
Annex: A Middleware for Constructing High-Assurance Software

Systems

Tristan Newby1 Duncan A. Grove1 Alex P. Murray1 Chris A. Owen1

Jim McCarthy1 Chris J. North1

1 Defence Science and Technology Organisation
Edinburgh, South Australia 5111,

Email: tristan.newby@dsto.defence.gov.au

Abstract

Cross Domain Solutions and Multi-Level Secure sys-
tems are becoming more popular as the benefits
of merging data from different security levels be-
comes more widely understood. Software forming the
Trusted Computing Base of such systems must main-
tain isolation between data from differing security lev-
els while providing some means of bridging that isola-
tion under strictly supervised conditions. We cannot
expect to be able to build such trustworthy software
using contemporary software development tools and
techniques.

We describe the Annex Object Capability System,
a tiny, security-focused software development frame-
work and middleware for implementing high assur-
ance application software on top of existing highly
certified COTS µkernels. By leveraging existing op-
erating system provided process space isolation, we
are able to provide the programmer with a simple,
familiar environment for building complex, yet truly
secure software.

1 Introduction

Historically, the mainstream computer industry has
dealt with security problems via the path of least
resistance, wallpapering over cracks as they appear.
While this has sufficed until now, there is increasing
evidence that computer security is in need of struc-
tural reform.

One prevailing change is a shift from open world
to closed world security policies. For example, most
corporate firewalls now block all traffic by default,
using overrides to allow white-listed communication.
Unfortunately implementing these types of policies
on top of standard computer systems is fragile since
these systems typically permit any actions as long as
they are not explicitly disallowed. Trying to achieve
closed world semantics using exclusion based mecha-
nisms is difficult to get right, especially in a highly
dynamic environment. Striking a good balance be-
tween under-constraint and over-constraint remains
a difficult task, but there are mechanisms that can be
used to manage this problem.

One approach gaining favour is the use of sand-
boxing to isolate programs, or even parts of programs,
from each other so that a malfunction or compromise
in one does not affect any others.

Copyright c©2015, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Information Security Confer-
ence (AISC2015), Sydney, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 161,
Ian Welch and Xun Yi, Ed. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

A more powerful extension is to combine a com-
ponent based methodology with strong isolation and
then use capabilities for controlled communication be-
tween otherwise isolated components. With capabil-
ities, programmers are freed from having to protect
against anything that could possibly happen and can
instead focus on what a program must do to fulfil its
purpose. Rather than needing to prevent operations
after the ability to perform them has already been
conceded, capability checks guarantee that explicit
authorisation has been granted before any action is
performed. With capabilities, these checks happen
automatically because the authority to perform an
action is inextricably bound with the mechanism for
performing it.

One area where such trustworthy software is re-
quired is in Cross Domain Solutions (CDSs). CDSs
can replace replicated computers and networking at
multiple security domains with a single set of equip-
ment that is able to process data at multiple sensitivi-
ties. At the core of such systems is a Trusted Comput-
ing Base (TCB) which must maintain the boundaries
between the different domains. It may also provide
some approved, assured, auditable path for selected
data to cross those security boundaries. The software
that is used to build such a TCB needs to be trust-
worthy and amenable to formal proofs of its security
correctness.

In this paper, we describe the design of the An-
nex Object Capability System, a middleware layer de-
signed to be deployed on COTS secure µkernel based
operating systems, utilising their strong guarantees
of isolation between components and message passing
primitives. We envisage the primary deployment sce-
nario for Annex systems as forming a TCB for larger
systems such as CDS, however it is powerful and flex-
ible enough to construct a workstation replacement.

Section 2 of this paper describes the high level An-
nex Object Model. Section 3 dissects the system’s
components including the Object Capability Refer-
ence Monitor and elements that make up a standard
object. A prototype implementation is discussed in
Section 4 and Section 5 shows how all this interacts
to produce real-world systems and devices. Section 6
examines the system’s security properties and perfor-
mance characteristics while Section 7 places Annex in
the context of related work.

2 Annex Object-Capability Model

The Annex Object-Capability Model is an object-
capability system (Miller & Shapiro 2003), which com-
bines capabilities and object oriented programming.
At the most abstract level this equates to conceptual
“circle and stick” diagrams like those shown in Fig-
ure 1. Nodes represent objects and the directed graph

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

25

of connected edges represent the capabilities that ob-
jects hold to other objects.

An object-capability system manages the complex-
ity of capabilities by naturally decomposing complex
systems into their component objects. Using capabil-
ities to address each of the objects allows the con-
struction of fine-grained security policies expressed
through the programming model rather than imposed
as an afterthought to system design.

Figure 1: Objects connected by the capabilities that
they hold

Objects are self-contained units of state and pro-
cessing that reside exclusively in a partitioned process
with their own address space, unable to directly ac-
cess any code or data outside of their boundary. They
are the fundamental unit of isolation, although they
may also hold capabilities allowing them to commu-
nicate beyond their border.

Capabilities are unforgeable, authority carrying
references that combine the name of the object to
which they refer as well as the permissions required to
access it (Dennis & Van Horn 1966), into one atomic
entity. They provide a strong mechanism for selec-
tively bridging the isolation between objects.

An object may wield the authority associated with
any capability that it holds to invoke a method on
the object that is designated by the capability. The
method parameters may contain call-by-copy data
and/or copies of further capabilities. The former pro-
vides a mechanism for permitting information flow
between objects while the latter provides a mecha-
nism for allowing authority flow, where capabilities
can be copied, or delegated, from one object to an-
other. These mechanisms allow programmers to com-
pose object collections that perform useful functions.

The only rule governing capability propagation is
that “only connectivity begets connectivity” (Miller
2006). With this simple premise, programmers can
manage complexity and security at the same time
by using good object-oriented decomposition, which
naturally enforces the Principle of Least Authority
(POLA) (Saltzer 1974). This provides defence-in-
depth, as any exploitable bugs in one part of the sys-
tem are unable to be leveraged to access other parts
of the system.

The object-capability model provides a sound
framework in which to formally reason about the se-
curity properties of the system. As long as the secu-
rity of the underlying isolation mechanism holds, an
isolated object can not interfere with the behaviour
of any object that it is not ultimately connected to
via capabilities. Proving such non-interference is a
critical step in proving the absence of covert channels
in high grade systems.

In particular, object-capability systems provide a
strong basis for reasoning about the upper limits on
connectedness and hence authority of different parts
of the system. For example, the group of objects la-
belled A in Figure 1 may become fully connected by
the objects passing capabilities to each other, how-
ever, disjoint graphs A and B can never become con-
nected. This allows us to prove that one part of the

system cannot interfere with another part.
While standard capabilities like those described

above naturally enforce object-level access controls,
the permissions list associated with each capability
used in Annex provides a convenient and efficient
mechanism to control which methods the capability
may invoke on the associated object.

Objects may also be able to derive a new capabil-
ity from an existing one that they have. The newly
created capability can only possess an equal or lesser
authority to that from which it was derived. This
is known as rights attenuation and provides a mech-
anism to scale access control down from the object
level to method level checks.

Finer grained assertions can be made by consider-
ing the internal behaviour of objects to analyse how
information and authority flow through them (Mur-
ray 2010). Although this is a much more compli-
cated problem, the hard boundaries between objects
enforced by the object-capability model reduces the
evaluation state space making such evaluations more
tractable than for traditional monolithic programs.

One of the core goals when designing Annex was
that calls between objects should be transparently
networkable. All method calls look the same to the
programmer whether the call is to a local object or
one hosted on a remote device. Capabilities must
therefore have a global namespace. The use of Mo-
bile IPv6 means that the IPv6 address used in each
capability will continue to be valid regardless of where
each device is actually located on the network.

Due to the fact that a method call may need to
communicate across the globe, all method calls be-
tween objects are asynchronous, allowing objects to
make a method call and continue to do useful work
before pausing to collect the result of that method
call. Annex method calls work in a very similar man-
ner to MPI (MPI Forum n.d.).

In order to simplify reasoning about the resultant
distributed system, a form of cooperative multitask-
ing has been implemented. Objects explicitly choose
when to give up processor time. However, they are
unable to claim the results of any method calls with-
out yielding the processor, encouraging them to yield
from time to time.

Object programmers need only write the code that
implements their object’s functionality. A small,
standard wrapper layer of code envelops each ob-
ject in the system, making the implementation details
transparent to the programmer. Consequently much
existing code can be turned relatively easily into an
Annex object or object collection without having to
be rewritten from scratch.

Annex was designed such that it can be layered
on top of an existing secure µkernel rather than at-
tempting to build the isolation mechanisms ourselves
from scratch. The focus was on developing a useful,
intuitive interface for programmers that retained the
strong security underpinnings of the µkernel. For ex-
ample, the Annex programming model explicitly dis-
allows dynamic memory allocation. This removes sev-
eral classes of bugs from occurring, and ensures that
Annex systems extend conformance to the Separation
Kernel Protection Profile (SKPP) (National Informa-
tion Assurance Partnership 2007) into the program-
mer space.

3 Annex Components

An Annex system is comprised of several components
working together to implement the model described
in Section 2.

CRPIT Volume 161 - Information Security 2015

26

3.1 The Object Capability Reference Moni-
tor

Annex’s Object Capability Reference Monitor,
OCRM or simply monitor, provides an abstraction
of the underlying operating system and acts as a ref-
erence monitor (Anderson & Co. 1972) for the Annex
system. It is designed to be verifiable, hence it is
small, and performs minimal functions. Primarily, it
mediates delivery of messages between objects.

The monitor provides restricted versions of the
scheduling and interprocess communications mecha-
nisms that are provided by the underlying operating
system and is built around the following major data
structures and components: the object table, capabil-
ity, catalogue, clist, message, message queue, promise,
requests table and scheduler.

The object table lists all objects that exist on a
given device. It allows the monitor to keep track of
information about the objects including their status
and how many method calls are outstanding for each
object. When an object is created, its process space is
created and initialised, an entry is made in the object
table and a master capability is created with permis-
sions for all methods exported by the object. This
capability is returned to the object’s creator.

Figure 2: Capability structure

Capabilities are represented within the Annex
monitor as shown in Figure 2. The DeviceID and Net-
workID taken together form the IPv6 address of the
host system. The ObjectID uniquely identifies the
specific object on that device. There may be more
than one capability to a given object on a particular
host, so the CapabilityID is used to uniquely identify
each capability to a particular object. The Password
field is a large random number that makes forging
valid capabilities computationally infeasible.

All capabilities that reference objects on the lo-
cal device are stored in the monitor’s catalogue. The
catalogue provides services for capability creation,
derivation, validation and destruction, and storage of
the authority associated with each capability in the
form of a permission bit-vector.

Each object accesses capabilities indirectly via an
index (or handle) into its clist, and does not have
access to raw capabilities themselves. This prevents
the object from directly reading or writing a capabil-
ity’s fields, preventing the object from bypassing the
controlled mechanisms for capability presentation or
transfer by forging or altering a capability. This is
also necessary to prevent violation of MLS policies as
detailed by Boebert (Boebert 1984). The indirection
involved for capability access using clists is illustrated
in Figure 3.

The Annex monitor creates a pseudo-object, which
allows objects access to their clist. If an object has
a capability to its clist, it may be able to manipu-
late aspects of the list of capabilities that it has. For
example, it may be able to change the “scope” (see
Section 3.8) of a capability that it holds. Clists are a

Figure 3: Clist indirection

facet of the catalogue in the context of each individual
object.

All communication between objects within the An-
nex system occurs by message-passing. Messages are
atomic, meaning that they contain all information re-
quired to initiate the method call on the destination
object including all parameters required by the call.

All messages between objects are passed via the
monitor. The monitor uses a message queue to store
messages that it has not yet passed on to the desti-
nation objects.

As Annex is a distributed system, it provides a
means of making calls on objects, then continuing
to do useful work as that method call is processed.
When the method call is made, the monitor returns
a token, known as a promise to the calling object.
When the caller wishes to claim the result of the
method call, it presents the promise back to the mon-
itor, which notifies that caller when the results are
able to be claimed.

In order to match method replies with their ini-
tiating calls, the monitor keeps track of them in its
requests table.

Delivery of messages is handled by the scheduler.
The Annex monitor is event-driven. Events are ei-

ther an “interrupt” from a hardware component or a
message arriving from an object. The monitor man-
ages message events using a single message queue and
deals with each message in turn. The monitor is single
threaded, making it easier to ensure the correctness
of both design and implementation.

The Annex monitor delivers as many of the mes-
sages that it has outstanding in its message queue as
it can before accepting any new messages from ob-
jects, or processing hardware events (“interrupts”).
Although the word “interrupt” is used, these events
do not cause the Annex monitor to be interrupted
or preempted. They are treated as data sources that
have data ready to be processed by some registered
object, and as such are scheduled in exactly the same
manner as other events.

The object table provides subjects, the clist and
catalogue together denote the sum total of the au-
thority in the system, while the message queue and
requests table enable the monitor to track the (flow
of) content or data in the system.

3.2 Annex Objects

Objects are isolated units comprising both code and
state. Each object resides in its own address space
and has no direct access to any other memory, in-
cluding shared memory or shared libraries. Objects
may only communicate with each other by passing

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

27

messages and must have a capability allowing such
communication. Part of every object’s address space
is reserved for use as a message buffer which is used
to process both incoming and outgoing messages.

Although an object may make several different
methods available to other objects, each object has
a single entry point. When a new message is deliv-
ered to an object, the entry point function is invoked
and it determines how to process the received message
based on its content. Having a single entry point sim-
plifies calling conventions.

Figure 4: Memory layout of a standard Annex object

A common object wrapper is provided for every
object, abstracting the implementation details from
object programmers and providing message-passing,
task management and other object administration.
Wrapping object code in platform specific manage-
ment code allows object programmers to specify an
object once, and have it run on any platform for which
wrapper code exists.

Objects operate on an event loop. They are idle
until they receive a message from the monitor. Once
a message has arrived for an object, no others can be
received until the object has yielded the CPU. This
allows objects to use a single message-passing buffer
for all calls that they make and receive.

In order to facilitate the required object isolation,
objects are statically compiled executables.

3.3 Messages and Message Passing

Figure 5: Message Passing in Annex

Figure 5 shows the process of Object A sending a
message to Object B. Object A must first construct
a correctly formatted message in its message passing
buffer (a). It then signals the monitor, which collects
the message, placing it in its message queue (b). Be-
fore enqueueing the message, the monitor checks that
Object A has a valid capability to Object B. Eventu-
ally the message progresses to the head of the queue
(c). When Object B is able to receive it, the moni-
tor places the message in Object B’s message passing
buffer (d). Finally, Object B’s entry point function is
invoked, and it can process the new message.

Object programmers are shielded from the details
of message passing. A pre-processor is used on the ob-
ject definitions at the compilation stage to generate
remote procedure call (RPC) code for each method.
The RPC code arranges for the marshalling and de-
marshalling of parameters and aids in providing a
simple method calling syntax.

All messages are self-contained. No references
other than capabilities can be passed between objects.
As there is no shared memory, method calls are per-
formed with call-by-copy semantics. While this does
impose an increased burden on system efficiency, the
increased security and stability from having no shared
pointers outweighs this disadvantage.

Each message that invokes a method call contains:
a capability providing the destination address, which
the monitor uses to route the message to the appro-
priate device and object; a method identifier; and any
parameters for the method call. The monitor on the
device containing the destination object is responsible
for checking the validity of the capability, and that the
permissions allow invocation of the identified method.
This ensures that the caller’s authority is limited to
that of the specific capability presented.

There are four main message types. Method in-
vocation (CALL) and method response (RETURN)
mark the beginning and end respectively of a method
call. Processor yield (ENDTURN) is used to stop a
method call from processing, and puts the object into
an idle state, enabling it to receive the results of an
earlier method call that it made. RESUME messages
are used to synchronise multiple outstanding method
calls on a single object.

A CALL may be one-way, in which case the caller
does not receive a corresponding RETURN message,
or asynchronous, in which case the RETURN message
is received some time later.

3.4 Tasks and Turn-Based Multitasking

In the Annex system, objects must always be in one of
two mutually exclusive states. They are active while
doing some computation, and idle once the compu-
tation returns or they are waiting for the result of a
method call.

When an object receives a CALL message, a new
thread of control, or task, is created. This task exists
until it sends a RETURN message, at which point the
task is destroyed and its stack and other resources are
reclaimed.

While a task encompasses one complete method
call on an object, a turn refers to the time period
during which an object is continuously executing. A
turn starts with either the invocation of a method or
a return from waiting on a promise, and runs until
either the method call completes or the object waits
on another promise.

At any point in time, more than one task may exist
for any particular object, but only one of these may
be scheduled in any single turn. Each task explicitly
releases control of the CPU by sending the monitor an
ENDTURN message (e.g. by waiting on a promise),
which also saves the task’s context. The context is
restored when it is re-invoked after having received a
RETURN message corresponding to a CALL message
it has issued previously. The only task interleaving
points are those involving ENDTURN messages.

Annex makes use of the preemptive multitasking
that is a feature of modern operating systems to allow
objects to run “in parallel”, in addition to the coarse-
grained cooperative multitasking described earlier, to
avoid many of the consistency problems associated
with preemptive multitasking. The Annex scheduler
enables this by enforcing the rule that objects may
not execute more than one turn at any point in time.
This rule means that we can treat an object’s turn
as a “critical section”. Objects can then be assured
that their state (e.g. the values of global variables)
will not be altered by another task during their turn.

CRPIT Volume 161 - Information Security 2015

28

This is achieved without explicit locking or other syn-
chronisation primitives.

As object execution can be modelled as a series
of critical sections, program correctness can be much
more simply formalised. To avoid multiple outstand-
ing tasks interfering with global variables, these vari-
ables can often be moved on to the stack, becoming
the equivalent of thread local storage.

Annex’s tasks and turn-based multi-tasking re-
moves whole classes of bugs related to standard mul-
titasking and multi-threading. It also allows Annex
systems to scale effortlessly along with the number of
available processing cores.

3.5 Requests and Promises

Since Annex is a distributed system, it provides a
means of making calls on objects on remote devices
while continuing to do useful work as that method call
is processed. Annex uses the idea of promises (Fried-
man & Wise 1976) to implement this feature. An
object receives a promise from the monitor when a
method call is made. The result of the method call
is claimed by a call to promiseWait, providing the
earlier received promise as a parameter. As well as
promiseWait, there are functions that let objects wait
on some, or all, of a set of promises.

After the method call is made and a promise re-
ceived, the object can continue to perform useful
work, however, once a call to promiseWait (or equiva-
lent) has been made, no further work is done by that
task until the promise has been fulfilled. When the
call to promiseWait is issued, the object sends the
monitor an ENDTURN message. The object is then
able to be scheduled to process another message. This
may be either a reply to a previous call that the ob-
ject made, or a new call, resulting in a new task being
created.

The monitor maintains a requests table to asso-
ciate RETURN messages with their earlier CALL
messages. When the monitor receives a CALL mes-
sage from an object, it creates a new requests table
entry with a unique request ID and stores information
identifying the source object and task. The request
ID is then inserted in the CALL message before it is
passed on to the destination object.

When that object sends its RETURN message
back to the caller object, it includes the request ID.
The monitor reads the request ID from the message,
and uses that to look up the object and task that this
RETURN message is destined for. The message can
then be scheduled for delivery.

If the object making the call, and the object being
called are on separate devices, then entries are made
in the requests tables on each device. The request
table entry in the caller’s monitor records the calling
object and task, and is used to route the response
back to the correct object and task, as in the local
case. It inserts the request ID into the message, which
is then sent to the remote device for processing.

When the message is received by the remote de-
vice, it records the existing request ID (Request ID
1), and the IPv6 address that the message came from
in its requests table. A new request ID (Request ID 2)
is created and inserted into the message before being
delivered to the destination object.

When the RETURN message, containing Request
ID 2, is delivered to its monitor, Request ID 2 is re-
placed with the original request ID (Request ID 1)
and the message is sent back to the original monitor
using the recorded IPv6 address. When the message
is received by the original monitor, it is delivered as
per the local version described earlier.

In this way it is possible to generate request IDs
that traverse a network while remaining unique on
both the caller’s device and the called object’s device.

3.6 Permissions

When objects pass capabilities to other objects, they
may not wish to convey the same access rights (per-
missions) that they have. For example one object may
wish to pass a capability that refers to itself, to an-
other object but restrict the second object from call-
ing anything but one particular method on it. This is
done by generating a permissions mask, then passing
it to the deriveCap system method on the capability
of which we wish to derive a new version.

The supplied permissions mask is logically ANDed
with the permissions of the capability used to make
the call so that a derived capability can never gain
more authority than the one from which it was de-
rived.

3.7 System Methods

System methods are methods that are executed on
behalf of a particular capability but are actually run
by the monitor rather than the target object. An ex-
ample is destroyCap, which removes that capability
from the monitor’s catalogue of capabilities. System
methods execute on the device that hosts the object
that the capability refers to. All capabilities have a
set of standard system methods attached to them,
however access to these methods may be removed by
permission restrictions.

3.8 Capabilities - Local vs Global Scoping

Capabilities held by objects exist in one of two mutu-
ally exclusive states, locally scoped or globally scoped.
They are locally scoped by default and go “out of
scope” at the end of the task that they are currently
being used in and are removed from the object’s clist
at the completion of that task. Once a capability has
been removed from an object’s clist it may not be
used in any further method calls.

For an object to retain a capability beyond the
scope of the task to which it was passed, it must ex-
plicitly set the capability to be globally scoped. Glob-
ally scoped capabilities remain in the object’s clist
beyond the end of the task that they were passed to
and can be used by other tasks on that object, in-
cluding those that they were not explicitly passed to.
Objects may release globally scoped capabilities by
setting them to be locally scoped. When that task
completes they are removed from the object’s clist by
the monitor.

As makeGlobalCap and makeLocalCap are meth-
ods that run on an object’s clist, an object must have
a capability to its clist (with appropriate permissions)
in order to call these methods. This means that we
can construct objects that are unable to retain any of
the capabilities that are passed to them. The ability
to ensure that an object only ever has locally scoped
capabilities (by not giving it a capability to its clist) is
a confinement mechanism that assists in constructing
systems based on the principle of least authority.

3.9 Error Handling

When a method call fails for whatever reason, provi-
sion is made for communicating details of the fail-
ure back to the calling object. When an error
condition occurs inside an object method, the ob-
ject’s author should return from the call using the

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

29

RETURN(ErrorCode) statement. This returns the Er-
rorCode information and some details about the fail-
ure to the caller, including the name of the object,
the method ID, and the source code line that the er-
ror was generated at. The caller can access this in-
formation by calling annex perror(pPromise). The
pPromise parameter is the promise that was supplied
to the original call that failed.

4 Prototype Implementation

In order to rapidly design and develop prototype An-
nex systems, we have initially used a hand-rolled im-
plementation of ttylinux as the underlying operat-
ing system. Although some elements of the system
have had to be built differently to how they would
if running on a secure µkernel, almost all of the
programmer-specified object code (exceptions being
for hardware I/O and some code to handle object cre-
ation and message passing) will be able to run unal-
tered on top of other operating systems. Using Linux
has also enabled us to use the same code-base to com-
pile a system for use on an embedded ARM chip, and
on standard x86(64)-based PCs.

We modelled the monitor and each object as sep-
arate processes and used dietlibc (dietlibc 2014) to
statically compile each executable. This ensures that
there are no shared libraries and all code for an object
exists within its own process space.

In addition to having no shared code, we have been
mindful of the fact that particular objects will need
to be small in terms of code size in order to make
formal verification a tractable proposition.

Permissions bit-vectors are 128 bits in size, with
the first 16 bits reserved for system methods.

To implement the message passing, sockets were
used. This does impose some overhead on the sys-
tem, however, as we envisage Annex being used in
niche situations (such as implementing a TCB in a
CDS), the isolation, and hence security benefits, far
outweigh the modest performance impact. In addi-
tion, there are mechanisms for mapping regions of
memory between processes on secure µkernels that
may prove to be more efficient.

One of the benefits of having a robust simulator for
development effort is that standard debugging tools
such as gdb are able to be used. We also utilised re-
play (Murray & Grove 2013), a tool for visualising
graph modification over time. An Annex plugin al-
lowed us to view the timing and content of messages.

5 Example Object systems

Annex has been designed so that software systems
built using it are highly amenable to security proofs,
and the example systems that have been developed
demonstrate that benefit. The first example discussed
is a software-only data diode which shows the simple
power of the system. Then a much more complex soft-
ware system, a graphical user interface, is described.
Finally, an example hardware and software design is
discussed as well as several real world devices that
have been built using this design, demonstrating some
new opportunities that become available in the high-
assurance solution space due to our system design.

5.1 Data Diode

The concept of a unidirectional network link or data
diode has been around for some time, but it was not
until the 1990’s that a hardware implementation of a
data diode became a reality. The Starlight Interactive

Link Data Diode (Anderson et al. 1996) was certified
to EAL7 under the Common Criteria in 2005.

Although the concepts are well understood, no
software-only data diodes have been able to achieve
such a high level of certification. This is due in large
part to the complexity of software-based systems.

We contend that Annex, running on a secure
µkernel, provides a framework that is highly amenable
to both formally evaluating the implementation of the
diode itself, and the means of passing data through
it.

Figure 6: A collection of objects using the diode (DD)
to securely communicate in one direction

Listing 1 shows the source code for a simplified
version of a data diode that is restricted to passing
32-bit values. The diode sits between two disjoint
graphs of objects and only allows data to pass in one
direction between them.

uint32_t local_data;

EXPORT write_up (IN uint32_t data)
{

local_data = data;
RETURN(OK);

}

EXPORT read_down (OUT uint32_t data)
{

data = local_data;
RETURN(OK);

}

Listing 1: diode.def

The diode is specified in a few simple lines of code.
As long as the assumed object isolation properties are
satisfied, and the object wrapper and monitor code
shown to be secure, then it is a fairly simple matter
to prove that this object cannot move data from the
reader side to the writer side.

An object that wanted to write data to the diode
would need a capability to the diode that contained
the permission to call the write up method.

diode.write up(SYNC, diode.cap, data);
A diode object (a structure that contains pointers

to the objects MPI stub) is associated with a capa-
bility (diode.cap). The SYNC keyword specifies that
the calling object will immediately wait for the results
rather than use a promise to claim them later.

Equivalently, an object that wanted to read from
the diode would need a capability to the diode that
contained the permission to the read down method.

5.2 GUI

The development of a Graphical User Interface (GUI)
subsystem demonstrates the power and flexibility of
our object capability system. Each element to be
drawn to the screen is represented by an object called

CRPIT Volume 161 - Information Security 2015

30

a guiUnit. This object type has attributes such as a
background colour, border width and height, an im-
age and/or text component, and placement. GuiUnits
are connected together to form a tree, and each may
only draw within the confines of its parent guiUnit.

Rendering to the screen is performed by a GUI
server. This server queries the guiUnits to determine
how to draw them. The server also reads mouse, key-
board and touch input and directs it to the appropri-
ate guiUnit for processing.

While the performance of our Annex GUI subsys-
tem is not comparable to modern high-performance
interfaces, it has proven to be more than capable for
the applications that we have used it for, including
multi-level messaging, network management, cross
domain cut and paste, covert channel monitoring tool
and blue force tracking.

The covert channel monitoring tool is shown in
Figure 7. Icons that launch other applications can be
seen on the taskbar at the bottom of the screen.

Figure 7: Covert Channel Monitoring Tool screen ren-
dered by the Annex GUI.

5.3 Cross Domain Solutions

Annex has been used as the software framework for
several prototype real world devices. These devices
share a common basic architecture (shown in Fig-
ure 8) but address different aspects of cross domain
security.

Figure 8: Annex Cross Domain Architecture.

The standard architecture that we use consists of
a simple custom baseboard. On top of the baseboard

sit 4 COTS single level computing platforms, each
comprising a systemboard, CPU, memory and stor-
age. These are entire computers that operate in an
isolated domain atop the baseboard.

The baseboard includes hardware encryption mod-
ules adjacent to each at-level connector so that all
communication across it is encrypted. Each level sees
the baseboard connection as a network adapter and
can read from and write to it as per any network
adapter. For our purposes, each of these operate at
a given security level, nominally Unclassified, Secret
and Top Secret. The fourth board acts as a TCB,
running our Annex Object Capability System and it
mediates access to peripherals and controls informa-
tion flow between the other boards.

The baseboard includes a dynamically developed
list of allowed communications channels, both inter-
nal and external to the device, meaning that Annex
can ensure that each at-level domain only ever com-
municates with other devices at their equivalent level,
i.e., Secret can only ever interact with another Secret
domain. While all communication between devices
takes place (encrypted using DH-STS AES256) over
the Unclassified link, this is simply a design choice,
it could just as easily take place over a Top Secret
network.

5.3.1 Annex Router

The Annex Router is conceptually similar to a VPN
concentrator. In addition to the basic architecture
described above it includes a second network inter-
face at each security level, allowing access to an en-
tire network at each classification. In this case An-
nex software is used only to create, remove and audit
network connections. It should be noted that Annex
software has no access to the network data itself, only
the metadata used to route the encrypted packets.

5.3.2 Minisec

Two versions of the Minisec device were produced ac-
cording to this architecture (a first prototype used a
different architecture to achieve a different aim).

Figure 9: Minisec2.

The Minisec2 is a touch screen device, pitched
somewhere between a tablet device and a smart
phone. It uses Qtopia as an operating environment
on each of the at-level domains, providing services
such as VoIP and email at each classification over en-
crypted channels. The device incorporates trusted
buttons that allow the user to select which domain
has access to the screen, touch input and audio out-
put at any given time. The Minisec2 was designed for
tactical military use, with two large hot-swappable
batteries, making the device available without down-
time for charging.

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

31

The Minisec3 moved the target market to a desk-
top/server space with a desktop PC form factor. Each
domain was upgraded from its original Atom-based
board to a Core i7 mini-ATX form factor. This al-
lowed us to run unmodified Windows 7 or Ubuntu
operating systems on each domain. The Minisec3 has
buttons to allow the user to specify which is the ac-
tive domain at any given time, and includes a greatly
enhanced Annex domain which includes the GUI sub-
system.

This form factor, and the strong isolation between
the objects running in the TCB, lends itself to use
with COTS user applications across different security
levels. For example, Microsoft Word has been shown
to run in separate domains while securely sharing a
multi-level document using such a TCB to filter data
to and from each domain (Owen et al. 2011).

Figure 10: Minisec3 demonstrating the concept of a
single document being edited at multiple levels.

Another example of newly developed capability
that this architecture allowed was the concept of cut
and paste data downgrade. As the Annex-based TCB
has complete control of how data is moved between
domains, it is able to selectively, and with appropri-
ate user review, downgrade textual information from
high to low.

6 Evaluation

Rather than reimplement the strong isolation prop-
erties provided by secure µkernels, we have explicitly
chosen to leverage them to provide a programming en-
vironment that lends itself to more complex high as-
surance systems. Creating a generic framework in the
monitor and object wrapper allows system program-
mers to focus on how their objects interact without
needing to be overly concerned with low level details.

One measure that lends itself to system security
analysis is the size of the code base. SeL4 consists of
8700 lines of C code and 600 lines of assembler (Klein
et al. 2009). Using sloccount, the Annex monitor con-
sists of 8616 lines of C code, while the object wrapper
has 1560 lines of C code and 2 lines of assembler, and
if we were to optimise the Annex code for use in a par-
ticular scenario, we would be able to cut down these
numbers. While the count of lines of code does not
by itself infer any security properties, it is indicative
of a system designed with security in mind.

6.1 Formal Analysis

An initial formal analysis of Annex, based in the HOL
theories of the Isabelle proof assistant(Nipkow et al.

2002), was commissioned. The motivation was to
capture a formal model from an advanced prototype
system, and to use it as a touchstone for discussions
between modellers and developers in a future high
assurance development effort. As such it helped ini-
tiate an artifact trail that could be used to produce
the deliverables required in a high evaluation process.

The ensuing report (McCarthy 2013) quickly in-
troduces a simple model for the distributed commu-
nication context in which Annex sits, and the capabil-
ity, promise and message structures that control and
utilise it. The report then concentrates on the two
major elements of Annex, the monitor and the object
wrapper code, whose properties must be fully anal-
ysed before any resultant systems could be formally
verified.

For each element, the relevant data structures and
methods thereon are modelled in detail, whilst the
behaviour (in particular, message passing) is encoded
in a state machine (SM) model using these structures
in its state description.

Thus, for the monitor, all of the major components
- the object table, capability, catalogue, clist, message
queue and requests table - are SM state in this sense,
and the scheduler is simply represented in the SM
transition logic.

Similarly, for Annex objects, the task table,
promise table, results table are SM state, and the
turn-based multitasking is a consequence of the SM
transition logic. To allow for a generic treatment (as
opposed to the specific analysis of a particular appli-
cation) the object methods are fed in as a collection of
generic functions on the object data and an abstract
computing stack.

Strong isolation allows graph theory to be used to
provide inter-object authority bounds, while careful
composition of permissions allows intra-object infor-
mation flows to be verified. In this manner we hope
to divide and conquer the evaluation problem.

6.2 Performance

We state quite clearly that Annex is not designed
to develop a fully-fledged operating system that can
compete with Windows, Ubuntu or OSX for interac-
tive user experience. However, there are an increas-
ing number of niche uses for which the performance
tradeoff is a small price to pay for a much more robust
security model.

Figure 11: Conceptual, (left), vs actual, (right), mes-
sage passing in the Annex system

The hub-and-spoke structure of the Annex archi-
tecture (see Figure 11) results in some limitations.
The fact that all messages pass through the monitor,
together with the call-by-copy semantics of method
calls, means that there are bottlenecks in the sys-
tem. We focus strongly on the side of security in the
security-performance tradeoff.

Using processes to host objects and sockets to
move messages between objects and the monitor
means that each method call, from invocation to re-
ply requires at least 6 context switches, however this
impost will be lessened if we are able to deploy on a

CRPIT Volume 161 - Information Security 2015

32

multi-core chip. Part of Annex’s design is that the
number of objects that are able to run concurrently
scales linearly with the number of available processing
cores. Previous work (Newby 2008) looked at how to
port Annex to multi-core chips such as the Cell pro-
cessor or Intel’s Single-Chip Cloud Computer.

The data copying overhead required to move mes-
sages between monitor and objects may be able to
be removed if we can use page-transfer mechanisms
provided by the underlying µkernel, while thought-
ful architecting of systems can bypass much of this
performance impost.

7 Related Work

The concept of isolation, bridged only through well
defined interfaces, lies at the core of computer se-
curity (Aiken et al. 2006). As early as 1981,
Rushby (Rushby 1981) identified the need for isolated
processes in the development of multilevel secure sys-
tems on commodity computing platforms. Recently,
there has been renewed interest in applying this prin-
ciple to computing systems at various levels of ab-
straction.

In the software sandboxing space, Capsicum (Wat-
son et al. 2010) is a capability system used by the
Chromium browser on BSD-based systems to isolate
each tab or web session. This stops problems with
rendering one tab from affecting others. Similarly,
uPro (Niu & Tan 2012) enables programmers to break
their program into sections and define interfaces be-
tween them which are then checked by a run-time
harness.

Annex owes its heritage to the E language (Miller
2006). In E, as in Annex, objects are referenced by
capabilities, however, in E some objects may run to-
gether in a shared space called a vat. While method
calls between vats use a distributed calling conven-
tion, calls internal to a vat do not. In contrast, in
Annex all calls between objects use distributed calling
conventions. In addition, E does not use permissions.

While these efforts are improvements over stan-
dard programs using shared memory, none are ap-
propriate for high assurance systems.

The benefits of being able to access information
of differing security classifications and the financial
benefits of being able to remove multiple workstations
from desktops is leading to renewed interest in Cross
Domain Solutions. Policy makers are reducing the
security requirements of such systems (at least for
lower classifications of data) and commercial vendors
are beginning to bring systems to market that are
able to meet these reduced standards.

Galois’ Trusted Services Engine (Galois Inc. n.d.)
connects to up to 4 networks at differing secu-
rity levels and allows users to read from lower
levels but prevents write-up. Raytheon’s High
Speed Guard (Raytheon 2014) and Small Format
Guard (Raytheon Trusted Computer Solutions 2014)
are bidirectional filtering routers with rules that can
be set prior to deployment. All of these systems use
SELinux (National Security Agency n.d.) to control
data flow, with Raytheon hosting theirs on Red Hat
Enterprise Linux (Red Hat n.d.) (RHEL).

Thales’ Trusted Security Filter (Thales n.d.) is
also a bi-directional filtering router with a predefined,
non-configurable filter. The internal architecture of
the device is unspecified, however an updated assur-
ance evaluation (SERTIT n.d.) shows that the filter
is specified in software.

Thales and Raytheon have also formed a partner-
ship to provide the Australian Department of De-

fence’s Next Generation Desktop (NGD), a version of
Raytheon’s Trusted Thin Client (Raytheon Trusted
Computer Solutions n.d.). This product consists of a
Distribution Console (DC) which acts as a VPN con-
centrator, sending out a single (low) level data stream
and pre-configured virtualisation software that allows
a client to connect to the servers. Keys appear to be
pre-shared. The DC runs SELinux on RHEL to main-
tain data separation.

SecureView (AFRL 2014), a collaboration between
the US Air Force Research Labs, Intel and Citrix, is
a CDS that uses XenClientXT as a bare metal hyper-
visor to isolate multiple virtual computers of differing
classification.

The CDS’s described above are architecturally
similar to the Annex hardware platform described in
Section 5.3. However, where they use a single shared
CPU and either complex virtualisation software or
entire COTS operating systems to manage isolation,
we use simple replicated hardware.

In 2007 the Separation Kernel Protection Profile
(SKPP) was formalised by the Information Assurance
Directorate within the NSA. In October 2008, Green
Hills Integrity-178B (Green Hills Software Inc 2010)
(a fixed variant of their real time operating system)
was certified compliant against the SKPP. This com-
pliance gives Green Hills the only operating system to
be certified to Common Criteria EAL6 augmented.

NICTA’s seL4 (NICTA n.d.) is a formally verified
µkernel. Its security properties, such as functional
correctness, have been captured in an abstract speci-
fication and, through refinement proofs, a correspon-
dence was shown with its underlying C implementa-
tion. It uses capabilities to partition and reference
memory.

As both Integrity-178B and seL4 are µkernels they
provide a bare minimum of primitives for a user-space
program. By keeping this set small, they are able to
guarantee that they behave correctly, but their pro-
gramming interfaces are more difficult to work with
than standard computer systems.

We see Annex as extending the trust that secure
µkernels such as seL4 and Integrity provide, into a
usable space for programmers. The guaranteed iso-
lation for executing processes makes them perfect for
hosting Annex object systems.

8 Conclusion

Designed to run on top of existing highly certified
COTS µkernels, the Annex Object Capability Sys-
tem provides a strong platform for driving high level
evaluation and certification beyond a separation ker-
nel and into user applications.

While multi-level systems are gaining favour again,
solutions to constructing the cross-domain component
are often focused on supporting fine-grained security
policy at the expense of a TCB that is too complex
to effectively verify. Annex aims to solve this prob-
lem, combining true verifiable security with a familiar
programming environment.

An approach to engineering high-assurance trust-
worthy systems has been shown for exemplar Cross
Domain Solutions and Multi-Level Secure systems.

References

AFRL (2014), ‘SecureView’.
http://www.citrix.com/content/dam/citrix/en us/
documents/products-solutions/secureview-
government-industry-collaboration-delivers-

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

33

improbved-levels-of-security-performance-and-
cost-saving-for-mission-critical-applications.pdf.

Aiken, M., Fähndrich, M., Hawblitzel, C., Hunt, G. &
Larus, J. (2006), Deconstructing process isolation,
in ‘Proceedings of the 2006 Workshop on Memory
System Performance and Correctness’, MSPC ’06,
ACM, New York, NY, USA, pp. 1–10.

Anderson, J. & Co. (1972), ‘Computer security tech-
nology planning study’. http://www.csrc.nist.
gov/publications/history/ande72.pdf.

Anderson, M. S., North, C. J., Griffin, J. E., Mil-
ner, R. B., Yesberg, J. D. & Yiu, K. K.-H. (1996),
Starlight: Interactive link., in ‘ACSAC’, IEEE
Computer Society, pp. 55–63.

Boebert, W. (1984), On the Inability of an Unmodi-
fied Capability Machine to Enforce the *-Property,
in ‘7th DOD/NBS Computer Security Conference’.

Dennis, J. B. & Van Horn, E. C. (1966), ‘Pro-
gramming semantics for multiprogrammed compu-
tations’, Communications of the ACM 9, 143–154.

dietlibc (2014), ‘diet libc - a libc optimized for size’.
http://www.fefe.de/dietlibc.

Friedman, D. & Wise, D. (1976), The impact of
applicative programming on multiprocessing, in
‘International Conference on Parallel Processing’,
pp. 263–272.

Galois Inc. (n.d.), ‘Trusted Services Engine (TSE)’.
http://corp.galois.com/trusted-services-engine.

Green Hills Software Inc (2010).
http://www.ghs.com.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J.,
Cock, D., Derrin, P., Elkaduwe, D., Engelhardt,
K., Kolanski, R., Norrish, M., Sewell, T., Tuch,
H. & Winwood, S. (2009), sel4: Formal verifica-
tion of an os kernel, in ‘Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems
Principles’, ACM.

McCarthy, J. (2013), Modelling the annex object
capability reference monitor, Technical Report
DSTO-GD-0751, Defence Science and Technology
Organisation, Information Networks Division.

Miller, M. S. (2006), Robust Composition: To-
wards a Unified Approach to Access Control
and Concurrency Control, PhD thesis, Johns
Hopkins University, Baltimore, Maryland, USA.
http://www.cypherpunks.to/erights/talks/thesis/
submitted/markm-thesis.pdf.

Miller, M. S. & Shapiro, J. S. (2003), Paradigm re-
gained: Abstraction mechanisms for access con-
trol, in ‘8th Asian Computing Science Conference
(ASIAN03)’, pp. 224 – 242.

MPI Forum (n.d.). http://www.mpi-forum.org.

Murray, A. & Grove, D. (2013), Replay: Visualis-
ing the structure and behaviour of interconnected
systems, in ‘Proceedings of the Thirty-Sixth Aus-
tralasian Computer Science Conference - Volume
135’, ACSC ’13.

Murray, T. (2010), Analysing the Security Properties
of Object-Capability Patterns, D.Phil. thesis, Uni-
versity of Oxford.

National Information Assurance Partnership
(2007), ‘U.S. Government Protection Profile
for Separation Kernels In Environments Re-
quiring High Robustness’. https://www.niap-
ccevs.org/pp/pp skpp hr v1.03.pdf.

National Security Agency (n.d.), ‘Security Enhanced
Linux’. http://www.nsa.gov/research/Selinux/.

Newby, T. (2008), An Evaluation of the Cell Proces-
sor for an Implementation of the Annex System,
Masters thesis, University of Adelaide.

NICTA (n.d.). http://ertos.org/research/sel4.

Nipkow, T., Wenzel, M. & Paulson, L. C. (2002),
Isabelle/HOL: A Proof Assistant for Higher-order
Logic, Springer-Verlag, Berlin, Heidelberg.

Niu, B. & Tan, G. (2012), Enforcing user-space priv-
ilege separation with declarative architectures, in
‘Proceedings of the Seventh ACM Workshop on
Scalable Trusted Computing’, STC ’12, ACM, New
York, NY, USA, pp. 9–20.

Owen, C. A., Grove, D. A., Newby, T., Murray, A.,
North, C. J. & Pope, M. (2011), PRISM: Program
Replication and Integration for Seamless MILS,
in ‘IEEE Symposium on Security and Privacy’11’,
pp. 281–296.

Raytheon (2014), ‘High-Speed Guard’.
http://www.raytheon.com/capabilities/products/
cybersecurity/highspeedguard/.

Raytheon Trusted Computer Solu-
tions (2014), ‘Small Format Guard’.
http://www.trustedcs.com/products/
SmallFormatGuard.html.

Raytheon Trusted Computer Solu-
tions (n.d.), ‘Trusted Thin Client’.
http://www.trustedcs.com/products/
TrustedThinClient.html.

Red Hat (n.d.), ‘Red Hat Enterprise Linux’.
http://www.redhat.com/products/enterprise-
linux/.

Rushby, J. (1981), The design and verification of se-
cure systems, in ‘Eighth ACM Symposium on Op-
erating System Principles’, pp. 12–21. (ACM Op-
erating Systems Review , Vol. 15, No. 5).

Saltzer, J. H. (1974), ‘Protection and the control of
information sharing in multics’, Commun. ACM
17(7), 388–402.
URL: http://doi.acm.org/10.1145/361011.361067

SERTIT (n.d.), ‘Certified Products, TSF101’.
http//sertit.no/product/15.

Thales (n.d.), ‘Trusted Security Filter TSF101’.
https://www.thalesgroup.com/en/content/trusted-
security-filter-tsf101.

Watson, R. N. M., Anderson, J., Laurie, B. & Kenn-
away, K. (2010), ‘Introducing Capsicum: Practical
capabilities for UNIX’, ;login: the USENIX Asso-
ciation newsletter 35(6).
URL: https://www.usenix.org/publications/login/
december-2010-volume-35-number-6/introducing-
capsicum-practical-capabilities-unix

CRPIT Volume 161 - Information Security 2015

34

