
A Virtual Touchscreen with Depth Recognition

Gabriel Hartmann Burkhard C. Wünsche

Graphics Group, Department of Computer Science
University of Auckland, New Zealand,

Email: gabriel.hartmann@gmail.com, burkhard@cs.auckland.ac.nz

Abstract

While touch interfaces have become more popular,
they are still mostly confined to mobile platforms such
as smart phones and notebooks. Mouse interfaces still
dominate desktop platforms due to their portability,
ergonomic design and large number of possible inter-
actions. In this paper we present a prototype for a
new interface based on cheap consumer-level hard-
ware, which combines advantages of the mouse and
touch interface, but additionally allows the detection
of 3D depth values. This is achieved by using a web
cam and point light source and detecting hand and
shadow gestures in order to compute 3D finger tip
positions. Our evaluation shows that the concept is
feasible and more powerful interactions than with tra-
ditional interfaces can be achieved. Limitations in-
clude a reduced input precision, insufficient stability
of the utilised computer vision algorithms, and the
requirement of a stable lighting environment.

Keywords: touch interface, gesture recognition, stereo
vision, shadow detection

1 Introduction

The past decade has brought a remarkable shift in
the way humans interact with computers. For the
first time the traditional keyboard and mouse inter-
faces have a real alternative in touchscreen and mo-
tion based controls. This shift has coincided with the
explosion in popularity and unprecedented affordabil-
ity of mobile devices and MEMS accelerometers, gy-
roscopes and magnetometers.

So far, touch and motion based interfaces have
been almost universally confined to mobile devices,
public displays, entertainment systems, and commer-
cial devices. Touchscreens have been present on com-
mercial devices in the form of point of sale devices,
automatic teller machines, and similar equipment for
some time. In consumer entertainment systems, the
Nintendo Wii was the first device to embrace mo-
tion based input and see wide spread adoption. It
was quickly followed by competing products from Mi-
crosoft with its Kinect, and Sony with its Move. In
mobile devices Apple’s iPhone was the first widely
adopted device which employed only touch and mo-
tion based controls. The concepts have been quickly
adapted by a slew of competitors, and a similar de-
velopment can be observed for the iPad, the first

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 13th Australasian User Interface Confer-
ence (AUIC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 126, Haifeng Shen and Ross Smith,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

commercially successful notebook using these inter-
face technologies.

Although the above devices are used widely,
mostly by non-specialist users, the employed inter-
faces have not found their way back to the personal
computing desktop platform. One reason for this lack
of feature migration has to do with the excellence of
the current system. The mouse and keyboard com-
bination is an extremely versatile system that is well
understood and has been used happily by millions of
people for decades. The mouse in particular holds
some serious advantages over the touchscreen inter-
face on the desktop:

• The mouse cursor obscures less screen space than
a finger or stylus.

• Resting the hand on a mouse is more comfortable
for complex interactions than lifting the hand
and touching a screen.

• Mouse motions can be scaled in order to cover
large screen space with small physical move-
ments.

• The screen is not soiled by dirt and oil from the
user’s fingers.

• A mouse is highly portable and can be used with
different computers.

• Traditional display devices with a mouse are usu-
ally more affordable than touch screens.

The mouse, however, is not a perfect input device.
One major shortcoming is its limitation to a single
point of interaction. The use of two mice has been
explored in academia since more than a decade (Lat-
ulipe et al. 2006, Gonzalez & Latulipe 2011). In con-
trast to multi-touch input this functionality is not
widely supported and few real-world applications ex-
ist. One of them is virtual surgery simulation, where
the two mice control different instruments used by the
surgeon (SIMTICS Ltd. 2011).

Mice are also limited in their repertoire of actions.
The single-click, double-click, and drag operations
represent the main functionalities of a mouse. Ad-
ditional functionalities have been added in the form
of multiple mouse buttons and scroll wheels, and by
combining mouse interactions with keyboard interac-
tions.

Some operating systems and applications have be-
gun to emulate touch and motion screen interactions
via the mouse. For example Windows 7 will minimise
all other windows if another window is dragged back
and forth repeatedly, emulating a shake. The Opera
web browser employs a large variety of optional mouse
gestures which can control the web browsing experi-
ence. The attempts to incorporate these sorts of inter-
action into the desktop experience highlight the fact,

Proceedings of the Thirteenth Australasian User Interface Conference (AUIC2012), Melbourne, Australia

39



that there are interactions that touch and motion in-
terfaces provide that are desirable on the desktop, but
cannot be accomplished with the mouse.

In this paper we explore whether it is possible to
produce an interface which combines some of the ad-
vantages of the mouse and touch screen, is portable,
uses cheap consumer-level hardware, and has addi-
tional capabilities neither the mouse nor touch screen
offers.

Section 2 analyses the problem, proposes a solu-
tion concept, and derives design requirements for it.
Section 3 reviews the literature in this field and dis-
cusses relevant technologies. The design of our so-
lution and implementation details are explained in
sections 4 and 5. Section 6 evaluates our solution,
compares it with our original goals, points out lim-
itations, and presents an informal user study. We
conclude this paper in section 7 and section 8 gives a
short overview of future work.

2 Problem Analysis and Design Require-
ments

2.1 Problem Analysis and Solution Proposal

Two major disadvantages of touchscreens are their
cost and that interface and display device can not be
separated, i.e., reuse and portability is limited. We
therefore propose to use as interaction space any flat
surface, e.g., the user’s desk. In order to mimimise
hardware requirements the interaction device is the
user’s hand. Hand tracking is a well researched sub-
ject, but is still technologically challenging, and the
best results are achieved by using stereo vision (two
cameras) or markers. Since many computers already
have a single inbuilt web cam, we will only require one
such camera, which is oriented to view the interaction
space, e.g., the desk. In order to achieve more infor-
mation about the users hand gesture and position we
use a point light source, which casts a shadow onto
the interaction surface.

We propose to track the hand and its shadow in
order to obtain 3D locations. This corresponds to the
mouse drag operation, but additionally adds a third
dimension given by the hand’s height over the interac-
tion surface (e.g., desk). Different interaction modes,
defined for the mouse by different mouse button and
simultaneously pressed keyboard keys, are achieved
by performing a limited gesture recognition.

2.2 Design Requirements

We assume a low specification web-cam with a mini-
mum resolution of 640x480 pixels. Calibration of both
the desktop surface and the camera is achieved using
a calibration grid, which can be printed out by any
printer (although a laser printer is preferable). Our
solution should have a low computational complexity,
such that it can be used even on entry-level desktop
machines without advanced CPU/GPU. Finally we
require a single point light source which illuminates
the interaction surface. For illumination a lamp with
a light bulb is sufficient, as long as it is positioned
above the users and preferably on the side. Exam-
ples are most ceiling lights (depending on the desk
position) or a clip-on desk lamp.

In terms of functional requirements the aim of our
research is to provide device level support for touch
and motion controls. The interpretation of device
output is not a concern. For example, we are inter-
ested in creating 3D coordinates reflecting the users
interactions, but we leave the interpretation of these
coordinates, e.g., as mouse click or mouse drag, up to
the application developer.

Hence we can summarise the goals of our research
as follows: We want to create a system using a web
cam, point light source and flat illuminated surface
in order to determine 3D positions for hands and fin-
gertips above and on the desktop surface. We want
to be able to detect touches on the surface, but we
do not try to emulate a multi-touch interface. The
goal of the research is to investigate the feasibility
of the described configuration as an inexpensive 3D
interaction interface for a desktop platform.

3 Literature Review

Hand based computer interaction is a popular re-
search area due to its intuitiveness and promise to
enable true 3D interactions.

In situations where the accuracy and speed of
hand tracking is important data gloves are considered
the best choice. The devices usually employ electro-
mechanical, electro-optical or magnetic sensing tech-
nologies. They are application independent and single
purpose, devoted entirely to hand tracking (Erol et al.
2007). Data gloves produce real-time results and are
able to capture all the degrees of freedom a human
hand has to offer. However, they are expensive, re-
quire precise calibration, and might hinder natural
hand motion to some degree.

Computer vision based hand tracking approaches
can overcome the expense, inconvenience, and un-
naturalness of data gloves. Cameras for computers
are now widely available and inexpensive, and the
contact-free image-based sensing does not interfere
with hand motions. However the difficulty of 3D hand
pose estimation has so far resisted attempts to pro-
duce results which are comparable to those produced
by data gloves.

The main difficulties of computer vision based
hand pose estimation are high-dimensionality, self-
occlusion, high computational requirements, uncon-
trolled environments, and rapid hand motion (Erol
et al. 2007). High-dimensionality refers to the fact
that the human hand has over 20 degrees of freedom
without taking into account the position and orienta-
tion of the hand as a whole (Erol et al. 2005). Self-
occlusion occurs when fingers and/or palm overlap on
the two-dimensional image of a camera. Uncontrolled
environments can result in arbitrarily complex back-
grounds and unpredictable lighting scenarios. Rapid
hand motion refers to the hardware and software lim-
itations that constrain the ability of applications to
track rapidly moving hands. All the above points
make complex algorithms necessary to detect, track
and disambiguate hand configurations, which leads to
a high computational complexity.

Each of the difficulties described is non-trivial to
solve individually. Taken together it is unsurprising
that no general solution for computer vision based
3D hand pose estimation and tracking exists. All at-
tempts so far make assumptions which eliminate or
mitigate some of the difficulties.

3.1 Two Dimensional Fingertip Tracking

Hand tracking can be simplified by only determining
certain key features such as the finger tips. Harden-
berg & Bérard (2001) use the position of fingertips
and the number of detected fingers, in order to de-
fine pointer positions and different commands akin
to mouse clicks. Fingertips are detected by employ-
ing an image segmentation algorithm and fitting cir-
cles to foreground image sections. The problems of
self-occlusion are ignored with the tacit assumption
that as long as fingertips are sufficiently visible to be
identifiable, operations can continue. For fast hand

CRPIT Volume 126 - User Interfaces 2012

40



motions finger tip positions are not individually iden-
tified but estimated from previous frames.

The authors present four proof-of-concept applica-
tions. Three of the applications replicate mouse func-
tionalities, with the fourth allowing for multiple input
positions. The applications highlight some difficulties
of the system. As it is entirely a 2D system no touch-
ing of the interacting surfaces is detected. Instead,
the authors’ web browsing and painting application
represents mouse clicks by maintaining a hand posi-
tion for one second. The system also supports simple
finger counting gestures for a slide presentation appli-
cation. These gestures have no movement component
or intuitive relation to their function. For example,
displaying two fingers indicates a need to move to
the next slide, and three fingers indicate a move to
the previous slide. This requires memorization of the
slide application commands by the user. No attempt
is made to actively deal with the problem of misclas-
sifying shadows of fingertips as actual fingertips. The
authors’ experimental results showed that this error
was not uncommon.

Song et al. (2007) improve Hardenberg and
Bérard’s algorithm by additionally taking the finger
shape into consideration, which is done by segmenting
and classifying the pixel region connecting the finger
tip to the palm. Laptev & Lindeberg (2001) use par-
ticle filtering and multi-scale image features for finger
tip detection and tracking. Terajima et al. (2009) use
a template approach, which also gives some 3D infor-
mation. Hsieh et al. (2008) use finger tip detection for
handwriting recognition. The finger tip motion is ob-
tained from frame differences. The search for a new
finger position is sped up by predicting its position
using a Kalman filter.

3.2 Surface Touch Detection from Camera
Images

Malik & Laszlo (2004) use stereo cameras to detect
touch interactions with the underlying surface and
this way construct a virtual touchpad. An important
constraint is, that the background must be black and
rectangular. This improves calibration and avoids
problems with shadows.

Detecting 3D motion with a single camera is more
difficult. Wang et al. (2007) capture hand motion
with a single camera in real-time by combining a
model-based and appearance-based method. Inter-
ference among fingers is resolved using k-means clus-
tering and particle filters.

Segen & Kumar (1999) simulate touch interac-
tions by using additionally a single point light source,
whose position is determined in a calibration step.
The surface upon which the light source casts shad-
ows must also be defined, although this step is not
explicitly described in the paper. Instead the cam-
era’s position is defined in terms of the surface plane
which is defined as the Z = 0 plane. Segen and Kumar
do not attempt to detect surface touches and indicate
use of a uniform background. They find fingertips and
finger orientation with exactly the same method em-
ployed by Malik & Laszlo (2004). The orientation of
fingers is defined by the line which extends through
the fingertip and the midpoint of the end points of
the two vectors which designated it as such.

Much of this 3D information is not employed in
their proof-of-concept applications. Actions are al-
most entirely defined by static gestures, with the ex-
ception of a “clicking” gesture which employs a bent
finger motion. This gesture requires a stationary
hand at the time of its execution, which is perhaps
problematic in the suspended hand positions indi-
cated by the authors. Once a gesture is detected,
the pose of the hand in space is used to modify the

application of the gesture’s command. For example, a
two finger gripping gesture can be used to manipulate
a virtual robot arm. The arm is oriented according to
the lines defining the fingers. The distance between
the gripping portions of the robot hand depends on
the distance between the two fingers in the gesture.
Using three fingers to grab a virtual object is however
impossible as no three finger gesture is defined. Like-
wise, if two fingers are used, but they are not straight,
the gesture will be unrecognised and no input will oc-
cur.

3.3 3D Hand Pose Estimation

A large variety of hand tracking algorithms has been
proposed. A good survey is given in (Mahmoudi &
Parviz 2006). Two important categories are marker-
based and marker-less methods.

Marker-based hand tracking algorithms require
the user to wear point or area markers (Park & Yoon
2006, Lee & Woo 2003, Wang & Popović 2009). Ro-
bustness and interactive speed are achieved by em-
ploying simplified hand models in order to resolve
ambiguities in the tracked marker positions. How-
ever, the need for auxiliary devices (markers, gloves)
can be inconvenient for the user and often requires
some type of calibration, e.g., to align marker posi-
tions with positions on the underlying hand model.

Without markers the easiest way to identify (po-
tential) hand shapes is by using a skin colour classi-
fier (Kakumanu et al. 2007, Vassili et al. 2003). Sensi-
tivity to changes in the illumination can be reduced by
using a perception-based colour space (Chong et al.
2008). 3D position and orientation of the hand shape
can be obtained by using a 3D hand model and search-
ing for a mapping between it and the perceived hand
shape subject to the model’s inherent constraints
(e.g., joint constraints and rigidity of bones) (Stenger
et al. 2001, 2006). A different approach is to perform
the matching between hand features rather than the
entire shape (Chen et al. 2007).

Single camera systems suffer from the high compu-
tational complexity and a limited robustness. They
work best if the range of possible hand motions is con-
strained (Liu 2010, Liu et al. 2011). Tracking can be
simplified by using depth information obtained using
multi-camera vision or stereographic systems (Argy-
ros & Lourakis 2006).

4 Design

In order to simplify the design we assume that the
background is stable (e.g., a desk surface rather than
an office with people moving around) and that only
one hand and its shadow must be tracked. The tech-
niques presented in this section will also work for two
hands, as long as the hand images and shadows don’t
overlap. However, this extension was deemed un-
necessary for our proof-of-concept application. The
tracking of the hand shape and its shadow requires
the following three tasks to be performed for each
frame: segmentation, feature detection, and feature
position estimation.

4.1 Segmentation

Segmentation determines the objects of interest and
separates them from the background. We assume a
static background, such as a desk surface, and a static
lighting environment using a single point light source,
e.g., a desk or ceiling lamp.

Proceedings of the Thirteenth Australasian User Interface Conference (AUIC2012), Melbourne, Australia

41



4.1.1 Background Classification

Segmentation is achieved by first computing a statis-
tical model of the background. Since the user has
control over the environment we can assume that no
foreground objects, such as skin coloured objects and
shadows, are in the field of view. We compute for each
pixel an average value and average difference, which
approximates the standard deviation but is faster to
compute (Bradski & Kaehler 2008). For the compu-
tation of both statistics the three RGB channels re-
main separated. The statistics are used to define for
each pixel a range of colours considered to represent
the background. The threshold values representing
valid background pixels were determined experimen-
tally in order to optimise correct classifications (see
section 5). All pixels outside this range are consid-
ered foreground. The statistical model is necessary
since pixel colours change between frames even for
static environments. Causes are pulsed light sources
such as energy saving (fluorescent) lights, slight vi-
brations, and camera specific issues such as noise.

4.1.2 Hand and Shadow Identification

The second step of the segmentation process divides
the foreground pixel colour histogram into regions
representing the hand and its shadow (see figure 1).
This is achieved by observing that shadows change
predominantly the “Value” of the HSV colour of the
object onto which they are cast, whereas the hue and
saturation show little variation. Since we restrict
ourselves to one-handed interactions, the shadow is
always cast onto the interaction plane. We hence
compare for each pixel of the foreground region its
colour with the pixel’s learned average background
colour. This comparison is performed in the HSV
colour space. If the difference occurs largely for the
value (V) component of the pixel, and is accompanied
by a slight decrease in the saturation (S) channel, then
the pixel is considered to be part of the hand shadow.
All other foreground pixels are considered to be part
of the hand region. All thresholds for these test were
determined experimentally.

Figure 1: The segmentation process separates fore-
ground pixels into hand regions and shadow regions.
The tips of each region are determined by computing
an oriented bounding box for the largest connected
component of each region, and selecting the point
closest to its top-most edge.

4.2 Finger Tip Detection

In order to define meaningful interactions finger tips
must be detected. The finger tip location can be used
to select points, draw shapes, or define different in-
teraction modes according to the relative position of
multiple finger tips.

4.2.1 Single Feature Point Detection

A single feature point for pointing and selection op-
erations is defined by computing the minimum ori-
ented bounding box of the contour of the hand re-
gion. We then determine the edge nearest to the tip
of the hand. Since the user usually sits opposite to
the web cam, and since the hand and wrist usually
have a smaller width than length, we use the short
edge of the bounding box furthest from the bottom
of the camera image. The feature point for selection
operations is then given by the point on the contour
closest to this edge. This algorithm gives a meaning-
ful result for whole hand gestures (in which case the
tip of the middle finger would be the feature point),
as well as for single finger gestures, such as using the
index finger for selection, or when holding a pointing
device such as a pen. Figure 1 and 2 illustrate these
three cases both for the hand and the shadow region.

Figure 2: A selection/drawing operation using a sin-
gle feature point defined as tip of the index finger
(left) or tip of an external pointing device such as a
pen (right).

4.2.2 Multiple Finger Tip Detection

Detecting multiple fingertips and their shadows is a
three-step process. The first two steps of the process
correspond to the popular convex hull and convex de-
fect detection approach (Homma & Takenaka 1985,
Liu et al. 2011). The final step is the removal of de-
fects irrelevant to fingertip detection.

In the first step a convex hull is placed around
the hand segment. Defects are defined in relation to
this hull. Any region within the convex hull which is
not part of the hand segment and which is adjacent
to an edge of the convex hull is considered a defect.
If this algorithm is applied to a hand with spread
fingers, six defects are commonly detected. Four of
these defects lie between the fingers and the other
two lie between the smallest finger and the wrist and
between the thumb and the wrist. All but two of the
endpoints of the defect regions coincide with fingertip
positions.

In order to remove endpoints which do not corre-
spond to fingertips, we use the observation that for
convex defects between fingers their depth is larger
than their width (Liu et al. 2011). Figure 3 gives an
example. Note that this algorithm only works as long
as the fingers remain approximately straight. Fingers
which are bent excessively can cause their defining
defect to be rejected and their fingertip position lost
as a result.

CRPIT Volume 126 - User Interfaces 2012

42



Figure 3: Finger tip detection by computing convex
defects of the convex hulls of the hand (left) and of
the shadow region (right).

4.3 Calibration for Depth Calculations

Accurately determining fingertip positions in three di-
mensions requires a one-off calibration step defining
the relative positions and orientations of the camera,
desktop surface, and light source.

4.3.1 Camera Calibration

In order to simplify the subsequent computation of 3D
positions we would like to have an idealised camera.
i.e., a “perfect pinhole camera”. A pinhole camera
does not have a lens and hence does not introduce
radial distortion. The image plane of a pinhole cam-
era is exactly perpendicular to the optical axis and so
tangential distortion which can be introduced by an
imprecise alignment of optical axis and image plane
is absent. A pinhole camera produces images which
are a perfect projection of the objects in the world
onto the image plane. Its well defined geometry aids
in the determination of the position of objects in the
world and is therefore desirable in computer vision
applications.

In our application we assume that users utilise
cheap consumer-level web cams. We hence have to
correct inherent distortions, which is achieved by
imaging a known object and comparing properties de-
rived from the image (e.g., distances and angles be-
tween lines) with the known ones. We use the popular
chessboard calibration grid shown in figure 4, since
open source software for the calibration is available,
and since it allows us to define the interaction plane
as a by-product of the camera calibration.

Figure 4: An image of a chessboard pattern of known
dimensions is sufficient to characterise the distortion
characteristics of the camera, and the camera’s loca-
tion in reference to the surface upon which it is placed.
Furthermore corner points of the chessboard pattern
can be used to define the surface plane equation.

4.3.2 Desktop Plane Definition

The definition of the interaction (desktop) plane is
achieved using the calibration grid in figure 4. The
thickness of the paper is considered negligible and a
planar homography between the points on the calibra-
tion grid and the imaging plane is defined as a series
of translations and rotations. The relative positions
of the focal point of the camera, and three points on
the calibration grid are sufficient to obtain a unique
solution. However, in order to deal with inaccuracies
due to noise we use all points of the calibration grid.
An optimal solution for the plane equation is found
by using a least square method, which minimises the
distances of the points to the proposed plane.

4.3.3 Light Source Estimation

Given the intrinsic and extrinsic parameters of the
camera and the equation of the desktop plane in re-
lation to the camera coordinate system it is possible
to unambiguously determine the positions of shadow
pixels in the interaction plane. If we know two 3D
points and the locations of their shadows on the in-
teraction plane, we can compute the light source lo-
cation as the intersection of the lines formed by each
point and its shadow. If the lines are parallel then the
light source is at infinity (e.g., when using sun light
in an outdoor application).

In order to avoid the need for special 3D objects
for calibration, we use a series of predefined hand po-
sitions of the user. The first position is that of the
hand with fingers close together, placed flat on the
desk (see figure 5). The second posture is a hand
made into a fist and with only the index finger mak-
ing a pointing gesture. The fist should be placed flat
against the desk (see figure 6). The height h of the
finger tip of the index finger relative to the interac-
tion plane is assumed to be 80% of the width of the
bounding box of the hand position in figure 5. This
approximation was motivated by the fact that the in-
dex finger is the fourth finger of the hand, and it gave
good results in our experiments.

By sliding the hand around in the second config-
uration, as illustrated in figure 6, we obtain a se-
quence of 3D points and corresponding shadow po-
sitions, which we can then use to estimate the light
source position by using the closest intersection point
of all rays or using a light source at infinity if the rays
are approximately parallel.

Figure 5: A bounding box is fitted to the segmented
hand in order to determine the width of the hand, and
the height h of the index finger above the interaction
plane for the light calibration step.

4.4 Computation of 3D Finger Tip Positions

3D positions of objects can be computed from their
2D position on the image plane and their shadow posi-
tion using calculations similar to epipolar geometry in
stereo vision. In our case the light source and interac-
tion surface provide similar information as the second

Proceedings of the Thirteenth Australasian User Interface Conference (AUIC2012), Melbourne, Australia

43



Figure 6: The light source is estimated as the intersec-
tion of the lines formed by the tips of the index finger
and the corresponding shadow points. The shadow
points lie in the interaction plane and the finger tip
height above the plane is determined by placing the
hand flatly onto the interaction plane as illustrated in
figure 5.

camera used in stereo vision. The set-up would not
be suitable for general applications due to problems
with shadows being frequently occluded. However,
for touch surface style interactions our configuration
provides the required information since users sit op-
posite to the camera, the light source is on the side,
and the hand is usually approximately flat. The 3D
finger tip position O is calculated as illustrated in fig-
ure 7: A line is cast from the view point position V
through the shadow’s position S′ on the view plane.
The intersection of this line with the interaction plane
(obtained in the calibration step) is the shadow’s po-
sition S. The unknown 3D position of the point O
is given by the intersection of the line from S to the
light source L and the line from the view point V
through O′, the projection of O onto the view plane.

In our application the points O and S are the finger
tip positions and their shadows, which are calculated
as explained in subsection 4.2. Note that the above
calculation can be applied to any object for which a
corresponding shadow can be identified. For example,
figure 2 shows the use of a pen as interaction device.

Once a point can be tracked in three dimensions,
the detection of touches can be defined by specifying
a threshold for the distance between the point and
the interaction plane. This is necessary, since a finger
has a non-zero thickness. The threshold for this was
determined experimentally.

Figure 7: The setup of our virtual touchscreen.
A light source illuminates the hand, which casts a
shadow onto the interaction plane. The position of a
3D point O can be computed using the light source
position L, the web cam (view point) position V , and
the projections O′ and S′ of O and S, respectively,
onto the view plane.

5 Implementation

Our application was developed in C/C++ using the
OpenCV library (OpenCV 2011) for camera calibra-
tion, colour space conversion, pixel colour averaging,
and image segmentation. We also used the “Geomet-
ric Tools” library (Eberly 2011), particularly for the
definition of the desk plane.

5.1 Segmentation

For image segmentation we used the OpenCV func-
tions cvAcc and cvAbsDiff to accumulate and cal-
culate absolute differences for images. The re-
sults of these operations are image data structures
(IplImage) with the same dimensions as the input
images. The computation of averages is accomplished
by using cvConvertScale to divide by the number of
captured images.

All subsequent threshold values refer to 8 bit num-
bers (0 to 255) for the corresponding colour channels.
In order to place thresholds above and below the av-
erage pixel values, the average difference values are
scaled and subtracted/added to the average. Typical
scaling values for setting the thresholds above and
below the average are 7.0 and 6.0 respectively, re-
sulting in a range of approximately a 2.5% on either
side. Any value falling outside these thresholds is con-
sidered foreground and anything which falls between
these thresholds is considered background. For the
shadow detection RGB colours were converted into
HSV colours using cvCvtColor. Typical thresholds
for the value and saturation channels were 5.0 and
2.0, respectively.

Pixel classification was achieved using the
cvInRange function, which outputs monochromatic
images, which can be used as masks for subsequent
operations. For example, inverting the shadow mask
using cvNot and combining it with the background
mask using cvAnd creates a mask for the hand (all
pixels which are not background and not shadow).

Noise in the image data resulted in some pixels be-
ing misclassified. We removed it by applying a Gaus-
sian smoothing with a 9x9 window to the hand mask
and shadow mask. Holes in the hand region were filled
using a morphological operator.

5.2 Computation of 3D Finger Tip Positions

In subsection 4.4 we explained that the 3D position
of finger tips is defined as the intersection of two
rays. Due to noise, calibration errors, and numeri-
cal inaccuracies the two rays are unlikely to intersect
in practice. Instead we use an algorithm from Paul
Bourke (Bourke 2011) to find the point where the dis-
tance between the two rays is minimal.

Given the 3D positions of points of interest and
the definition of the desk plane touch interactions are
defined by instances where the distance between 3D
point and shadow point falls below a given threshold.
We determined experimentally that using a threshold
of 10mm gave best results, which represents approx-
imately the thickness of a finger. We use a coordi-
nate transformation matrix for easy conversion be-
tween the camera and desk coordinate system.

6 Results

We evaluated our prototype by investigating the influ-
ence of different parameters, by creating three proof-
of-concept applications, and by an informal user test.
We compared the interface to traditional mouse and
touch interfaces and to the “Shadow Gestures” paper,
the closest related research.

CRPIT Volume 126 - User Interfaces 2012

44



6.1 Experimental Setup

As light source we used an ordinary ceiling light with
an 11W fluorescent bulb. This is not a perfect point
light source and resulted in a soft shadow. The cur-
tains of the room were closed resulting in a low ambi-
ent light, without specular reflections from sunlight.
We used a Logitech QuickCam Pro 9000 web cam
with a resolution of 640x480 pixels. The configura-
tion of the camera, desk, and light source for develop-
ment and testing is shown in figure 8. The interaction
surface was a portion of a desk, which was slightly
glossy and prone to some measure of reflection. It
also produced a sizable highlight as shown in figure 2.
Tests with more matte surfaces improved results, but
adding constraints in form of allowable surface prop-
erties was deemed too restricting for practical appli-
cations.

Figure 8: The virtual touch screen set-up employed
during development. Left: The positions of the point
light source, desk and camera. Right-bottom: The in-
teraction surface (desk) with camera and calibration
grid. Right-top: The orientation of the camera with
respect to the monitor and desk.

All computations were performed on a PC with
an Intel Core i5 750 2.67 GHz CPU, 4 GB 1333 MHz
RAM, and an Nvidia GeForce GTX 460 graphics card
with 768 MB GDDR5 and 336 CUDA cores. Note
that no hardware acceleration was used for the com-
puter vision algorithms and that the CUDA toolkit
for OpenCV was not installed. Hence the perfor-
mance on other systems should scale approximately
linearly with CPU performance. With the above con-
figuration we achieved real-time performance of above
20 frames per second.

6.2 Influence of Parameters

6.2.1 Thresholds

Initial tests showed that the utilised segmentation
technique worked well over non-uniform static back-
grounds for stable lighting environments. The thresh-
old values described in the previous sections required
careful tuning. We developed an interface for simpli-
fying this task, but it is still a manual process, which
needs to be repeated if the setup is changed. Ideally
this process should be automated, e.g. by performing
a sequence of predefined hand postures and gestures.

6.2.2 Environmental Parameters

The background needs to be static and hence can
not be used in environments where people or objects
are moving around, which might partially obscure the
background or change the lighting environment (e.g.,
cast a shadow on the desk). We haven’t developed

applications with two-hand input, but as long as the
hands and their shadows are separated, we can’t see
any reason why this should not work. Our model
assumes that the foreground colours vary from the
background colour, hence it would not work for set-
ups where the desk and user’s skin colour are similar
or where the background’s material does not show
visible shadows.

The lighting environment needs to be a point light
source. We found that the application still works for
a ceiling lamp generating slightly soft shadows, but
it would not work for large fluorescent lights. The
algorithms were designed such that the application
would also work in an outdoor environment using the
sun as point light source. In this case the light source
would be positioned at infinity resulting in an orthog-
onal shadow projection. This will have to be tested
in future work.

6.2.3 Calibration Parameters

The calibration of the desktop plane uses well-tested
algorithms and no problems were noticed. The cal-
ibration of the light source, described in subsec-
tion 4.3.3, uses several simplifications. The fact that
the height h in figure 6 is only a rough estimation
of the actual height introduces errors when comput-
ing the depth values from the positions of the fingers
and theirs shadows. However, this was not consid-
ered a problem, since the errors do only effect ac-
tual depth estimates. For the applications we tested,
such as moving or extruding an object in 3D, rela-
tive height changes are sufficient. In order to see why,
note that the traditional mouse interface uses distance
scaling dependent on accelerations (Microsoft Corpo-
ration 2002). This is considered intuitive despite re-
sulting in a non-linear behaviour and the same physi-
cal mouse position during interactions corresponding
to different screen positions. Our tests indicate that
the main factors for usability are that the user can
perceive 3D cursor motions, their relationship to hand
motions, and that their effect on the 3D application
is predictable.

6.3 Proof-of-Concept Applications

6.3.1 Single-Touch Interface

Our first proof-of-concept application is a sketch-type
interface using the most outward point of the hand as
a single interaction point. This can be a finger tip,
the tip of the entire hand, or a stylus as explained in
subsection 4.2.1 and illustrated in figure 1 and 2.

Figure 9 demonstrates that hand and shadow de-
tection can be used to successfully detect contact with
the interaction surface and subsequent finger motions.
The hand tip and its shadow on the desk surface are
marked with white points. When contact is detected
the point colour becomes green. The 3D coordinates
displayed in the figure show the 3D position of the
interaction point. It can be seen that during con-
tact the depth value can vary slightly due to noise, a
changing finger angle, and compression of the finger
tip.

Touch detection is sufficiently accurate to draw
complex shapes as shown in figure 10. Some jitter
is visible partially due to finger motions and partially
due to noise in the detected finger position.

6.3.2 Multi-Touch Interface

The second proof-of-concept application explores the
possibility of multi-touch interactions using multiple
finger tips. Figure 11 shows that as long as the hand
shadow is fully visible 3D positions can be tracked for

Proceedings of the Thirteenth Australasian User Interface Conference (AUIC2012), Melbourne, Australia

45



Figure 9: Examples of a sketch-application. The
sketch starts as soon as the finger touches the inter-
action surface and tracks the finger motion until the
contact stops.

Figure 10: Different shapes drawn using different
hand gestures with a single interaction point. Shapes
can be drawn by connecting multiple contact points
with line segments (left), or by a continuous finger
motion (middle and right).

all fingers. The association of finger tips and shadow
points is achieved by minimising the distances be-
tween each pair of points. If the hand is rotated or
the hand overlaps the shadow region the finger tip
detection can fail for the shadow region. In that case
the 3D position of the corresponding finger tip can-
not be computed. Improvements might be possible
by using different finger tip detection techniques or
by using a hand model and computing a 3D configu-
ration matching both the hand and shadow image.

Figure 11: Tracking of the 3D position of multiple fin-
gers (left). The displayed numbers give the height of
each finger tip in millimeters. The green lines connect
finger tips with the corresponding shadow points. If
the hand moves closer to the interaction plane the
detection of convex defects fails and the 3D position
can not be computed (middle and right).

6.4 3D Modelling Application

The third proof-of-concept application demonstrates
a 3D modeling application. 3D extruded objects are
created by touching the interaction surface, moving
the finger to draw a 2D shape, and extruding it by
lifting the hand. For the configuration in figure 8 the
maximum possible extrusion height was about 18cm.
The current application extrudes the raw 2D sketches
without modification. Spline curves could be used
to smooth the sketch input and OpenGL tessellation
algorithm could be used to create a closed 3D shape.

6.5 Informal User Test

We tried our application with five users unfamiliar
with the project and aged between 7 and 39 years.
The participants were asked to use the sketching ap-
plication without any explanations or introduction to
the program. All users exhibited what appeared to be
a high level of enjoyment, and there was some com-
petition among the younger users (7 and 11 years

Figure 12: Examples of a 3D modelling application:
3D shapes are created by drawing a 2D shape using a
single-finger gesture on the surface, and then extrud-
ing it by lifting the hand.

old) for time using the program. Finger tracking
performed as expected and described in the previ-
ous subsections. Difficulties arose as users assumed
multitouch capabilities and multi-user support would
work. Furthermore, as multiple users crowded around
the desk, blocking of the light source became an is-
sue as standing peoples heads came between the light
source and the desk. Also the sometimes inconsis-
tent touch registration on parts of the surface near
the centre of the highlight and in the darker regions
to the right were found to be frustrating.

Users did not seem to have any intuitive grasp of
what areas were likely to respond to touches better
than others. User reactions indicated that the most
important improvement for future work are multi-
touch support and a more robust touch registration.

6.6 Comparison with Traditional Interfaces

The most popular traditional positional input devices
are mice and touch screens. Similar to mice our in-
put device does not allow direct interaction with the
display, but uses instead a cursor moved by the hand
motions. This maximises the visible screen space, but
introduces a level of indirection.

In contrast to both mice and touch screens we can
input 3D positions. However, we feel that the mouse
interface is by far the most ergonomical one. Also
the mouse interface seems to be most precise and al-
lows scaling of motions using accelerations. While
this could also be implemented for our interface, the
implementation is not as straight forward since the
start and end of motions would have to be indicated
either by hand gestures or surface contacts.

While our interface allows multi-touch interactions
in principle, we found this difficult in practice due
to self-occlusions. Similar to mice our interface is
portable and is independent of the display device.
Like most interfaces a smooth motion, e.g. drawing
a smooth curve, is difficult without postprocessing.
We did not make any formal tests of the achievable
precision, although our informal tests indicate that
in terms of point selection our interface is less precise
than a mouse.

CRPIT Volume 126 - User Interfaces 2012

46



6.7 Comparison with “Shadow Gestures”

We found only one other paper using hand gestures
and their shadows for 3D interactions (Segen & Ku-
mar 1999). In contrast to our research the paper puts
many more constraints on the environment including
a uniform background, pre-calibrated cameras, and
a calibration step for the light source, which is not
described in the paper. While the authors mention
that they compute 3D points, most interactions use
2D information and surface touches are not detected.

In contrast to our goal of extending touch screen
interactions, Segen and Kumar use the shapes formed
by two fingers to define different gestures. The capa-
bilities of the resulting gesture interface are demon-
strated with different example applications, such as
manipulating 3D objects or steering a plane through a
3D terrain. This seems to be predominantly achieved
by the orientation and shape of the two fingers, rather
than computing accurate 3D position. The authors
mention that their system fails if the hand moves close
to the table.

7 Conclusion

The mouse and keyboard combination of input de-
vices has dominated the desktop computing interface
for decades. The explosion of portable computing
devices such as iPhone and iPad has made intuitive
touch and motion controls popular and they are now
slowly finding their way to the desktop platform.

An analysis of the strengths of the mouse and key-
board configuration and the weaknesses of current
approaches to touch interfaces motivated a new ap-
proach combining the advantages of both of these in-
terfaces. In this paper we attempted to develop such
an interface using inexpensive hardware (webcam and
light bulb).

We have presented a prototype of a 3D virtual
touch screen which uses a web cam to track the posi-
tion of the user’s fingers and their shadows and from
this computes 3D points. We showed that the system
works well for single touch inputs, but problems ex-
ist for multi-touch interactions due to finger shadows
being partially occluded.

In contrast to previous work by Segen and Ku-
mar (Segen & Kumar 1999) we provide a more sta-
ble tracking technique allowing a wider range of en-
vironmental conditions and simpler calibration steps.
Most importantly we move away from gestures and
towards touchscreen emulation, and hence simulate
and extend an input mechanism that is already being
widely adopted outside the desktop platform.

Another advantage of our application is that it can
be used in combination with a traditional mouse in-
terface. While mouse interactions occur our interface
can be disabled, and when the mouse is moved aside
(not visible on the interaction surface) the 3D touch
capabilities can be enabled.

8 Future Work

Two key categories of work remain ahead. First,
segmentation of shadows and hands from the back-
ground must be improved. Second, occlusion of rel-
evant shadow information must be dealt with. For
shadow detection and background subtraction, a sys-
tem which automatically adjusts to different back-
grounds is necessary. Thresholds based on the light-
ness or darkness of the background on a per pixel ba-
sis should be produced. Additionally improved hand
detection is required, e.g., by using skin colour detec-
tion (Kakumanu et al. 2007, Vassili et al. 2003, Liu
et al. 2011). The tracking and prediction of finger

and shadow movements should also be investigated
as a method for dealing with transitory occlusion pe-
riods.

In previous work we developed “LifeSketch”, an
application for the sketch-based modelling of interac-
tive 3D environments (Yang & Wünsche 2010, Guan
& Wünsche 2011, Olsen et al. 2011, Schauwecker et al.
2011). The interface presented in this paper will sig-
nificantly simplify many of the presented modelling
interactions. For example, we showed that complex
buildings can be modelled from 2D outlines, but often
additional 3D parameters such as extrusion depth are
required (Olsen et al. 2011). Similarly animating 3D
objects is cumbersome by using only 2D touch/sketch
interactions (Schauwecker et al. 2011).

8.1 Future Applications

The applications so far developed and described in
this paper only show a small fraction of what the
input mechanism produced here can accomplish. Ex-
pansion of application capabilities should be a future
priority. In June 2011, Microsoft gave the first official
public viewing of Windows 8. The default interface
for the world’s most popular operating system is be-
ing designed from the ground up to be touch-based.
Microsoft currently states that a mouse and keyboard
will still work for interactions, but the design should
create increased demand for low cost desktop based
touch interfaces.

Our design works for any configuration using a
single point light source, which casts shadows onto
a roughly planar surface. We are hence interested
to try the system in outdoor environments using the
sun as light source. Problems will occur when the sun
stands low and the shadows are stretched. Also the
sun’s position will move over time, which requires oc-
casional recalibration. Two such calibrations should
be enough to interpolate and predict further position
changes.

References

Argyros, A. A. & Lourakis, M. I. A. (2006), Binocu-
lar hand tracking and reconstruction based on 2d
shape matching, in ‘Proc. International Conference
on Pattern Recognition (ICPR ’06)’, pp. 207–210.

Bourke, P. (2011), ‘Geometry, surfaces, curves, poly-
hedra’. http://paulbourke.net/geometry.

Bradski, G. & Kaehler, A. (2008), ‘Learning OpenCV:
Computer vision with the OpenCV library’.

Chen, Q., Georganas, N. & Petriu, E. (2007), Real-
time vision-based hand gesture recognition us-
ing haar-like features, in ‘Instrumentation and
Measurement Technology Conference Proceedings,
2007. IMTC 2007. IEEE’, pp. 1–6.

Chong, H. Y., Gortler, S. J. & Zickler, T. (2008),
‘A perception-based color space for illumination-
invariant image processing’, ACM Trans. Graph.
27(3), 1–7.

Eberly, D. (2011), ‘Geometric tools’. http://www.
geometrictools.com.

Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D. &
Twombly, X. (2005), A review on vision-based full
dof hand motion estimation, in ‘Proceedings of the
2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05) -
Workshops - Volume 03’, IEEE Computer Society,
Washington, DC, USA, pp. 75–82.

Proceedings of the Thirteenth Australasian User Interface Conference (AUIC2012), Melbourne, Australia

47



Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D. &
Twombly, X. (2007), ‘Vision-based hand pose es-
timation: A review’, Journal of Computer Vision
and Image Understanding 108, 52–73.

Gonzalez, B. & Latulipe, C. (2011), BiCEP: biman-
ual color exploration plugin, in ‘Proceedings of the
2011 annual conference extended abstracts on Hu-
man factors in computing systems’, CHI EA ’11,
ACM, New York, NY, USA, pp. 1483–1488.

Guan, L. & Wünsche, B. C. (2011), Sketch-
Based Crowd Modelling, in ‘Proceed-
ings of the 12th Australasian User Inter-
face Conference (AUIC 2011)’, pp. 67–76.
http://www.cs.auckland.ac.nz/~burkhard/
Publications/AUIC2011_GuanWuensche.pdf.

Hardenberg, C. & Bérard, F. (2001), Bare-hand
human-computer interaction, in ‘Proceedings of the
2001 workshop on Perceptive user interfaces’, PUI
’01, ACM, New York, NY, USA, pp. 1–8.

Homma, K. & Takenaka, E.-I. (1985), ‘An image
processing method for feature extraction of space-
occupying lesions’, Journal of Nuclear Medicine
26(12), 1472–1477.

Hsieh, C.-C., Tsai, M.-R. & Su, M.-C. (2008), A
fingertip extraction method and its application to
handwritten alphanumeric characters recognition,
in ‘Proceedings of the 2008 IEEE International
Conference on Signal Image Technology and Inter-
net Based Systems’, SITIS ’08, IEEE Computer So-
ciety, Washington, DC, USA, pp. 293–300.

Kakumanu, P., Makrogiannis, S. & Bourbakis, N.
(2007), ‘A survey of skin-color modeling and detec-
tion methods’, Pattern Recogn. 40(3), 1106–1122.

Laptev, I. & Lindeberg, T. (2001), Tracking of multi-
state hand models using particle filtering and a hi-
erarchy of multi-scale image features, in ‘Proceed-
ings of the Third International Conference on Scale-
Space and Morphology in Computer Vision’, Scale-
Space ’01, Springer-Verlag, London, UK, pp. 63–74.

Latulipe, C., Mann, S., Kaplan, C. S. & Clarke, C.
L. A. (2006), symspline: symmetric two-handed
spline manipulation, in ‘Proceedings of the SIGCHI
conference on Human Factors in computing sys-
tems’, CHI ’06, ACM, New York, NY, USA,
pp. 349–358.

Lee, M. & Woo, W. (2003), ARKB: 3d vision-based
augmented reality keyboard, in ‘ICAT’.

Liu, R. (2010), A framework for webcam-based hand
rehabilitation exercises, BSc Honours Disserta-
tion, Graphics Group, Department of Computer
Science, University of Auckland, New Zealand.
http://www.cs.auckland.ac.nz/~burkhard/
Reports/2010_S1_RuiLiu.pdf.

Liu, R., Wünsche, B. C., Lutteroth, C. & Del-
mas, P. (2011), A framework for webcam-
based hand rehabilitation exercises, in ‘Pro-
ceedings of VISAPP 2011’, pp. 626 – 631.
http://www.cs.auckland.ac.nz/~burkhard/
Publications/VISAPP2011_LiuEtAl.pdf.

Mahmoudi, F. & Parviz, M. (2006), ‘Visual hand
tracking algorithms’, Geometric Modeling and
Imaging–New Trends 0, 228–232.

Malik, S. & Laszlo, J. (2004), Visual touchpad: a
two-handed gestural input device, in ‘Proceedings
of the 6th international conference on Multimodal
interfaces’, ICMI ’04, ACM, New York, NY, USA,
pp. 289–296.

Microsoft Corporation (2002), ‘Pointer ballistics for
Windows XP’. http://msdn.microsoft.com/
en-us/windows/hardware/gg463319.aspx.

Olsen, D. J., Pitman, N. D., Basakand, S. &
Wünsche, B. C. (2011), Sketch-based build-
ing modelling, in ‘Proceedings of GRAPP
2011’, pp. 119–124. http://www.cs.auckland.
ac.nz/~burkhard/Publications/GRAPP2011_
OlsenEtAl.pdf.

OpenCV (2011), ‘homepage’. http://opencv.
willowgarage.com/wiki.

Park, J. & Yoon, Y.-L. (2006), ‘LED-glove based in-
teractions in multi-modal displays for teleconfer-
encing’, International Conference on Artificial Re-
ality and Telexistence pp. 395–399.

Schauwecker, K., van den Hurk, S., Yuen, W. &
Wünsche, B. C. (2011), Sketched interaction
metaphors for character animation, in ‘Proceed-
ings of GRAPP 2011’, pp. 247–252. http://www.
cs.auckland.ac.nz/~burkhard/Publications/
GRAPP2011_SchauweckerEtAl.pdf.

Segen, J. & Kumar, S. (1999), ‘Shadow gestures: 3d
hand pose estimation using a single camera’, Com-
puter Vision and Pattern Recognition, IEEE Com-
puter Society Conference on 1, 1479.

SIMTICS Ltd. (2011), ‘SIMTICS Ltd. homepage’.
http://www.simtics.com/.

Song, P., Winkler, S., Gilani, S. O. & Zhou, Z. (2007),
Vision-based projected tabletop interface for finger
interactions, in ‘Proceedings of the 2007 IEEE in-
ternational conference on Human-computer inter-
action’, HCI’07, Springer-Verlag, Berlin, Heidel-
berg, pp. 49–58.

Stenger, B., Mendona, P. R. S. & Cipolla, R. (2001),
‘Model-based 3d tracking of an articulated hand’,
Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on 2, 310.

Stenger, B., Thayananthan, A., Torr, P. H. S. &
Cipolla, R. (2006), ‘Model-based hand tracking us-
ing a hierarchical bayesian filter’, IEEE Trans. Pat-
tern Anal. Mach. Intell. 28(9), 1372–1384.

Terajima, K., Komuro, T. & Ishikawa, M. (2009),
Fast finger tracking system for in-air typing in-
terface, in ‘Proceedings of the 27th international
conference extended abstracts on Human factors in
computing systems’, CHI EA ’09, ACM, New York,
NY, USA, pp. 3739–3744.

Vassili, V. V., Sazonov, V. & Andreeva, A. (2003),
A survey on pixel-based skin color detection tech-
niques, in ‘Proc. Graphicon’, pp. 85–92.

Wang, R. Y. & Popović, J. (2009), Real-time hand-
tracking with a color glove, in ‘SIGGRAPH ’09:
ACM SIGGRAPH 2009 papers’, ACM, New York,
NY, USA, pp. 1–8.

Wang, X., Zhang, X. & Dai, G. (2007), Tracking of
deformable human hand in real time as continuous
input for gesture-based interaction, in ‘Proceedings
of the 12th international conference on Intelligent
user interfaces’, IUI ’07, ACM, New York, NY,
USA, pp. 235–242.

Yang, R. & Wünsche, B. C. (2010), LifeS-
ketch - A Framework for Sketch-Based Mod-
elling and Animation of 3D Objects, in
‘Proceedings of the Australasian User In-
terface Conference (AUIC 2010)’, pp. 1–10.
http://www.cs.auckland.ac.nz/~burkhard/
Publications/AUIC2010_YangWuensche.pdf.

CRPIT Volume 126 - User Interfaces 2012

48




