
Agent-Based Distributed Software Verification

Chris Hunter Peter Robinson Paul Strooper

School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia
Email: {chris,pjr,pstroop}@itee.uq.edu.au

Abstract

Despite decades of research, the takeup of formal
methods for developing provably correct software in
industry remains slow. One reason for this is the high
cost of proof construction, an activity that, due to the
complexity of the required proofs, is typically carried
out using interactive theorem provers. In this paper
we propose an agent-oriented architecture for inter-
active theorem proving with the aim of reducing the
user interactions (and thus the cost) of constructing
software verification proofs. We describe a prototype
implementation of our architecture and discuss its ap-
plication to a small, but non-trivial case study.

Keywords: Formal methods, software engineering,
trusted systems

1 Introduction

Formal methods is the area of research dealing with
developing verifiably correct software. Although we
have known since the 1970s, for example, how to prove
the correctness of imperative programs, such tech-
niques are still not used widely in industry. One of the
main reasons concerns the cost of developing the re-
quired proofs — constructing proofs by hand is both
tedius and error-prone, hence the need for automated
mechanical tools to support the process. Due to the
complexity of the proofs, tactic-style user-driven in-
teractive theorem provers are the only viable tools.
Although they allow the user to mix manual proof
construction for the more difficult subproofs with au-
tomatic proof construction for the rest via tactics,
the number of user interactions required and hence
the cost of using such tools is still too great.

One way to increase the cost-effectiveness of soft-
ware verification is via distributed interactive theo-
rem proving, where background execution of tactics
is used to both speedup automated reasoning and to
make such execution more appealing to the user by
allowing them to continue with their own proof con-
struction in the foreground. Accounts in the litera-
ture of constructing a distributed interactive theorem
prover include Hickey’s distributed MetaPRL system
(1999), in which the multi-threaded nature is hidden
from the user, and the Distributed Larch Prover of
Vandevoorde and Kapur (1996), which allows the user

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at The Twenty-Eighth Australasian Computer
Science Conference (ACSC2005),Newcastle, Australia, January
2005. Conferences in Research and Practice in Information
Technology, Vol. 38. Vladimir Estivill-Castro, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

to manually spawn proof jobs for background execu-
tion.

Although such systems provide some advantage
over conventional single-threaded theorem provers,
we believe background processing alone is not suffi-
ciently cost-effective for two reasons.

1. The size of the search space typically means the
size of the required proof does not increase lin-
early with the time taken to find the proof, thus
limiting the size of subproofs that can be tackled
by an automated reasoning component

2. The cost of choosing an appropriate reasoning
component for background execution can itself
be of comparable expense to constructing the
proof manually, since the user usually must un-
derstand the proof obligation to make a sensible
choice of what to execute.

We address these issues by proposing an archi-
tecture for distributed interactive theorem proving
based on the Multi-Agent System (MAS) paradigm
(Jennings et al. 1998). The architecture allows both
autonomous proof construction and cooperation be-
tween reasoning components. In the terminology of
Zambonelli et al. (2003), it belongs to the class of
distributed problem solving systems in which compo-
nent agents are expicitly designed to achieve a given
goal. This contrasts with so-called open systems in
which the agents are not co-designed to achieve a
common goal.

The structure of the paper is as follows. We begin
by presenting an overview of our agent-based archi-
tecture in Section 2. In Sections 3,4 and 5 we discuss
the individual agents in more detail. In Section 6 we
describe a prototype implementation of our architec-
ture before briefly presenting the results of a software
verification case study that uses this implementation
in Section 7. We present our conclusions and plans
for future work in Section 8.

2 Architecture Overview

Our architecture for agent-based interactive theo-
rem proving consists of a personal assistant , multi-
ple proof agents and a broker — Fig. 1 provides an
overview.

A user will have one associated personal assistant
whose job it is to monitor the proof the user is work-
ing on and (sometimes semi-) autonomously make
use of proof agents to construct parts of the proof
tree. The personal assistant also provides an inter-
face that allows the user to assist the proof agents
by completing problematic subproofs (complementing
the autonomous agent-based proof construction). In
this capacity, the personal assistant must make sure
the user is not inundated with information, especially
proof requests.

Proof agents provide the automated reasoning ca-
pabilities of the system. A proof agent will typically

Proof
agent

Proof
agent

User

Broker

User
Proof

Personal
Assistant

proof requests/
proofs

estimate requests/
estimates

interacts with

Figure 1: Overview of agent-based architecture

encapsulate a particular reasoning style, search strat-
egy or theorem-proving domain. Apart from provid-
ing proofs via a server interface, a proof agent must
also be able to give an assessment (an estimate) of
both its chance of successfully providing a proof of
a particular goal and of the resources it will require
in the process. A proof agent may improve both its
performance and the accuracy of its estimates over
time (a learning component). A proof agent may also
engage the services of other proof agents via a client
interface for subgoals that it cannot deal with itself.

Finally, the broker agent is essentially a sophisti-
cated service directory — it is responsible for putting
proof agents in touch with one another. Proof agents
register with the broker initially, possibly with an in-
dication of their general reasoning expertise. When a
proof request is received from a proof agent, the bro-
ker asks (possibly a subset of) the registered agents
for estimates for the problem. The broker may mod-
ify the estimates based on historical accuracy before
passing them on to the requesting proof agent. The
requesting proof agent may subsequently wish to en-
gage in a bidding process via the broker with one or
more of the agents that provided estimates. Once a
proof agent decides on which estimate (if any) to ac-
cept, the agent talks directly to the server interface
of the chosen agent. In the language of the contract
net protocol (Smith 1980), the client agent awards a
contract to the serving agent.

3 Proof Agents

Fig. 2 provides an overview of the structure of the
basic reasoning block of our architecture — the proof
agent . A proof agent will always consist of a proof en-
gine (the agent’s reasoning capability), an estimation
facility for determining the proof engine’s suitability
for a given problem, and a server interface for inter-
acting with clients wishing to make use of the agent’s
reasoning capability. A proof agent may optionally
have a client interface allowing the agent to take ad-
vantage of the reasoning capabilities of other proof
agents for goals its own proof engine can only par-
tially prove. Following Clark and Robinson (2002),
these components will typically be implemented us-
ing separate threads. Indeed, because an agent may
be constructing several proofs concurrently, the proof
engine will itself usually be multithreaded, with one
thread for each proof attempt.

Because proof agents do not autonomously choose
which subgoals to attempt proofs of, a proof agent

Proof engine

Estimator

Client
Interface

Server
Interface

Client

Server

Proof
thread 1

Proof
thread 2

Figure 2: Overview of a proof agent

must have a server interface if it is to be of any use.
A server interface supplies two types of information
to other agents: proofs and estimates. The provision
of estimates is referred to as bidding . The estimates
provided by a proof agent consist of two parts — a
time estimate and a probability estimate. Given some
goal g to be proved, we interpret an estimate e(p, t) as
saying that there is a probability p that the agent will
successfully find a proof for g within time t . More pre-
cisely, t is a bound on the agent’s computational re-
source requirements. Sophisticated proof agents may
provide multiple estimates for a given goal, e.g. an
agent may vary the amount of search it performs, thus
affecting both time and probability estimates — the
longer it spends, the greater the probability that it
will find a proof. Agents may base their estimates
on past performance, the syntactic structure of the
problem, or some other calculation.

The client interface of a proof agent is responsible
for engaging the services of other proof agents when
it cannot prove a subgoal itself. We provide a generic
client interface agent that encapsulates the required
functionality, simplifying the implementation of proof
agents. The client interface agent becomes a subagent
of a proof agent, executing independently of the proof
agent’s proof engine. It provides both the interface
required to delegate proof jobs, and the functionality
to manage the entire process for potentially multiple
concurrent proof requests from multiple proof jobs.

The client interface agent uses the following
formula to decide which serving agent(s) it wants to
attempt a given proof:

Given a set of estimates E , and a required time
tr (75% of the upper time bound provided by
the proof engine), we choose the subset C of E

{e(p1, t1), ..., e(pn , tn)} where
∑n

i=1 ti < tr and for
which the value of 1 −

∏n

i=1(1 − ei) is maximised.

C represents the combination of estimates that col-
lectively provide the best chance of finding a proof
within the required time. Having chosen the set of
successful bidders, the client interface schedules the
jobs to run sequentially — proof agents are stopped
once they reach their estimated time bound. Note
that for the purposes of this paper we assume all
agents are located on a single computational resource.
Also note the 75% time bound — this allows the proof
agents to overrun slightly when constructing the proof
and still allow the client interface agent to meet its
required bound.

As an example, one of the proof agents that we
have constructed is a proof reuse agent that attempts

to construct a proof of a target goal based on a
similar (already-constructed) source proof (Hunter
et al. 2004). The agent’s probability estimate is based
on how closely the source and target goals match.
It provides a series of estimates based on how much
search it performs attempting to follow the source
proof. For subgoals arising in the target proof that
have no counterpart in the source proof, or if follow-
ing the source proof is no longer possible, the reuse
agent uses its client interface.

Finally, we have so far assumed proof agents pro-
vide a complete proof of a goal — we refer to these
as total agents. Another possibility is partial agents
that transform an open goal into one or more sub-
goals. We incorporate partial agents into our frame-
work via confidence estimates that are provided by
partial agents in place of the standard estimates. A
confidence estimate is the confidence a partial agent
has that it can “make progress” on a problem. It is
up to the client to decide which (if any) partial agents
it wants to use — a simple option is for the client to
choose the partial agent with the best confidence esti-
mate, allow it transform the goal, and then proceed as
normal. Note that a partial agent would rarely make
use of a client interface itself since it is expected that
a partial agent produces an incomplete proof.

4 Broker

The broker agent acts as a sophisticated service di-
rectory. Concretely, for a particular proof request,
the broker interacts with known serving agents to ac-
quire estimates that are then modified for accuracy
before being passed back to the client. For a given
agent, probability estimates are modified for the last
n proofs attempted by the agent using an accuracy
measure accm and an effacing measure effm , which
we define as follows:

accm =
1

n

n
∑

i=1

fi effm =
1

n

n
∑

i=1

gi

where for the i th proof (where pi is the original prob-
ability estimate for that proof),

fi =

{

pi − 0.5 if proof succeeded
0.5− pi if proof failed

and

gi =

{

1.0− pi if proof succeeded
−pi if proof failed

The result of the accuracy measure is a num-
ber between -0.5 and +0.5 — a negative value
indicates the agent would be better off guessing.
The effacing measure is an indication of an agent’s
over/underestimation of its abilities — the sign of
the measure indicates over or underestimation and
the magnitude indicates the amount. Assuming an
agent has completed a sufficient number of proofs for
accm and effm to be significant, the broker combines
the measures to produce the broker’s modified prob-
ability estimate pb as follows:

pb = (accm + 0.5)(min(1, p + effm)) + (0.5− accm)h

where for a particular agent, p is the probability esti-
mate provided by the agent and h is the broker’s own
measure of how likely the agent is to succeed at the

current problem — we simply take h to be the histor-
ical number of successful proofs divided by the total
number of proof attempts made by the agent. For
agents with 100% accuracy, i.e., accm = 0.5, pb de-
pends entirely on the estimate provided by the agent
(adjusted for historical over/underestimation), while
for agents with accm = −0.5, the adjusted estimate
depends solely on the broker’s own judgment of the
agent’s chances of finding a proof.

The broker modifies the time estimates of an agent
using the taccm measure:

taccm =
1

n

n
∑

i=1

fi

where for the i th proof,

fi =

{

tai − tei if tai > tei
0 otherwise

where tei is the estimated time and tai is the time
actually taken. For an agent with some taccm that
submits a time estimate t , the modified time estimate
is then just t + taccm . Note that taccm is always
positive — it is a measure of the average time an
agent exceeds its time estimate.

5 Personal Assistant

The personal assistant agent can be viewed as part of
a “user” proof agent: the proof the agent is working
on is the user proof, the user is the proof engine, and
the personal assistant provides the agent’s server and
semi-autonomous client interfaces.

The personal assistant’s client interface drives
the background agent-based theorem-proving effort.
Agents can be invoked either by the user, or au-
tonomously by the personal assistant itself, to work
on problems from both the original source proof, as
well as proofs that result from server interface activ-
ity.

For the case of autonomous invocation, the per-
sonal assistant initially asks each agent for bids for
each unproved goal in the user proof(s), giving each
received bid a rating according to a function of the
form:

f PAClientRate(p, a, 1/t , 1/f)

where p and t are the probability and time estimates,
respectively, of the bid, a is a term relating to the age
of the node for which the bid was made (the time since
the node was created) and f is the number of failed
proof attempts of the node. Note that we write 1/t
and 1/f to indicate inverse relationships. The greater
the age of the node the better, since this decreases
the chance of the user starting a proof of the node
themselves, thus making the agent’s work redundant,
whilst we equate proof difficulty with the number of
failed proof attempts — the more difficult it is to find
a proof of a node, the more likely it will require user
intervention. The larger the value of f PAClientRate,
the more likely a bid will be accepted. Note that the
statement of the function merely gives a general indi-
cation of the factors that we have identified as being
important — the exact weighting given to each de-
pends on the particular implementation of the archi-
tecture. One possibility is for the personal assistant
to adjust the weightings based on experience.

Where the responsibility for actually modifying
the user proof lies, depends on the theorem prover’s
user interface and on the variable instantiations of the
agent’s proof. As a rule, the personal assistant should
only modify the user proof if the (agent-calculated)

proof contains no extra variable instantiations, and if
modifying the proof does not disrupt any proof efforts
of the user; otherwise, the personal assistant should
simply provide the user with the ability to view and
apply completed agent proofs.

The personal assistant’s server interface receives
estimate and proof requests just like any other agent,
however, since the personal assistant cannot directly
“invoke” its proof engine, it must attempt to per-
suade the user to fulfill proof requests. Why is the
personal assistant interested in involving the user in
the first place? For proof requests that come back
to the personal assistant that are simpler than the
subgoals from the user proof from which they orig-
inally arose, it makes sense for the user to work on
these rather than the original subgoals. So, with re-
spect to its server interface, the personal assistant’s
desire, in the agent sense, is to involve the user as
much as possible in fulfilling proof requests without
the user’s interest in helping out waning over time.
The user losing interest equates to a perception that
their time is being wasted, possibly a result of the
personal assistant over-exaggerating the importance
of proof requests, or of excessive numbers of either
unprovable subgoals, or subgoals that are part of a
larger unprovable goal. Hence, the personal assistant
needs to ensure the amount of time the user spends
unproductively, i.e., time other than that spent actu-
ally constructing proofs to fill useful proof requests, is
less than the time saved by the (partial) proofs pro-
vided by other proof agents.

As a baseline, the personal assistant must provide
the user with enough information so the user can de-
termine the benefits or otherwise of filling a proof
request. Apart from a statement of the proof goal
itself, the user must also be able to access the en-
tire proof effort up until that point: this includes the
proof tree rooted at a node in the original user proof
together with information about which agents were
responsible for which parts, failed proof attempts and
bid information, and estimates of the amount of proof
remaining. In particular, the user will often be inter-
ested in the other open proof goals — there is no
point constructing a proof for one goal if there are
other unprovable proof obligations.

Given the typically large number of competing in-
coming proof requests that might be active at any
one time, more important than just presenting infor-
mation to the user is for the personal assistant to
prioritise the proof requests, thus saving the user the
task of having to navigate through the myriad of re-
quests that come the personal assistant’s way. For
example, the user’s attention should be drawn to a
proof request arising from the largely completed proof
of a major chunk of the user’s main proof ahead of a
proof request from an agent that has made virtually
no progress and that gave a low probability bid in
the first place. For this purpose we use the following
function to rate proof requests.

f PAServerRate(R,P , I ,L,U)

R is the likelihood the unfinished parts of a proof
(not including the part of the proof associated with
the current proof request) can be completed auto-
matically by the current agents. P is a measure of
the progress made by the agents on the original proof
request from which the current job is derived. I is
a term relating to the importance of the proof from
which the request arose. We measure importance sim-
ply by the expression 1/pbest , where pbest is the best
estimate the personal assistant received for the root
node in the proof request chain (the node from the
user proof). L is the historical likelihood of the user
completing a request by the agent involved, i.e., the

completed proof requests divided by the total proof
requests. Finally, U relates to whether the user or
the personal assistant was responsible for originally
initiating the proof job — if the personal assistant
was responsible, U = 1, otherwise U takes on a value
greater than 1. This reflects the fact that the user is
better equipped to determine the suitability of agents
for particular tasks than an automated personal as-
sistant that relies on estimates from proof agents, i.e.,
there is a greater chance of the user wanting to fill the
particular proof request.

As a final consideration for the server interface,
we note that the “user” agent is highly asynchronous,
i.e., it is likely the proof attempt from which a proof
request was made has moved on at the very least,
if not abandoned entirely, by the time the user gets
around to filling the request. This is especially the
case when a user only looks at the proof attempt his-
tory (including proof requests) of a subgoal when they
get around to proving that subgoal themselves (which
we have found to be a useful way to use such a sys-
tem in practice). We address this by supplying the
entire proof request history, rooted at a node in the
user proof, to the personal assistant for each proof
request. In this way the work that led to the proof
request is not lost and the user’s efforts in filling in
the proof are not wasted.

6 A Prototype Implementation

We have developed a prototype implementation of
our architecture in the Ergo theorem prover (Utting
et al. 2002) using the QuProlog language (Clark
et al. 2001). QuProlog provides support for multi-
threaded applications via the Inter-Agent Commu-
nications Model (ICM) (McCabe 2000). In the
distributed logic programming model provided by
QuProlog, threads communicate via message pass-
ing. Each thread represents a separate logical de-
duction — importantly, variables are not shared be-
tween threads. The implication is that proofs cal-
culated in background threads are separate from the
foreground/main user proof.

This separation of proof states fits neatly with
our view of reasoning capabilities being encapsulated
within a proof agent. However, it does create an is-
sue in relation to conflicting variable instantiations
between proof threads/agents. If two agents work-
ing on seperate subgoals try to instantiate a common
variable with conflicting terms there will be the po-
tential for wasted computation, i.e., if both agents
successfully produce proofs, one of the proofs must
be discarded. The only way to address this wastage
is for one agent to influence the operation of another,
for example by ensuring that the agents agree an in-
stantiation is feasible or by actually sharing instanti-
ations. Although this seems sensible, in practice the
costs associated with one agent disrupting the work
of another, especially if one of the agents happens to
be the user, are significant. We thus take the view
that if integrating a background proof into the fore-
ground fails, this is because the background proof is of
a problem that is no longer relevant to the foreground
proof. In other words, if a user has accepted a proof,
and by association the corresponding variable instan-
tiations, from an agent, any subsequent proof with a
conflicting variable instantiation will be discarded.

To incorporate a proof completed by a proof
agent that has been accepted by the user, we re-
run/reconstruct the proof in the main user proof. Re-
running proofs simplifies the implementation — any
inconsistent variable instantiations between the new
proof and the existing proof will arise as part of the
rerun, thus causing the process to fail. Further, this

The broker interface, allowing reigstered agents to be accessed

The reuse agent - conducting jobs for the personal assistant (bottom)
and making use of the search agent for difficult subgoals (top)

The search agent, conducting proof jobs for both
the personal assistant and the reuse agent

The controller interface - the user can
examine output from all proof threads

Figure 3: Our prototype user interface

implementation choice means the integrity of the Ergo
core, which consequently does not have to be modi-
fied, is maintained. Note that since we are only rerun-
ning the proof and not the process that produced the
proof, the time taken to rerun proofs is typically neg-
ligible compared to the time taken to find the proof
in the first place. To simplify the implementation
of proof agents, we provide a Controller thread that
provides methods for creating and destroying proof
threads, incorporating the resulting proof into the
main user proof, and so on.

The implementation of our core agent architec-
ture consists of approximately 1500 lines of QuProlog
code; individual agents range from around 100 lines of
code to over 2000 lines (for the reuse agent described
previously). Our prototype personal assistant con-
sists of a client interface that rates bids based only
on the probability and time estimates (p and t) and
a server interface that simply presents an unordered
list of proof requests to the user. We have developed
a graphical user interface to support the use of our
agent architecture; Fig. 3 shows a sample screenshot.
Agents are identified by a unique icon which is used in
both client/server panes as well as in the broker inter-
face; this kind of visual aid helps the user to monitor
the state of the background proof effort.

7 Case Study

As an initial step towards validating the usefulness
of our agent architecture, we have used our proto-
type implementation to verify the correctness of a
program that solves Dijkstra’s Dutch National Flag
Problem (Dijkstra 1976). The program partitions
coloured array elements in accordance with the Dutch
national flag (red followed by white followed by blue).
Our verification takes place using a Hoare-style logic

(Hoare 1989) — the program, together with pre/post
conditions and loop invariant and variant (used to
show the loop terminates), is shown in Fig. 4.

|[con N : int{N ≥ 0};
var h : array[0..N) of [red,white, blue]
var r , w , b : int;
r ,w , b := 0, 0,N ;
do w 6= b →

{Invariant = (∀ i : 0 ≤ i < r : h.i = red) ∧
(∀ i : r ≤ i < w : h.i = white) ∧ (∀ i : b ≤ i < N :
h.i = blue) ∧ 0 ≤ r ≤ w ≤ b ≤ n,Variant = b − w}
if h.w = red → swap.h.w .r ; r , w := r + 1,w + 1
[] h.w = white → w := w + 1
[] h.w = blue → swap.h.w .(b − 1); b := b − 1
fi

od

{(∀ i : 0 ≤ i < r : h.i = red) ∧ (∀ i : r ≤ i < w : h.i = white) ∧
(∀ i : w ≤ i < N : h.i = blue)}

]|

Figure 4: A program written in the guarded command
language for solving the Dutch National Flag problem

Fig. 5 presents an overview of the proof con-
structed using our architecture to verify the pro-
gram’s correctness. Nodes in the proof tree represent
proof steps of similar size — space precludes the en-
tire proof tree from being shown. Filled nodes repre-
sent steps contributed by the autonomous background
proving efforts, while hollow nodes are user interac-
tion steps. The source of the proof obligations are
marked. Four agents were used in the construction of
the proof: a type agent for constructing type proofs, a
def agent for showing expressions are well-defined, a
search agent that uses a bounded exhaustive search to
construct proofs, and the reuse agent mentioned pre-
viously. Constructing the proof without agent sup-
port required 203 user interactions — using the pro-
totype implementation of our architecture, this figure

was reduced to 62 user interactions for the particular
scenario shown, a saving of around 70%.

Variant

decreases

Invariant

maintained

Goal

established

Variant

bounded

Invariant

established

Figure 5: An overview of the proof of correctness of
the DNF program

8 Conclusion

In this paper we have described an agent-based archi-
tecture for distributed interactive theorem proving.
At the centre of our proposal is the idea to encap-
sulate a reasoning component within a proof agent.
Proof agents provide both time and probability es-
timates for a problem, as well as the proofs them-
selves. Proof agents can cooperate to solve problems;
the proof process is directed autonomously by a per-
sonal assistant agent that works on behalf of the user.

Our proposal shares some similarities with the
MathWeb architecture (Franke et al. 1999, Zimmer
2003) for automated reasoning. Whereas we are in-
terested in improving the viability of interactive the-
orem proving, the MathWeb work is more focused on
standards, e.g., using KQML as the communication
language for integrating existing theorem-proving sys-
tems as well as more diverse mathematical systems
such as model checkers and computer algebra sys-
tems. Importantly, the way we use problem-specific
estimates to drive the proving process contrasts with
the more general coarse-grained capability assessment
employed in the MathWeb system.

In the future we plan to complete a larger case
study in a different realm of software verification.
As part of this process, we will need to develop new
agents, which will help to determine the viability of
our estimation approach. We plan to further develop
our prototype implementation with particular focus
on the user interface, the quality of which we believe
has a significant impact on the effectiveness of our
architecture. Finally, we intend to extend our pro-
totype implementation, specifically our personal as-
sistant and client interface agents, to cater for the
availability of multiple computational resources and
to investigate the possibility of a multi-user system
with multiple personal assistants.

References

Clark, K., Robinson, P. J. & Hagen, R. A. (2001),
‘Multi-threading and message communication in
Qu-Prolog’, Theory and Practice of Logic Pro-
gramming 1(3), 283–301.

Clark, K. & Robinson, P. J. (2002), ‘Agents as Multi-
threaded Logical Objects’ , Vol., 2407 of Lecture
Notes in Computer Science, Springer, 33–65.

Dijkstra, E. (1976), A Discipline of Programming,
Prentice-Hall, Englewood Cliffs, New Jersey.

Franke, A., Hess, S. M., Jung, C. G., Kohlhase, M.
& Sorge, V. (1999), ‘Agent-oriented integration
of distributed mathematical services’, Journal of
Universal Computer Science 5(3), 156–187.

Hickey, J. (1999), Fault-tolerant distributed theorem
proving, in ‘Proceedings of CADE-99’, 227–231.

Hoare, C. A. R. (1989), An axiomatic basis for com-
puter programming, in ‘C. A. R. Hoare and C.
B. Jones (Ed.), Essays in Computing Science,
Prentice Hall’.

Hunter, C., Robinson, P. & Strooper, P. (2004),
‘Symbolic proof reuse for software verification’,
in ‘Proceedings of AMAST-04’, 211–225.

Jennings, N. R., Sycara, K. & Wooldridge, M. (1998),
‘A roadmap of agent research and development’,
Journal of Autonomous Agents and Multi-Agent
Systems 1(1), 7–38.

McCabe, F. G (2000), ‘The inter-agent commu-
nication model (ICM)’, Fujitsu Laboratories of
America Inc, 2000.

Smith, R. G. (1980), ‘The contract net protocol:
High-level communication and control in a dis-
tributed problem solver’, IEEE Transactions on
Computers 29(12), 1104–1113.

Utting, M., Robinson, P. & Nickson, R. (2002), ‘Ergo
6: a generic proof engine that uses Prolog proof
technology’, LMS Journal of Computation and
Mathematics 5, 194–219.

Vandevoorde, M. T. & Kapur, D. (1996), Distributed
larch prover (DLP): An experiment in paralleliz-
ing a rewrite-rule based prover, in ‘Proceedings
of RTA-96’, 420–423.

Zimmer, J. (2003), ‘Proceedings of the Workshop on
Agents and Automated Reasoning, 18th Inter-
national Joint Conference on Artificial Intelli-
gence’.

Zambonelli, F., Jennings, N. R. & Wooldridge, M.
(2003), ‘Developing multiagent systems: the
Gaia Methodology’, ACM Transactions on Soft-
ware Engineering and Methodology 12(3), 317–
370.

