting web pages having similar structures.
In the third category, XWrap (Liu L., Pu C., Han W. 2000,
Han W., Buttler D., Pu C. 2001) only have good
performance on web pages with distinct region features;
In W4F (Arnaud S. and Fabien A. 1999, Sahuguet A. and
Azavant F. 1999), expertise is required to program part of
extraction rules manually; In Lixto (Baumgartner R.,
Flesca S., Gottlob G. 2001, Baumgartner R., Ceresna M.,
Gottlob G., Herzog M., Zigo V. 2003), the extraction
rules are expressed in Elog language, which is difficult for
the optimization and refinement of extraction rules;
secondly, it require users to specify some external and
internal conditions for extraction rules, thus the
effectiveness and robustness of rules relies on user's
action. SG-Wrapper (Meng X., Wang H., Hu D., Chen L.
2003) makes some improvements in rule generation and
expression. But its extraction rules may be invalid when

the nested structures of web page do not match the
pre-defined user schema.

All the tools above ignore the problem of usable features
of web page and their performance in constructing

extraction rules. It is very important to the robustness of
extraction rules. In this paper, based on the analysis of
usable features of web pages and their performance in
constructing extraction rules, we propose

Figure 1: A sample HTML fragment from VLDB
conference

text[1]
�

� �

text�:"Marguerite ……"

text�: " Doron Rotem"

text�: "," text�: ":"

text�: "Effective…..."

text	: "67-75"

text�: "Electronic…… "

html[1]

head[1]

title[1]

body[1]

table[1] h2[1] ul[1] h1[1]

text[1]

a[1] ..….
text[1]
 text3

text[1]
 text3

……

text[1]

a[1]
text[1]

i[2]
text[1]

text[1]

text[2]

li[1]

br[1] b[1]

text[1] text[1]

a[1] a[2]
text[2] text[1]

i[1]
text[1]

text[1]

text[3]

li[1]

br[1] b[1] a[3]

……

a[2]

ul[2] ……

�

�

�

�

�

� �

� 	

�

�

--Author

--Author

--Title

--Page

--FullText

Figure 2: DOM tree

Figure 3: The schema tree and DTD definition

FullText Page

Author

VLDB conference

Paper

AuthorList

*

 *
<!DOCTYPE VLDBConference [

<!ELEMENT VLDBConference ((Paper)*)>

<!ELEMENT Paper (AuthorList, Page, FullText)>

<!ELEMENT AuthorList ((Author)*) >

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Page (#PCDATA)>

<!ELEMENT FullText (#PCDATA)>]>

a novel two-phase rule generation and optimization
(2P-RULE) approach. 2P-RULE consists of internal rule
optimization (IRO) process and external rule optimization
(ERO) process. In IRO, a user, through a GUI interface,
firstly creates a mapping from useful values in web page to
a schema specified by the users according to target web
information. Based on the mapping, the system
automatically generates a rule list for the schema. Whereas
in ERO, the user can create multiple mappings to generate
further rule lists. All the acquired rule lists are merged and
refined into one optimized rule list, which is expressed
with XQuery as the final extraction rules. Then the
information extraction is simply a process of executing
XQuery statements in any XQuery engine. The query
result can be utilized by common users and further by
applications. Experiments show that our 2P-RULE
approach can extract information from web pages with
complex nested structure and can also achieve better
precision and recall ratio.

This rest of this paper is organized as follows. Section 2
introduces the presentation and semantic models for web
information extraction. In section 3 we present the basis of
extraction rules generation. Section 4 discusses the
extraction rules and their optimization steps. Section 5
reports the experimental results. Finally conclusion and
future work are discussed in section 6.

2 Representation and semantic models

2.1 Representation model of web documents
An HTML document is a text file containing markup tags.
The Document Object Model (DOM) represents a
document as a tree. Every node of the tree represents a
HTML tag, or a text value inside an HTML tag. The tree
structure describes the whole HTML document, including
the child, parent, or sibling relationship between tags and
text values on the page. DOM allows us to locate elements
in the tree with XPath (XML Path Language) expressions.
We choose DOM as the representation model of HTML
information in our system. All the operations in our system
are based on DOM tree.

As an example, in Figure 1 we give an HTML fragment of
the web pages at http://www.informatik.uni-trier.de/~ley/
db/conf/vldb/. Figure 2 shows its DOM tree structure. In
Figure 2 each node tag is followed by an ordinal. An
ordinal is the order of a node among all its siblings of the
same tag. For the convenience of reference, we also assign
each text node a number. For example, the following
XPath expression "html[1]/body[1]/ul[2]/li[1]/text()[3]"
identifies the data value 67-75 in the HTML fragment.

2.2 Semantic model
DOM tree is only the internal expression of web
documents. It can effectively process data in documents,
but it may not reflect the potential semantic information in
document data. In this paper we choose XML as the
semantic model and its schema is defined by DTD. The
defined DTD can be easily represented in the form of a tree
structure, which is called a schema tree. In our system,
through a GUI interface, a user can easily specify the

schema tree according to the target web documents. An
example of the schema tree and the DTD corresponding to
that can be seen in Figure 3. The ‘*’ in Figure 3 denotes
zero or more occurrences. For example, the ‘*’ between
AuthorList and Author means a AuthorList may have zero
or more authors. The schema tree can support some node
types corresponding to the data types defined by DTD.
Using regular expression, we define these supported node
types as follows:

atomic object (AO): (#PCDATA)
set object (SO): ((atomic object)*)| ((tuple object)*)
tuple object (TO): (a1, a2… an), where ai (1<=i<=n) is (an
atomic object | a set object | a tuple object)

We call each sub element of a set object a member object
(MO). If the member is an atomic object, then it will be
called a member atomic object (MAO). If the member is
a tuple, then it is a member tuple object (MTO). In
general, all nodes in the schema tree are called semantic
objects.

For example, referring the schema tree in Figure 3, both
Page and FullText are atomic objects (AO);
VLDBconference and AuthorList are set objects (SO);
Author is a member atomic object (MAO); and Paper is a
member tuple object (MTO).

After creating a schema tree, the user needs to create a
mapping from the contents of web pages to the schema tree.
To create such a mapping, the user simply selects semantic
objects in the schema tree, and then highlights the
corresponding content on web pages. Based on the
mapping, the system automatically generates rule
segments (see section 4) for each semantic object of the
schema tree.

3 Basis of extraction rules generation

3.1 Analysis of usable web features
In most information extraction systems, extraction rules
are mainly expressed with five features of web pages,
including structure, position, semantics, display and
references. Feature selection determines the performance
of extraction rules. Structure feature is the paths of DOM
tree. With path expression we can navigate HTML page
easily, so it can be a basic feature for constructing
extraction rules. But structure feature has weak
differentiating ability, and extraction rules only containing
structure feature may have low precision rate. For example
in Figure 2, the path expression html/body/ul/li/text() can
locate many nodes. Position feature includes ordinal
(section 2.1) and boundary. Boundary is a left or right
sibling node. In Figure 2, node text(16) has the left
boundary b and the right boundary a. Position feature
relies on the structure of web pages, so using position will
decrease the coverage of extraction rules but increase the
differentiating ability at the same time. Display feature
includes font, font-size, colour and alignment. It limits
nodes by node attributes in each location step of DOM
path. Normally, similar or correlative contents in web
pages have same display features, so selecting display
feature generating rules will increase the coverage. But
extraction rules can be inaccurate when multiple instances

of one semantic object (say an author object) have same
display features. Semantic feature is a common conceptual
or content feature of data to be extracted. For example, the
value of Price often contains a character ’$’. Semantic
feature lacks in differentiating ability but makes extraction
rules more flexible. Reference feature is the hyperlink
information in web pages. It has little effect on the
robustness of extraction rules and we do not discuss it in
this paper.

The goal of extraction rules is to have good coverage and
differentiating ability. Based the analysis above, we firstly
select DOM path, semantic and display features to form
extraction rules, which do not rely on the structure of web
pages and have good coverage ability, then add ordinal and
position information to extraction rules to gain good
differentiating ability.

3.2 Mismatches between schema tree and DOM
tree

To extract data from similar web pages or documents, a
user first defines a schema tree of the target data. The
schema tree reflects the user's view of extracted data. In
order to make semantics clear, the user can create a
schema tree with nested structure. For example in Figure 3,
a AuthorList object is created to represent all the authors in
one paper. Since the user creates a schema tree through a
GUI interface without knowing the details of HTML
documents, sometimes the nested structure of the schema
tree may not match its corresponding structure in DOM
tree. The mismatch happens when a complex nested object
in the schema tree does not have a corresponding node in
DOM tree, while its sub components are directly listed.
For example in Figure 3, AuthorList is a complex nested
object whose sub components are Authors. Consider the
DOM tree in Figure 2. The sub-tree in rectangle
corresponds to the semantic object Paper, and its DOM
paths correspond to author, author, title, page and
FullText respectively. No node corresponds to the
semantic object AuthorList and all the Author nodes are
listed directly.

Mismatches between schema tree and DOM tree are main
difficulties for extracting complex nested objects.
Typically, there are three sorts of mismatches:

Single set object mismatch. There is only one set object in
the schema tree that does not match its corresponding
DOM tree structure, for example the AuthorList object in
Figure 3. Let us suppose author and FullText have same
display and structure features firstly. Further more, since
the count of authors is variable, position feature can not
differentiate them either. In this case, we introduce a new
position feature big boundary. The left big boundary of a
set object is a sequence of nodes, which are all the left
siblings of the leftmost sub-tree spanned by the set object;
the right big boundary of a set object is a sequence of
nodes, which are all the right siblings of the rightmost
sub-tree spanned by the set object. For example in Figure 2,
the set object AuthorList corresponds to nodes text (10)
and text (12). The left big boundary of AuthorList is null
while its right big boundary is {text, br, b, text, a}. By big
boundary feature, we can differentiate between member

objects (Author) of a set object (AuthorList) and sibling
objects (FullText or Page) of the set object.

Multiple set objects mismatch. There are several set
objects in the schema tree, and none of them matches the
corresponding DOM tree structure. For example, a user
may define another set object AddressList as a sibling of
AuthorList. Using the big boundary, we can still
differentiate these two set objects if member object Author
and Address can be differentiated. But if Author and
Address have same features, these two set objects can not
be differentiated in our system.

Member tuple object mismatch. In this case, a member
tuple object does not have the corresponding node in DOM
tree while its sub components are listed directly. The
member tuple objects may not be differentiated. For
example in Figure 2, if the node Li[1] , which corresponds
to the semantic object Paper, does not exist, all the authors
can not be differentiated, i.e. which author belongs to
which paper. In our system, we add a virtual node to each
member tuple object to solve the member tuple object
mismatch.

In this section, we analyse the usable web features and the
mismatches between schema tree and DOM tree. They are
the basis of rules generation in our system. In section 4, we
will describe our approach to generate and optimize
extraction rules.

4 Generation and optimization

4.1 Rule segments
According to section 3, we distribute all the usable web
features in six sorts of rule segments. The initial extraction
rule for each semantic object will be composed of several
rule segments. Different semantic object has different
composition of rule segments as the initial extraction rule.
Figure 4 gives the BNF definition of all rule segments.

PureAttrPathExp(P): We use the first letter P to denote
PureAttrPathExp. Abbreviation for other rule segments is
similar. This rule segment is called pure-attribute path
expression, each location step of which only contains
attributes limitation. If there exists attributes in a location
step, then we choose all the equations of “[attribute name=
attribute value]” as predicates to limit nodes sequence, or
we do not select any predicates in this step. For example in
Figure 2, html/body[@bgcolor=“#ffffff”]/ul/li/text() is a
pure-attribute path expression. It can locate text(11),
text(16) and text(14).

AttrOrdPathExp(A): We call it attribute-ordinal path
expression, each location step of which only contains
attributes or ordinal limitation(except location steps with
the node test text()). If it contains attributes, then we use all
the equations “[attribute name= attribute value]” as
predicates, or we use ordinals to limit nodes sequence. In
Figure 2, html[1]/body[@bgcolor=“#ffffff”]/ul[2]/li[1]/
text() is an attribute-ordinal path expression.

OrdPathExp(O): This sort of rule segment is called
ordinal-path expression, each location step of which only
contains ordinal limitation (including location steps with
the node test text()). For example,

html[1]/body[1]/ul[2]/li[1]/text()[3] is a OrdPathExp for
the semantic object Page(see Figure 2) .

OrdPathExp(O): This sort of rule segment is called
ordinal-path expression, each location step of which only
contains ordinal limitation (including location steps with
the node test text()).For example, html[1]/body[1]/ul[2]
/li[1]/text()[3] is a OrdPathExp for the semantic object
Page(see Figure 2) .

TextFeaturePredicate(T): This rule segment is called
text-feature predicate. It is a form of predicate in XPath
requiring the text content of a node (for non-leaf node, it
will be a concatenation of string-values of all its
descendants) in DOM tree contain some fixed text value.
We only use this predicate in the last location step of path
expressions. For example, html/body[@bgcolor=”#ffffff”]
/ul/li[contains(string(.)�”Electronic Edition”)] means the
text content of nodes limited by the last location step must
contain the string “Electronic Edition”.

Big _BoundaryPredicate(B): This rule segment is called
big boundary predicate. It contains left big boundary
predicate and right big boundary predicate. We introduce
this rule segment for the extraction of complex nested
objects, say AuthorList in Figure 3(section 3.2).

Small_BoundaryPredicate(S): This rule segment is
called small boundary predicate. This predicate is to limit
a node by its immediate left sibling and right sibling. In
our system we only apply this segment to atomic objects
and only to the last location step with the node test “text ()”,
because text nodes in DOM specification are regarded as
virtual nodes, and in most circumstances they do not have
sibling nodes, as they do not rely on the structure of web
pages.

In these six rule segments, the first three rule segments are
path expressions, in which PureAttrPathExp has the best
coverage ability, OrdPathExp has the worst coverage
ability, and AttrOrdPathExp is middle; the rest three rule
segments are all predicates. They can only be used
together with the first three path expressions.

 After the user creates a mapping from the contents of web
pages to the schema tree, system automatically generates
rule segments for each semantic object of the schema tree.
As for a member object, the two segments
AttrOrdPathExp and OrdPathExp do not contribute to its
extraction rule, since they both contain ordinal feature and
it can be invalid due to the variable count of member
objects. System does not generate rule segments for a plain
tuple object (i.e. it is not a member tuple object). The plain
tuple object appears only once, and if its sub components
can be extracted, they definitely belong to this tuple object.
Thus the extraction rule for plain tuple object itself is not
needed and we only need to compose rules for its sub
components. But for a member tuple object, it can appear
many times, so the corresponding extraction rule is needed
to decide which sub component belongs to which member
tuple object instance.

 The rule segments of each semantic object are marked by
“�”in Table 1. Please see section 2.2 for the definition of
semantic objects. For example, from Figure 2 we can
conclude that html/body[@bgcolor=“#ffffff”]/ul/li/text()
is a rule segment (P) for the semantic object Author
(MAO).

 Table 1: Rule segments for each semantic object

4.2 Optimization of extraction rules
For one semantic object, its rule segments can have
different combinations. Each combination is called an
initial rule for the semantic object. Different combination
of rule segments can generate different initial extraction
rules. In this section, we describe our two-phase rules

 Semantic objects
Rule segments AO MAO MTO SO

PureAttrPathExp � � � �
AttrOrdPathExp � �
OrdPathExp � �
TxtFeaturePredicate � � � �
Big_ BoundaryPredicate �
Small_BoundaryPredicate � �

PureAttrPathExp::= (NodeName("[@"AttrName"="AttrValue"]")*) |

(NodeName("[@"AttrName"="AttrValue"]")*"/"PureAttrPathExp) | NULL

AttrOrdPathExp::=(NodeName("["num"]" | ("[@"AttrName"="AttrValue"]")*)) | NULL

| (NodeName("["num"]" | ("[@"AttrName"="AttrValue"]")*)"/"AttrOrdPathExp)

OrdPathExp::=(NodeName"["num"]") | (NodeName"["num"]""/"OrdPathExp) | NULL

TxtFeaturePredicate::=("[contains(string(.) ," TxtFeatureValue ")]") +

Big_BoundaryPredicate::=(("[count(../" NodeName "after .)=" Num "]") | ("[count(../" NodeName "before .)="
Num "]")) +

Small_BoundaryPredicate::=

(("[count((../* after .)[1])=0]") | ("[((../"Nodename " after" ".)[1])=((../* after .)[1])]"))

(("[count((../* before .)[1])=0]") | ("[((../"Nodename " before" ".)[1])=((../* before .)[1])]"))

Figure 4: The BNF definition of rule segments

(2P-RULE) optimization approach. 2P-RULE consists of
the internal rule optimization (IRO) process and the
external rule optimization (ERO) process.

4.2.1 Internal optimization (IRO)
In IRO, system automatically selects an optimized initial
rule for each semantic object and generates a rule list for
the schema.

(1) Initial rules

Among the six rule segments, the first three path
expressions are XPath statements, and the rest three rule
segments are predicates. The effective combination, initial
rule, should be one and only one path expression plus
several predicates. We combine both TxtFeaturePredicate
and Small_BoundaryPredicate together with path
expressions, for these two segments do not rely on the
structure of web page. For Big_BoundaryPredicate, it is
generated to deal with set object mismatch. When there
exist set objects mismatches, we do not generate initial
rules for SO and add its Big_BoundaryPredicate to
member objects MTO and MAO. While when there are no
mismatches, the initial rules for SO are {P.T, A.T, O.T}
and the Big_BoundaryPredicate is removed. All the
possible initial rules for each semantic object are listed in
Figure 5.

Bottom. The initial rules at bottom have better coverage
ability. They select DOM path, display feature and
semantic feature. Although S rule segment is added to the
atomic object, it does not rely much on the structure of
web page. The shortcoming of bottom combination is that
it lacks of differentiating ability.

Middle. The middle level of initial rules are acquired by
adding position feature to bottom combination to get better
differentiating ability. Particularly, member objects get
new rule segment B; both atomic objects and set objects
replace their rule segment P as A, which actually
complements some ordinals for the location steps without
predicates. The better differentiating ability is at the
expense of decreasing of coverage.

Top. The top initial rules are only available for atomic
objects and set objects. They add further position feature to
the middle initial rules. Comparing with middle initial
rules, their differentiating ability is further increased but
coverage ability is further decreased.

(2) Optimization and selection

The goal of extraction rules is to have good coverage and
differentiating ability. In Figure 5 we can see, from bottom
to top, the coverage ability of initial rules is increasingly
good and the differentiating ability of initial rules is
increasingly poor. Our basic idea of rules optimization is
to select the first “good” initial rule from bottom to top for
each semantic object. Here “good” means having no
collision with the selected initial rules for other semantic
objects, i.e. they do not locate identical nodes.

In our system, the DOM paths forming into extraction
rules are relative. Extraction rules for sub objects will
locate nodes based on the extraction results of parent
objects, so only the initial rules having the same base
domain are possible to collide. For example in Figure 2,
suppose “html/body/ul/li” is an initial rule for Paper, and
the initial rule for FullText is “a/i/text()”. Obviously, these
two initial rules do not collide, because “a/i/text()” is to

FullText Page

Author

VLDB conference

Paper

AuthorList

*

 *

Figure 6: Grouping of semantic objects

(a) If no mismatch

FullText Page

Author

VLDB conference

Paper

AuthorList

*

 *

(b) If exists a mismatch

Figure 5: Initial rules for each semantic object

MTO MAO AO SO

1.1.1.1.1.1

1.1.1.1.1.2

1.1.1.1.1.3

1.1.1.1.1.5 1.1.1.1.1.6

1.1.1.1.1.8

1.1.1.1.1.9

1.1.1.1.1.10

… . … . … . … .

Initial
rules

Bottom

Middle

Top

Semantic objects

B P.T.

P.T

P.T.S.

P.T.S P.T.S

A.T.S

O.T.S

P.T

A.T

O.T

B

locate nodes based on the sub tree li, and “html/body/ul/li”
is to locate nodes based on the whole DOM tree. To detect
potential collisions, we group the semantic objects
according to the base domain of their initial rules. The
semantic objects having sibling relationship will belong to
the same group finally.

For example, Figure 6 gives the two possible groupings of
schema tree in Figure 3. For the HTML fragment in Figure
1, we should choose the grouping (b).

Definition 1 [Containment relationship] Let XPathExp1
and XPathExp2 be two XPath expressions. We say
XPathExp1 contains XPathExp2, if

1. They have the same DOM path, and
2. The set of predicates in each location step of XPathExp1
is a subset of the set of predicates in each corresponding
location step of XPathExp2.

The containment relationship is denoted as
XPathExp2 ⊂ XPathExp1. For example, suppose
XPathExp1=A/B[@colour=�1�]/C, and XPathExp2=A/B
[@calor=� 1�][@high=� 6�]/C, then XPathExp2
⊂ XPathExp1. This means the nodes set located by
XPathExp2 are a subset of nodes set located by
XPathExp1 and so collision occurs. Semantic objects in
same group have the same DOM path, so we can use
containment relationship to detect potential collisions
between them.

Definition 2 [Invalid rule] Let soi be the ith semantic
object in a schema tree, max(soi) be the total count of
initial rules for soi and soi-rm(1�m�MAX(SOi)) be the
ith initial rule for soi. We say soi-rm is an invalid rule�if
and only if ∃ soj (j� i) such that soi-rm contains
soj-rn(1=<n<=max(soj)). Here m and n are the ordinals of
initial rules for semantic objects. For each semantic object,
its initial rules are numbered from bottom to top beginning
with 0 (See Figure 5).

We say that an initial rule is valid if it is not an invalid rule.
Based on the analysis and definitions above, the process of
selection and optimization of rules for semantic objects is
described as below:
Step 1: Group all the semantic objects.
Step 2: Group all the initial rules by the grouping of
 semantic objects.
Step 3: In each initial rules group, from bottom to top,
 Find the first valid initial rule as the optimized rule
 for each semantic object. All the optimized rules
 constitute an optimized rule list for the schema.
 We formulate this step into algorithm 1.

Algorithm 1 Internal optimization
Input: G= {gi | i=1, 2 …}, groups obtained in step 2
Output: O= {opti | i=1, 2 …}, O is an optimized rule list
 for the schema, in which opti contains the optimized rules
for semantic objects in group gi
Description:
for each group gi in G do
 Optimize (gi);
Function optimize (g)

1: s:=0; collision:=False; // s is the ordinal of an initial rule
2: for each semantic object sol in group g do
3: if max (sol) =1 then
4: // only one initial rule
5: optg-sol = sol –r0 ;
6: continue;
7: endif
8: if exists i, j such that soj-ri⊂ sol-rs then
9: // sol-rs is an invalid rule
10: collision: =True;
11: endif
12: if collision then
13: if (sol is a MO) and s=1 then
14: exit; // Can not extract this web page.
15: else
16: s: =s+1; // go up
17: goto line 8;
18: endif // if sol is a member object
19: endif // if collision
20: optg-sol = sol-rs; // Obtain the optimized rule for sol
21: optg-sol → optg; //add optg-sol to optg
22: end // end for

For example, after IRO we can obtain an optimized rule
list for the semantic objects in Figure 3:
• Paper: html/body[@bgcolor=“#ffffff”]/ul/li

[contains(string(.)��Electronic Edition�)]
• Author: a[left_big_boundary=””,

right_big_boundary =”text, br, b, text, a”]/text()
• Page: /text()

• FullText: a/li/text()[contains(string(.)�
�Electronic Edition�)]

4.2.2 External optimization (ERO)
We say a user makes a learning process, if the user creates
a mapping from the web page to the schema. Based on the
mapping, system generates an optimized rule list by IRO.
If the user is not satisfied with the extraction results, she
can make more sample learning processes. Each sample
learning process will generate one optimized rule list. In
ERO system merges and refines all the acquired rule lists
into one optimized rule list, which is expressed with
XQuery as the final extraction rules.

The whole merging and refining procedure is listed as
below:

Step 1: For each semantic object.
(1) Find all its relevant optimized rules
(2) Partition these rules into several groups. In each

group the rules have containment relationship
with each other.

(3) Select the rule having the best coverage in each
group and unit them into an optimized rule for the
semantic object.

Step 2: Save all the optimized rules as the final optimized
 rule list for the schema.

We formulate these steps into algorithm 2.

Algorithm 2 External optimization
Input: Optimized rule lists: opt1, opt2, …, optk
 Opti= {opti-so1, opti-so2, …, opti-son} (0<i<k+1)
Output: the final optimized rule list Opt for the schema.
Opt= {opt-so1, opt-so2, …, opt-son}
Description:
1: for m=1 to n do
2: partition the set {optl-som|1<=l<=k} into s groups.
 In the ith (1<=i<=s) group, find optli-som that contains
 all the other extraction rules for the semantic object som

3: opt-som=)(
1

mli

s

i

soopt −
=

U

4: endfor

4.3 XQuery expression
After ERO, we get the final optimized rule list for the
schema. Each rule of the optimized rule list is expressed
with an XPath expression, and each time it can only locate
in DOM tree one semantic object instance of the schema.
In order to locate all the semantic object instances, we
translate the final rule list into a complete XQuery query
statement as the extraction rule for the schema.

According to the final optimized rule list, we generate one
FLWR expression for each semantic object, i.e.

• One FR expression (FOR statement and
RETURN statement) for a member object.

• One LR expression (LET statement and
RETURN statement) for a set object and an
atomic object.

Finally, we organize all the FLWR expressions by the
nested structure of the schema tree and form them into one
XQuery statement. The information extraction is then a
procedure of executing this XQuery statement in any
XQuery engine.

As an example, let us suppose the final optimized rule list
is the same as it in section 4.2.1. The XQuery statement is
shown in Figure 7.

5 Experiments
Based on the optimization techniques above, we have
developed a prototype system. Several experiments have
been done on the three websites sites in table 2, which are
already used for testing purposes by other information
extraction tools.

We carry out our experiments on a Windows machine with
a 2GHz Pentium IV and 512M main memory. For each
website, the experiment procedure is listed as below:

Transformation. Because our prototype system uses
XML as the presentation model of HTML information in
web pages, and all the operations are based on DOM tree,
all the web pages to be extracted to XML documents
should be transformed into XML documents firstly. We
use Tidy (HTML Tidy Library Project) to finish the
transformation.

Creating schema tree. Select sample web pages, then
require the user to create schema tree to represent the
semantic information of data to be extracted.

Creating mappings. The user selects semantic objects in
the schema tree firstly, and then highlights the
corresponding content on web pages. Meanwhile text
feature may be required.

Optimization. Execute the IRO and ERO process. System
automatically generates optimized rule list expressed with
XQuery.

Extraction. Execute the XQuery statement on an XQuery
engine to extract data on other web pages in the website.

Analysis. We manually verify the extracted results.

5.1 Evaluation metrics
We use recall and precision rate to evaluate the
effectiveness of our optimization approach. The recall and
precision are defined as

• precision = A/(A+B)*100%

• recall = A/(A+C)*100%

Where A stands for the number of relevant objects, B
stands for the number of irrelevant objects, C stands for the
number of missing objects, A+C stands for the total
number of relevant objects, and A+B stands for the total
number of extracted objects.

5.2 Results analysis
Table 3 shows our 2P-RULE extraction results on the
pages of websites collected in Table 2. Table 4 shows the
extraction results of typical system Lixto. For the third
website in Table 2, there is one webpage having 284
complex objects. Experiment results show that system
extracts 285 complex objects totally with only one
irrelevant object, so the precision is 99% (284/285) and the
recall is 100% (no missing objects). The precision does not
reach 100%, because user does not provide definite
semantic information during the first learning. One object
is extracted regarded as invalid by user. For the website

<vldb conference>
{FOR $paper IN (document("sample.xml")/html/body
 [@bgcolor="#ffffff"]/ul/li[contains(string(.),"Electronic
Edition")])
 RETURN
 <Paper>
 <AuthorList>
 {FOR $author IN $paper/ a[left_big_boundary="",
 right_big_boundary ="text, br, b, text, a"]/text()
 RETURN
 <Author>{$author}</Author>}
 </AuthorList>
 {LET $page:=$paper/text()
 RETURN
 <Page>{$page}</Page>}
 {LET $FullText:= $paper/ a/li/text()
 [contains(string(.),"Electronic Edition")]
 RETURN
 <FullText>{$FullText}</FullText>}
 </Paper>}
</ vldb conference>

Figure 7: Extraction rules expressed with XQuery

Table 2: Test websites

Table 3: Experiment results of 2P-RULE

Table 4: Experiment results of Lixto

VLDB, our system works well. Its web pages contain
complex semantic schema structure and the set objects do
not have corresponding nodes in DOM tree. But after
learning once, our system still has 100% precision when
extracting 20 pages. For the Amazon website, there is an
average recall of 98.3% on 12 web pages. The missing
objects are due to the design of web page. We find that the
text feature selected by user does not appear in some pages
containing relevant objects and these objects are missed
when applying extraction rules into their host pages. After
learning once again, system automatically adds new text
feature into extraction rules. So the missed objects are
back and the recall becomes 100%. On this website Lixto
achieves precision of 95% after learning once, and 100%
after learning three times. Obviously, our system has better
performance in recall, precision and learning times.

6 Conclusion and future work
In this paper, we propose a novel two-phase rule
generation and optimization (2P-RULE) approach.
2P-RULE consists of internal rule optimization (IRO)
process and external rule optimization (ERO) process. In
IRO, based on the mapping created by a user, system
automatically generates an optimized rule list for the
schema. Whereas in ERO, the user can create multiple
mappings to generate further rule lists. All the acquired
rule lists are merged and refined into one optimized rule
list, which is expressed with XQuery as the final extraction

rules. Experiments show that our 2P-RULE approach is
suitable for extracting information from web pages with
complex nested structure, and can also achieve better
precision and recall ratio. Our future work includes the
automatic verification of extraction rules, the efficient
organization, storage and management of obtained
extraction rules.

References
Lawrence S., Giles L.(1999):Accessibility and distribution

of information on the Web. Nature, 1999, 400(8):
107-109.

Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran
S. da Silva, Juliana S. Teixeira. (2002): A Brief Survey
of Web Data Extraction Tools. SIGMOD Record, 2002,
31(2): 84 - 93.

Soderland S. (1999): Learning Information Extraction
Rules for Semi-structured and Free Text. Machine
Learning, 1999, 34(1-3):233-272.

Liu L., Pu C., Han W. (2000): XWRAP: An XML-enabled
Wrapper Construction System for Web Information
Sources. In Proc. of the 16th ICDE Conf., San Diego,
California, USA, 2000.

Han W., Buttler D., Pu C. (2001): Wrapping Web Data
into XML. SIGMOD Record, 2001, 30(3):33-39.

Name URL Webpage Number of pages

Amazon http://www.amazon.com Top Sellers(TVs) 12

VLDB http://www.acm.org/sigmod/dblp/db/conf/vldb VLDB 1989 20

Web Robot http://www.robotstxt.org/wc/active/html Web Robot 1

Name Wrapable? Learning times Precision Recall Test pages

1 100% 98.3% 12
Amazon Yes

2 100% 100% 12

1 99% 100% 1
Web Robot Yes

2 100% 100% 1

VLDB Yes 1 100% 100% 20

Name Wrapable? Learning times Precision Recall Test pages

1 95% 90% 12
Amazon Yes

2 98% 100% 12

1 90% 96% 1
Web Robot Yes

2 95% 98% 1

VLDB Yes 1 80% 90% 20

Arnaud S. and Fabien A. (1999): Building Light-Weight
Wrappers for Legacy Web Data-Sources Using W4F.In
Proceedings of 25th VLDB Conference, Edinburgh,
Scotland, UK, 1999.

Sahuguet A. and Azavant F. (1999): Web Ecology:
Recycling HTML Pages as XML Documents Using
W4F. In Second International. Workshop on the Web
and Databases, Philadelphia, Pennsylvania, USA, 1999.

Baumgartner R., Flesca S., Gottlob G. (2001): Visual Web
Information Extraction with Lixto. Proceedings of 27th
International Conference on Very Large Database.
Roma, Italy, 2001.

Baumgartner R., Ceresna M., Gottlob G., Herzog M., Zigo
V. (2003): Web Information Acquisition with Lixto
Suite. In Proceedings of the 19th ICDE Conference,
Bangalore, India, 2003.

Meng X., Wang H., Hu D., Chen L. (2003): A Supervised
Visual Wrapper Generator for Web-Data Extraction.
COMPSAC 2003: 657-662

Arasu A., Garcia-Molina, H. (2003): Extracting structure
data from web pages. In: Proceedings of SIGMOD.
(2003) 337–348.

Hu D., Meng X.(2005): Automatically extracting data
from data-rich web pages. DASFAA 2005, Beijing,
2005,4

Ma L., Shepherd J. (2004): Information Extraction via
Automatic Pattern Discovery in Identified Region.
DEXA 2004: 232-242

DOM.http://www.w3c.org/TR/REC-DOM-Level-1.Xpath

XML Path Language Version 2.0.
http://www.w3.org/TR/xpath20

XQuery. http://www.w3.org/TR/xquery

HTML Tidy Library Project. http://tidy.sourceforge.net/

