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Abstract

Graph drawing is an information visualization tech-
nology for illustrating relations between objects. In-
teractive graph drawing is often important since it is
difficult to statically lay out complex graphs. For the
interactive drawing of general undirected graphs, we
previously proposed the high-dimensional approach,
which used static graph layouts in high-dimensional
spaces to dynamically find two-dimensional layouts
according to user interaction. Although the result-
ing interactive graph drawing method was fast, it im-
posed a limitation on the successive manipulation of
dense parts of graphs. In this paper, we propose an
extended method to tackle the limitation. Our new
method enables multiple graph nodes to be controlled
simultaneously in interactive graph drawing. For this
purpose, we extend the underlying constraint pro-
gramming mechanism by introducing the notion of
soft constraints as well as by using additional con-
straints on multiple controlled nodes.

Keywords: interactive graph drawing, general undi-
rected graphs, high-dimensional approach

1 Introduction

Information visualization is often needed to illustrate
relations between objects. Graphs are formal means
for expressing such relations; they represent objects
as nodes and such relations as edges. To visualize in-
formation expressed as graphs, researchers have stud-
ied graph drawing (Di Battista, Eades, Tamassia &
Tollis 1999), which automatically computes appro-
priate positions of nodes and edges. Graph drawing
methods are designed according to classes of graphs
that are determined by their structures. Examples of
classes are trees, directed graphs, planar graphs, and
general undirected graphs.

General undirected graphs, whose edges have no
directions, are used to express various information
with network structures. Although previous meth-
ods including the force-directed approach (Di Bat-
tista et al. 1999) have been successful to a certain de-
gree, drawing complex general undirected graphs with
more than hundreds of nodes is still a hard problem;
visualizing the structure of such a graph with a single
static layout is difficult because of its high general-
ity. An effective means for this problem is interactive
graph drawing , which allows users to visualize graphs
interactively.
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For this purpose, we previously proposed the high-
dimensional approach (Hosobe 2004), which used
static graph layouts in high-dimensional spaces to
dynamically find two-dimensional layouts according
to user interaction. The resulting interactive graph
drawing method exhibited the following two prop-
erties: first, it efficiently updates two-dimensional
graph layouts, and processes graphs with more than
one thousand nodes within a few tens of millisec-
onds; second, it follows users’ node dragging oper-
ations by actively moving other closely related nodes.
To transform such high-dimensional layouts into two-
dimensional ones, it projects them onto appropriate
two-dimensional planes that it determines by con-
straint satisfaction.

However, our previous high-dimensional method
imposed a limitation on the successive manipulation
of dense parts of graphs; while a user is dragging a
node in a dense part, the method sometimes largely
moves other nodes that the user has dragged be-
fore. This is a side effect caused by the property that
the method tends to move nodes closely related to
dragged ones.

In this paper, we propose an extended high-
dimensional method to tackle that limitation. Our
new method enables multiple graph nodes to be con-
trolled simultaneously in interactive graph drawing.
For this purpose, we modify the underlying constraint
programming mechanism by applying the following
two extensions:

• Using additional constraints on multiple con-
trolled nodes;

• Introducing the notion of soft constraints
(Barták 2002).

We demonstrate the usefulness of our extended
method by presenting experimental results.

The rest of this paper is organized as follows. Sec-
tion 2 describes related work on graph layout. Sec-
tion 3 explains the basic high-dimensional method
that we proposed previously. Section 4 proposes our
extended high-dimensional method. Section 5 pro-
vides its implementation, and Section 6 presents ex-
perimental results. Section 7 discusses our extended
method. Finally, Section 8 mentions the conclusions
and future work of this research.

2 Related Work

The force-directed approach (Di Battista et al. 1999)
is often adopted to find layouts of general undi-
rected graphs. Eades proposed a method, known
as the spring embedder, that finds a stable layout
of nodes by using attractive and repulsive forces of
springs assigned to edges (Eades 1984). Kamada and
Kawai presented a method that uses springs to make
the Euclidean distances between any pairs of nodes



close to the graph-theoretic distances (Kamada &
Kawai 1989).

The force-directed approach is applicable to draw-
ing graphs of three or higher dimensions. Gem-
3D (Bruß & Frick 1996) uses a randomized adap-
tive spring-embedder algorithm to obtain three-
dimensional graph layouts. In (Gajer, Goodrich &
Kobourov 2000), a method is provided that first
finds graph layouts in multidimensional (e.g., four-
dimensional) spaces by using the force-directed ap-
proach and then projects the layouts onto two- or
three-dimensional spaces.

In (Harel & Koren 2002), a method is given that
finds layouts of graphs with 105 nodes within a few
seconds by first computing graph layouts of relatively
high dimensions such as 50 and then by projecting
them onto two-dimensional planes according to prin-
cipal component analysis.

3 The Basic High-Dimensional Method

This section explains the basic high-dimensional
method for interactive graph drawing (Hosobe 2004).

3.1 Multidimensional Graph Layout

The basic high-dimensional method uses Torgerson’s
method (Kruskal & Seery 1980, Young 1985) as its
fundamental basis. Torgerson’s method is also known
as metric multidimensional scaling and as principal
coordinate analysis in the field of statistics. Given
distances between any pairs of objects, it finds a lay-
out of them that satisfies the distances.

We describe Torgerson’s method below. Assume
that we have distances dij between any pairs i and j
of n objects, and also that they satisfy the distance
axioms. First, define aij as follows:
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Next, define an n× n real symmetric matrix A =
(aij). Then A is diagonalizable as XT AX = Λ for an
orthogonal matrix X, where Λ is a diagonal matrix.
With the eigenvalues λk of A and the eigenvectors
xk corresponding to λk, such X and Λ are obtained
as follows: Λ has λk as its (k, k) elements, and X =
(x1,x2, . . . ,xn).

Let P = XΛ1/2, where Λ1/2 is the diagonal matrix
with

√
λk as its (k, k) elements. Then, for an ideal set

of dij , each eigenvalue λk is nonnegative. Torgerson’s
method regards each i-th row (pi1, pi2, . . . , pin) of P
as the coordinates of the location of the object i in
the n-dimensional real Euclidean space. It should be
noted that actual data usually result in occurrences
of negative eigenvalues.

Ordinary applications based on Torgerson’s
method use only the coordinates corresponding to a
small number of the largest eigenvalues. For example,
the first and second largest eigenvalues λ1 and λ2 ob-
tain a two-dimensional layout with the i-th objects
located at (pi1, pi2).

Kruskal and Seery proposed a method that uses
Torgerson’s method to lay out connected general
undirected graphs (Kruskal & Seery 1980) (called the
TKS method). It is realized as follows.

1. Given a graph, first compute the graph-theoretic
distances (or the lengths of the shortest paths)
between any pairs of its nodes.

2. Next, perform Torgerson’s method by using the
graph-theoretic distances, to obtain a layout of
the nodes on a two-dimensional plane.

Although they assumed two dimensions, the method
is easily extensible to multidimensional graph layouts.

The time complexity of this multidimensional
graph layout method is typically O(n3). More specif-
ically, the time complexity of computing graph-
theoretic distances is O(n3) if Floyd’s algorithm is
used (Ishihata 1989). The time complexity of obtain-
ing the matrix A is O(n2). Strictly, the time needed
to compute the eigenvalues and eigenvectors depends
on actual A; however, if, e.g., the Jacobi method is
exploited, it is typically performed with O(n3) opera-
tions (Press, Teukolsky, Vetterling & Flannery 1992).

3.2 Interactive Graph Drawing

The basic high-dimensional method (Hosobe 2004)
computes two-dimensional graph layouts by project-
ing graph layouts in high-dimensional spaces onto
two-dimensional planes. It handles connected general
undirected graphs, and represents edges as straight
lines connecting nodes.

Adopting the TKS method described in the pre-
vious subsection, the basic high-dimensional method
computes graph layouts in high-dimensional spaces.
It uses all the coordinates corresponding to posi-
tive eigenvalues. Generally, since the TKS method
exploits graph-theoretic distances in Torgerson’s
method, it obtains many positive eigenvalues, which
means that the dimensionalities of the resulting graph
layouts are high. Assume that the eigenvalues λ1, λ2,
. . . are sorted in descending order, and also d ≥ 2,
where d is the number of positive eigenvalues; that
is, λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Then the posi-
tion of each node i in the high-dimensional space is
pi = (pi1, pi2, . . . , pid).

The method projects such a d-dimensional graph
layout onto a two-dimensional plane (called the pro-
jection plane) as follows. Consider the projection
plane as the plane spanned by two orthonormal d-
dimensional vectors e1 and e2. Using these vectors,
the two-dimensional coordinates of node i are ob-
tained as (pi · e1,pi · e2).

For the initial two-dimensional layout, e1 and e2
are initialized by letting e1 = f1/‖f1‖ and e2 =
f2/‖f2‖, with f1 and f2 which are the d-dimensional
vectors defined as f1 = (λα

1 , 0, λα
3 , 0, . . .) and f2 =

(0, λα
2 , 0, λα

4 , . . .). Here α is a parameter, typically
set to 1/2, to adjust how the coordinates affect the
two-dimensional layout. Note that e1 and e2 are or-
thonormal.

To enable users to interactively update two-
dimensional graph layouts, the method moves pro-
jection planes. Since it is not necessary to modify
graph layouts in high-dimensional spaces, it provides
high efficiency in updating two-dimensional layouts.
It allows a user to drag a single node at a time. The
basic idea is that it rotates the projection plane in the
three-dimensional space spanned by the current vec-
tors for the projection plane and the vector position-
ing the dragged node. To compute this, it performs
constraint satisfaction by imposing the constraints
that should be satisfied by the vectors spanning the
projection plane.

4 Constraining Multiple Nodes

In this section, we extend the basic high-dimensional
method explained in the previous section. Basically,
we extend our method in such a way that it can con-
strain multiple nodes at a time. For this purpose, the



extended method rotates the projection plane in a
higher-dimensional space that are constructed by us-
ing these multiple constrained nodes. However, only
incorporating additional constraints is not sufficient
for our extension. This is because it adds complex-
ity to the solution space, which results in difficulty
in dragging nodes. To remedy this problem, we also
introduce soft constraints (Barták 2002), which relax
the solution space and thus facilitate dragging nodes.

We describe it in detail below. First, we define
constants that work as input. Let e1 and e2 be the
current vectors spanning the projection plane. Un-
like the original high-dimensional method, the new
method does not require e1 and e2 to be orthonor-
mal; that is, these vectors may have lengths unequal
to 1, and also may be non-orthogonal. Then the
two-dimensional coordinates (xi, yi) of node i (whose
high-dimensional position is pi) are obtained by solv-
ing

‖e1‖2 xi + (e1 · e2) yi = pi · e1

(e1 · e2) xi + ‖e2‖2 yi = pi · e2,

which are solvable if ‖e1‖2‖e2‖2 − e1 · e2 6= 0.
Let i1, i2, . . . , im be the indices of constrained

nodes, and (x′ij
, y′ij

) be the new two-dimensional coor-
dinates of the ij-th node. We assume that e1, e2, pi1 ,
pi2 , . . . , pim

are linearly independent. From these
vectors, we obtain a set of orthonormal vectors ε1,
ε2, . . . , εm+2. It is done by using the Gram-Schmidt
algorithm as follows:

ε1 =
ε′1
‖ε′1‖

where ε′1 = e1

ε2 =
ε′2
‖ε′2‖

where ε′2 = e2 − (e2 · ε1) ε1

εj+2 =
ε′j+2∥∥ε′j+2

∥∥ (for j = 1, 2, . . . , m)

where ε′j+2 = pij
−

j+1∑

k=1

(
pij

· εk

)
εk.

Note that we have ‖εi‖ = 1 and εi · εj = 0 for any i
and j.

Next, let e′1 and e′2 be the new vectors spanning
the projection plane. We consider these vectors to be
in the (m + 2)-dimensional space spanned by ε1, ε2,
. . . , εm+2. Then they can be expressed with 2m + 4
variables α1, α2, . . . , αm+2, β1, β2, . . . , βm+2 as

e′1 =
m+2∑

j=1

αjεj

e′2 =
m+2∑

j=1

βjεj .

Also, let r be the vector indicating the rotation axis
of the projection plane. Then it can be represented
with two variables γ1 and γ2 as follows:

r = γ1ε1 + γ2ε2.

Now, using these constants and variables, we im-
pose the 2m hard constraints

‖e′1‖2 x′ij
+ (e′1 · e′2) y′ij

= pij
· e′1 (1)

(e′1 · e′2) x′ij
+ ‖e′2‖2 y′ij

= pij
· e′2 (2)

(x’i1, y’i1)

(xi1, yi1)

pi1

e’2

e2

e’1 e1

o

r

Figure 1: Updating the projection plane.

for j = 1, 2, . . . , m, and also the six soft constraints

‖e′1‖ = 1 (3)
‖e′2‖ = 1 (4)

e′1 · e′2
‖e′1‖‖e′2‖

= 0 (5)

‖r‖ = 1 (6)
e′1 · r

‖e′1‖ ‖r‖
=

e1 · r
‖e1‖ ‖r‖ (7)

e′2 · r
‖e′2‖ ‖r‖

=
e2 · r

‖e2‖ ‖r‖ . (8)

The m pairs of the hard constraints (1) and (2) mean
that each (x′ij

, y′ij
) must be the coordinates obtained

by projecting pij
onto the new projection plane. The

soft constraints (3), (4), and (5) imply that e′1 and e′2
should be orthonormal. The soft constraints (6), (7),
and (8) indicate that r should be a unit vector, and
that e′1 and e′2 should be the rotations of e1 and e2
around r. These vectors are depicted in Figure 1 in
the three-dimensional manner, where we assume only
one node is constrained (that is, m = 1).

We process these constraints by solving the follow-
ing constrained least squares problem:

minimize
6∑

k=1

wif
2
i

subject to ‖e′1‖2 x′ij
+ (e′1 · e′2) y′ij

= pij
· e′1

(e′1 · e′2) x′ij
+ ‖e′2‖2 y′ij

= pij
· e′2

for j = 1, 2, . . . , m, where

f1 = ‖e′1‖ − 1
f2 = ‖e′2‖ − 1

f3 =
e′1 · e′2

‖e′1‖ ‖e′2‖
f4 = ‖r‖ − 1

f5 =
e′1 · r

‖e′1‖ ‖r‖
− e1 · r
‖e1‖ ‖r‖

f6 =
e′2 · r

‖e′2‖ ‖r‖
− e2 · r
‖e2‖ ‖r‖



Figure 2: The prototype system AGI.

and each wi is the nonnegative weight associated with
fi. In this problem, we use the hard constraints (1)
and (2) as the actual constraints, whereas we embed
the soft constraints (3), (4), (5), (6), (7), and (8)
in the objective function by composing the weighted
sum of the squares of their violations. This con-
strained least squares problem can be regarded as
a two-level case of constraint hierarchies (Borning,
Freeman-Benson & Wilson 1992), which are known as
one of the most widely used frameworks for soft con-
straints (Barták 2002). For the weights, we simply
use wi = 1 for each i in our current implementation.

5 Implementation

Using the extended high-dimensional method pre-
sented in the previous section, we implemented a pro-
totype graph drawing system called AGI1 in C++.
It adopts LAPACK 3.02 for linear computation in-
cluding eigenvector calculation. To obtain graph-
theoretic distances, it employs Floyd’s algorithm
(Ishihata 1989). To solve constrained least squares
problems, it uses the C version of DONLP23. For
graphical user interfaces, it exploits the wxWidgets4
multi-platform toolkit.

Figure 2 illustrates a screen shot of the AGI sys-
tem. Given a file containing a graph in the GraphML5

format, it displays a two-dimensional layout of the
graph, and allows a user to interactively update the
layout by dragging one of the nodes successively.

6 Experiments

To evaluate the extended high-dimensional method
proposed in this paper, we performed experiments.
For this purpose, we compiled the prototype system
by using GCC 3.3.1 with the –O3 option, and exe-
cuted it on a 1 GHz Pentium M processor running
Windows XP.

Below we provide three examples of executing the
extended method. The first one is the layout of the
AT&T graph6 ug 45, which consists of 97 nodes and
182 edges. Figure 3(a) shows the initial layout of

1AGI stands for “Active Graph Interface.”
2http://www.netlib.org/lapack/
3http://plato.la.asu.edu/donlp2.html
4http://www.wxwidgets.org/
5http://graphml.graphdrawing.org/
6ftp://ftp.research.att.com/dist/drawdag/ug.gz

the graph, whose internal dimensionality is 62. Sup-
pose that we examine the detail of the left part of the
graph. Figure 3(b) gives a graph layout after dragging
a node in the left part, and Figure 3(c) illustrates a
graph after dragging another node in the part. Note
that the uppermost node in the left part stayed at
the same position in Figures 3(b) and (c); its position
was constrained to be constant by the extended high-
dimensional method. The time required to compute
the initial layout was 16 milliseconds, and the times
needed to update the layouts were typically within 50
milliseconds.

The second example is the layout of the AT&T
graph ug 223, which consists of 244 nodes and 340
edges. Figure 4(a) depicts the initial layout of the
graph, whose internal dimensionality is 207. Sup-
pose that we investigate the detail of the right part
of the graph. Figures 4(b), (c), and (d) show the lay-
outs obtained by successively dragging three nodes
in different directions. The time needed to calculate
the initial layout was 172 milliseconds, and the times
taken to update the layouts were usually within 80
milliseconds.

The final example is the layout of the AT&T graph
ug 380, which consists of 1,104 nodes and 3,231 edges.
Figure 5(a) illustrates its initial layout, whose internal
dimensionality is 697. Figure 5(b) shows a graph lay-
out obtained by dragging a single node on the lower
right side and then by scaling the resulting layout to
the screen. Also, Figures 5(c) and (d) give layouts
after dragging other two nodes one by one. The time
required to obtain the initial layout was 25.3 seconds,
and the times needed to update the layouts were typ-
ically within 100 milliseconds.

7 Discussion

The force-directed approach can be easily extended
to incorporate constraints (Di Battista et al. 1999,
Tamassia 1998). It is straightforward to constrain
nodes to be at fixed positions, and also it is possible
to express more complex constraints in terms of at-
tractive and repulsive forces of springs between nodes.
However, it is difficult for the force-directed approach
to efficiently obtain stable layouts of large graphs.

Our high-dimensional approach uses linear trans-
formations to obtain two-dimensional graph layouts
from high-dimensional ones. By contrast, fisheyeing
often adopts nonlinear transformations to expand and
emphasize details of visualized complex information
(Sarkar & Brown 1994). It may be useful to intro-
duce such a powerful nonlinear transformation into
the high-dimensional approach, for which, however,
we will probably need to trade off the efficiency in
updating two-dimensional graph layouts.

8 Conclusions and Future Work

In this paper, we proposed an extended high-
dimensional method for the interactive drawing of
general undirected graphs. The method enables mul-
tiple graph nodes to be controlled simultaneously by
introducing the notion of soft constraints as well as
by using additional constraints on multiple controlled
nodes.

A future direction of our research on the high-
dimensional approach is to speed up computing high-
dimensional graph layouts. To do it, we examine
whether existing methods other than the TKS are ap-
propriate to generating high-dimensional layouts for
our purpose. Our plan also includes extending our
prototype system by further enhancing its display and
user interaction functions.
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Figure 3: Interactive layout of the AT&T graph ug 45
(with 97 nodes and 182 edges).
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Figure 4: Interactive layout of the AT&T graph
ug 223 (with 244 nodes and 340 edges).
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Figure 5: Interactive layout of the AT&T graph
ug 380 (with 1,104 nodes and 3,231 edges).


