
Are Zero-suppressed Binary Decision Diagrams Good for Mining

Frequent Patterns in High Dimensional Datasets?

Elsa Loekito and James Bailey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

University of Melbourne, Australia
Email: {eloekito, jbailey}@csse.unimelb.edu.au

Abstract

Mining frequent patterns such as frequent itemsets
is a core operation in many important data min-
ing tasks, such as in association rule mining. Min-
ing frequent itemsets in high-dimensional datasets is
challenging, since the search space is exponential in
the number of dimensions and the volume of pat-
terns can be huge. Many of the state-of-the-art tech-
niques rely upon the use of prefix trees (e.g. FP-
trees) which allow nodes to be shared among com-
mon prefix paths. However, the scalability of such
techniques may be limited when handling high dimen-
sional datasets. The purpose of this paper is to anal-
yse the behaviour of mining frequent itemsets when
instead of a tree data structure, a canonical directed
acyclic graph namely Zero Suppressed Binary Deci-
sion Diagram (ZBDD) is used. Due to its compact-
ness and ability to promote node reuse, ZBDD has
proven very effective in other areas of computer sci-
ence, such as boolean SAT solvers. In this paper, we
show how ZBDDs can be used to mine frequent item-
sets (and their common varieties). We also introduce
a weighted variant of ZBDD which allows a more effi-
cient mining algorithm to be developed. We provide
an experimental study concentrating on high dimen-
sional biological datasets, and identify indicative situ-
ations where a ZBDD technology can be superior over
the prefix tree based technique.

Keywords: data mining, association rule mining, fre-
quent patterns, frequent itemset mining, Binary De-
cision Diagrams (BDDs), Zero-suppressed Binary De-
cision Diagrams (ZBDDs), high dimensional datasets.

1 Introduction

Mining frequent patterns such as frequent itemsets is
a fundamental and well studied problem in data min-
ing. It has a number of useful applications such as
association rule mining and market basket data anal-
ysis. Frequent itemsets correspond to combinations of
items (or attribute values) which occur frequently in
the dataset. Thus, mining them in a high dimensional
dataset can be challenging, since the search space is
exponential in the number of dimensions.

State-of-the-art frequent itemset mining tech-
niques such as those found in FIMI Reposi-
tory (Goethals 2004) have made attempts to address
this issue by making use of prefix tree data structures,
or combinations of prefix trees with other data struc-

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Sixth Australasian Data Mining Confer-
ence (AusDM 2007), Gold Coast, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
70, Peter Christen, Paul Kennedy, Jiuyong Li, Inna Kolyshkina
and Graham Williams, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

tures, to compress the data representation. Prefix
trees, however, limit node sharing to common prefixes
which may limit the scalability of a frequent item-
set mining algorithm when handling high dimensional
datasets. As we will analyse in this paper, sharing of
common suffixes, too, can be useful for mining fre-
quent itemsets, which is made possible using a graph
data structure called the Zero-suppressed Binary De-
cision Diagrams (ZBDDs) (Minato 1993).

In particular, microarray datasets are one of the
most challenging kinds of high dimensional datasets
for pattern mining. They typically consist of only a
few number of samples (i.e. rows), but they have very
high dimensionality (i.e. thousands of attributes).
The number of patterns in a microarray dataset can
be enormous (Creighton & Hanash 2003), and hence,
mining them requires considerable time as well as
space. Other works such as (Rioult et al. 2003, Li
et al. 2003) have also studied other itemset mining
problems in microarray datasets.

Binary Decision Diagrams (BDDs) (Bryant 1986)
are a compact canonical graph representation of
boolean formulae. They are a directed acyclic graph
(DAG) data representation, similar to binary decision
trees, except identical sub-trees are merged. There
exist efficient BDD library routines which promote
their canonicity and allow intermediate computation
results to be reused. Furthermore, Zero-suppressed
Binary Decision Diagrams (ZBDDs) are a special type
of BDDs which were introduced for efficient manipu-
lation of sparse item combinations (Minato 2001, Mi-
nato & Arimura 2005). There exist efficient library
routines for manipulating ZBDDs in (Mishchenko
2001), and they have been shown effective for solv-
ing problems in other computer science areas such as
boolean SAT solvers (Aloul et al. 2002) and solving
graph optimization problems (Coudert 1997). There
are only a few works that use ZBDDs in a data min-
ing context, such as (Loekito & Bailey 2006, Minato
2005, Minato & Ito 2007, Minato & Arimura 2006).

A vast number of techniques for mining frequent
itemsets and their common varieties have been pro-
posed. A survey can be found in (Zaki & Goethals
2003, Zaki et al. 2004). FP-growth* (Grahne & Zhu
2003) is one of the strongest frequent itemset min-
ing algorithms, which is based on the use of pre-
fix trees such as FP (frequent pattern)-trees. FP-
growth* follows a pattern growth framework (Han
et al. 2004) which recursively creates database pro-
jections, and it uses FP-trees to represent the inter-
mediate databases. Other implementations of pat-
tern growth such as AFOPT (Liu et al. 2003) and
LCMv3 (Uno et al. 2005) are also based on the use
of modified FP-trees, or prefix trees combined with
arrays and bitmap data structures.

The purpose of this paper is to analyse the be-
haviour of frequent itemset mining when canonical
DAGs such as ZBDDs, instead of trees, are used as a

135

primary data structure. Prefix trees have been used
as a means for achieving data compression through al-
lowing node sharing of common prefixes. ZBDDs are
different from prefix trees in the sense that node fan
in as well as fan out is allowed, and multiple identical
sub-trees do not exist. More specifically, by shar-
ing the identical sub-trees in a ZBDD, higher data
compression can potentially be achieved and efficient
ZBDD library can be employed in the mining proce-
dure. Therefore, ZBDDs are seemingly attractive for
mining frequent itemsets in sparse, and challenging,
high dimensional datasets.

In this paper, we show how ZBDDs can be used to
mine frequent itemsets and their maximal and closed
variants, concentrating on high dimensional biolog-
ical datasets. We consider mining in a column-wise
pattern growth framework, and a row-wise framework
(Rioult et al. 2003, Pan et al. 2004) (introduced for
mining closed frequent itemsets). Our objective is to
identify and explain situations where ZBDDs are ad-
vantageous compared to FP-trees. In particular, we
aim to address questions such as:

1. Does the canonical property of ZBDDs allow a
scalable and efficient algorithm for frequent item-
set mining to be developed ?

2. How much data compression can a ZBDD achieve
compared to an FP-tree ?

3. Does the use of a more compact data structure
always mean that mining is more efficient?

Our main contributions in this paper are three-
fold:

• We present an algorithm that can mine (maxi-
mal/closed) frequent itemsets, based on the use
of a ZBDD as the primary data structure and a
supplementary bitmap (similar to (Burdick et al.
2001)) for support checking. A particularly at-
tractive feature of our technique is the use of
multiple shared-ZBDDs to represent the input
database, the intermediate databases, as well as
the final output, allowing them to share common
sub-trees. This is something which is not possi-
ble in prefix-tree-based techniques like (Grahne
& Zhu 2003, Liu et al. 2003, Pietracaprina & Zan-
dolin 2003). We also show how the ZBDD mining
framework can be adapted to the row-wise min-
ing approach (Pan et al. 2003, 2004).

• We introduce an edge-weighted variant of ZB-
DDs, whose structure is similar to Edge-Valued
Binary Decision Diagrams (Vrudhula et al. 1996)
which were proposed for efficient representation
of discrete functions. Our weighted ZBDDs al-
low itemsets and their corresponding frequen-
cies to be compactly represented. Hence, sup-
port counting can be performed more efficiently
compared to when the bitmap is used. More-
over, their canonical property allows a more ef-
ficient mining technique to be developed, which
is achieved through re-using intermediate results.
It is advantageous especially for mining large and
dense datasets, in which bitmap manipulations
may be costly, and a significant portion of the
intermediate computations may share results.

• We experimentally investigate the behaviour of
our techniques, according to various character-
istics of high dimensional biological datasets.
Our techniques are compared against the
state-of-the-art FP-tree-based technique FP-
growth* (Grahne & Zhu 2003). Our results show
a number of situations where the use of a ZBDD
(either weighted or not) is able to give improve-
ment over FP-growth*.

2 Preliminaries

In this section we provide background knowledge of
the pattern growth framework, which is employed by
the existing prefix-tree based mining algorithms, and
an overview of Zero-suppressed Binary Decision Dia-
grams. Firstly though, we define some terminologies
which will be used in the remainder of this paper.

Assume we have a dataset D defined upon a set of
k attributes. For every attribute Ai, i ∈ {1, 2..k}, the
domain of its values (or items) is denoted by dom(Ai).
Let I be the aggregate of the domains items across

all the attributes, i.e. I =
⋃k

i=1 dom(Ai). An itemset
is a subset of I. Let p and q be two itemsets. We say
p contains q if q is a subset of p, i.e. q ⊆ p. A dataset
is a collection of transactions, where each transaction
is an itemset. The support of an itemset p in dataset
D, i.e. support(p), is the fraction of the transac-
tions in D which contain p (0 ≤ support(p) ≤ 1).
Given a dataset D, and a support threshold α, an
itemset p is frequent if it satisfies the constraint:
support(p) ≥ α. Furthermore, p is a maximal
frequent itemset if p is not contained in any other
frequent itemset. p is a closed frequent itemset
if p is not contained in any other frequent itemset
which has the same support.

2.1 Pattern growth framework for mining
frequent itemsets

The pattern growth framework for mining frequent
patterns grows prefixes by recursively projecting in-
termediate databases. For each item x, an x-
conditional DB is induced. It contains itemsets in the
input database which contain x. Then, frequent item-
sets which contain prefix {x} are grown by recursively
creating further projections from the x-conditional
DB. FP-growth is one of the strongest techniques that
follows this pattern growth approach. In particular,
FP-growth (Han et al. 2004) uses frequent pattern
(FP) trees for storing the input, the output patterns,
and the conditional DBs. An FP-tree is created afresh
for each of those databases.

FP-growth uses a dynamic ordering of the items,
such that items in an FP-tree are ordered by decreas-
ing frequency, the most frequent item at the top. The
FP-trees which are created throughout mining may
use different item orderings. One of the most effi-
cient implementations of FP-growth grows prefixes
by traversing the database in a bottom-up manner
(There exist its variations which use an inverse item
ordering and perform a top-down traversal, such as
that in (Liu et al. 2003)).

An FP-tree example is shown in Figure 1(a). Each
node in an FP-tree contains an item and a value which
represents the frequency of that node’s prefix path.
As a secondary data structure, a header table is used
for storing the total frequency of each item. In this
example, the first prefix is grown using item d (the
least frequent item). The FP-tree representation for
d-conditional DB is shown in Figure 1(b).

FP-growth* (Grahne & Zhu 2003) is an optimised
implementation of FP-growth which reduces the num-
ber of database projections based on a technique
called bi-level projection, and minimises memory us-
age of the algorithm by using a pseudo-projection in-
stead of physically creating the conditional databases.
For further implementation details, readers are re-
ferred to that paper.

136

Var. Ordering: e < b < g < c < a < d Var. Ordering: e < b < c < g < a

(a) Dataset D (b) d-conditional database

Figure 1: FP-tree representations for sample dataset D

Merging rule Zero-suppression rule

Figure 2: ZBDD Reduction Rules

2.2 Zero-suppressed Binary Decision Dia-
gram(ZBDD):

Binary Decision Diagrams (BDDs) (Bryant 1986) are
canonical directed acyclic graphs (DAGs). Their
canonical property allows boolean formulae to be
compactly represented and their logical operations
(AND, OR, XOR, etc.) to be performed in poly-
nomial time with respect to the number of nodes.
A Zero-suppressed BDD (ZBDD) (Minato 1993) is
a special type of BDD which was introduced for effi-
cient manipulation of sparse combinations. However,
it has received little attention in data mining except
a few works in (Loekito & Bailey 2006, Minato 2005,
Minato & Ito 2007, Minato & Arimura 2006). A sur-
vey on other, non data-mining, ZBDD applications
can be found in (Minato 2001).

More formally, a BDD is a canonical DAG of la-
beled nodes. It consists of one source node, multiple
internal nodes, and two sink nodes which are labeled
as 0 and 1 respectively. Each internal node may have
multiple parent nodes, but it can only have two child
nodes, which we call 0-child and 1-child nodes. By
canonical, it means that multiple identical nodes are
not allowed. Two nodes are identical if they have the
same label, and their respective child nodes are also
identical. The nodes are ordered so that the label of
any internal node must be of higher index (i.e. appear
earlier in the variable ordering) than the label of its
children.

An internal node N with a label x, denoted N =
node(x, N1, N0), encodes the boolean formula N =
(x∧N1)∨ (x∧N0). We call N1 (resp. N0) the 1-child
(resp. 0-child) of N . The edge connecting a node to
its 1-child (resp. 0-child) is also called the true-edge
(resp. false-edge). In the illustrations shown shortly,
solid lines correspond to true-edges whilst dotted lines
correspond to false-edges. Each path from the root to
sink-1 (resp. sink-0) gives a true (resp. false) assign-
ment for the represented function. For some node N ,
with label x, the outgoing true-edge of N represents a
true assignment for variable x, whereas the outgoing
false-edge represents a false assignment for variable x.

BDDs have two important properties (Bryant
1986):

1. Equivalent subtrees are shared (canonical);

2. Computation results are stored for future reuse
(referred as BDD’s caching principle).

These properties make the worst-case complexity of
most BDD operations polynomial with respect to the
number of nodes. The caching principle allows the
result from intermediate computations to be reused
if the same computation is re-visited in the future.
This utility is particularly effective if many subtrees
are being shared within the input BDD, as the same
subtree may be encountered multiple times (under the
same computation) through out its manipulation.

A Zero-suppressed BDD (ZBDD) is a special kind
of BDD which was introduced for efficient combinato-
rial itemset analysis (Minato 1993, Minato & Arimura
2005). More specifically, a ZBDD is a BDD with two
reduction rules (Their illustrations are shown in Fig-
ure 2):

1. Merging rule: merge identical subtrees (to ob-
tain canonicity);

2. Zero-suppression rule: delete nodes whose 1-
child is the sink-0, and replace them with their
0-child.

By utilising these rules, a sparse collection of item
combinations, which can be seen as a boolean for-
mula, can be represented with high compression, i.e.
for an n variable formula, the possible space of truth
values is 2n, however the corresponding BDD/ZBDD
can have exponentially fewer nodes.

We follow the ZBDD encodings for representing a
collection of itemsets as in (Minato & Arimura 2005).
An itemset p can be represented by a n-bit binary
vector (x1, x2, . . . , xn), where xi = 1 if item i is con-
tained in p. A set S of itemsets can be represented by
a characteristic function XS : {0, 1}n → {0, 1} where
XS(p) = 1 if p ∈ S and 0 otherwise. In ZBDD se-
mantics, set S such that S = S0 ∪ (S1 × {x}) can be
represented by a ZBDD node N = (x, N1, N0) where
S1 (resp. S0) is the set of itemsets encoded by N1
(resp. N0). An itemset p in S is interpreted as a con-
junction of the items contained in p and yields a true
assignment for the boolean formula encoded by N . A
sink-0 node encodes an empty set (∅), and sink-1 node
encodes a set of an empty itemset ({∅}). For clarity,
sink-0 nodes may be omitted from the illustrations
shown in this paper. Table 1 lists some pre-defined
ZBDD library operations (Minato & Arimura 2005,
Mishchenko 2001) which we use in our algorithms.

Variable Ordering: The number of nodes in a
ZBDD, and thus, the efficiency of its manipulations
may be highly sensitive to its variable ordering. Work
in (Minato 2001) shows that a good variable order-
ing for compact BDDs should have two properties:

137

Table 1: Primitive ZBDD operations
sink-0 The empty set, ∅
sink-1 The set of an empty itemset, {∅}
getNode(x, N1, N0) Create node(x, N1, N0) and apply ZBDD reduction rules
P

⋃

max Q Maximal set-union between itemsets in P and Q
P \ Q Itemsets of P which do not exist in Q
CrossProd(P, Q) Pair-wise intersection between itemsets in P and itemsets in Q

E.g.: 1. P = {{a, b, d}, {b, c}}, Q = {{b, c, d}, {a, c, d}}, P
⋃

max Q = {{a, b, d}, {b, c, d}, {a, c, d}}
2. P = {{b, c, d}, {a, b, d}}, Q = {{a, b, d}, {a, c}}, P \ Q = {{b, c, d}}
3. P = {{a, d}, {b, c}}, Q = {{b, d}, {a, b}}, CrossProd(P, Q) = {{a, b, d}, {b, c, d}, {a, b, c, d}}

1) groups of closely related variables should be kept
near to each other; 2) variables that greatly affect
the function should be located at higher positions.
For our purpose, we use some heuristics described
shortly, based on the frequency of the variables in
the input dataset, that aims to maximise sharing of
sub-structures across the auxiliary ZBDDs and allow
efficient mining.

3 Frequent Itemset Mining Based on the Use
of ZBDDs

In this section we present our ZBDD-based mining
techniques for mining frequent itemsets, and mining
their maximal and closed variants.

As a general overview, our techniques adopt the
pattern growth framework, but instead of using FP-
trees, we use ZBDDs as a primary data structure,
and ZBDD library routines are used to compute the
conditional DBs. More specifically, we use multiple-
shared ZBDDs, which means canonicity is maintained
(i.e. node sharing is allowed) across the multiple
databases. Unlike in FP-trees, support information
is not stored inside the nodes, instead, we use a sec-
ondary data structure bitmap for support counting.

The core operations in our framework, such as cre-
ating database projections and maintaining the out-
put patterns, employ efficient ZBDD library functions
which cache computation results. This means, inter-
mediate redundant computations can be avoided if
the same database (or substructure of the database)
is re-visited through out mining. Due to the recur-
sive nature of the pattern growth algorithm, multiple
conditional databases are likely to contain many sim-
ilar sub-structures. In particular, for a given prefix,
its conditional DB contains subsets of itemsets from
the conditional DB projected by some subset of that
prefix.

Variable Ordering: Items in the ZBDDs in our
mining technique are ordered by increasing frequency.
This ordering has the following three objectives: 1) to
obtain smaller conditional DBs in the first recursions,
2) to allow early pruning of infrequent prefixes, 3)
to increase node-sharing across the databases. This
ordering allows a very high data compression to be
achieved, and increases the effectiveness of ZBDD’s
caching principle during database projections. Fig-
ure 3(a) shows the ZBDD which represents the input
dataset D given in Figure 1. In this example, the
ZBDD contains only 10 nodes (excluding sink nodes),
whereas the FP-tree contains 14 nodes.

3.1 Frequent Itemset (FI) Miner

Our algorithm for mining frequent itemsets is labeled
as FIMiner. The algorithm is shown in Algorithm
1. It is invoked by calling FIMiner(ZD, α, prefix)
where ZD contains the input itemsets and prefix is
initially empty (i.e. prefix = {}). Frequent item-
sets are grown from the given prefix, using the input

ZBDD which is traversed in a top-down fashion. Let
x be the top-node’s label. For a given input ZBDD,
item x is firstly used to grow the current prefix since
no computation is needed to create the conditional
DB for this item. More specifically, an x-conditional
DB can be found in the top 1-child node, which con-
tains all itemsets containing x in ZD. This routine
finds the patterns which contain x. Patterns which do
not contain x are grown later, after removing x from
the input ZD and applying the same mining proce-
dure. The output ZBDD is incrementally built from
each recursion step, using the same variable order-
ing as the input ZBDD which allows both ZBDDs to
share nodes.

In addition to the standard ZBDD primitive op-
erations, we push the anti-monotonic support con-
straint deep inside the routine using an infrequent
prefix pruning strategy (line 4-5) which is based on
the anti-monotonic property of support. Here, the
bitmap data representation of the input database is
needed to calculate the support of each prefix. For a
given prefix P , bitmap(P) refers to the bit-vector of
the occurrence of P in the initial input dataset. We
compute support(P) by counting the number of 1’s
in bitmap(P), denoted as |bitmap(P)|. Hence, the
support of prefix ∪ {x} in FIMiner (line 4) can be
computed incrementally by re-using bitmap(prefix)
which has been computed in previous mining it-
eration, and taking its bit-wise intersection with
bitmap({x}).

When a new prefix which is grown using item x
is infrequent, it is deleted from the output by re-
turning the sink-0 node and employing ZBDD’s zero-
suppression rule (line 5). This automatically deletes
node x from the output and replaces it by other pat-
terns which do not contain item x, which will be
computed later in line 9. Otherwise, the new prefix
can be grown further using x-conditional DB (line 7).
To remove x from the remaining routines and grow
prefixes using the remaining items, the two child-
nodes of ZD are merged using a set-union operation,
which is a ZBDD primitive operation (line 9). For
mining efficiency and data compression purposes, the
non-maximal itemsets are removed from the merged
database, which can be obtained by using ZBDD’s
⋃

max operation. We refer to this operation as DB-
merging. Since primitive ZBDD operations store com-
putation results in a cache, DB-merging can be com-
puted efficiently if many of the conditional DBs share
common subtrees. Finally, the recursion terminates
when the induced database is empty (line 1-2).

Once mining in both the x-conditional database
and the merged database have been completed, the
output node is created by having item x as its label
and the patterns found from the two sub-tasks are
assigned to its 1-child and 0-child respectively. Since,
this procedure is performed at each recursion level, it
incrementally builds the output ZBDD in a bottom-
up fashion. More specifically, the frequent patterns
which are found from the x-conditional database be-

138

Algorithm 1 FIMiner(ZD,α, prefix)

Input: ZD: the database induced by prefix
α: minimum support threshold ,
prefix: prefix itemset

Output: ZFI : the frequent itemsets in ZD

Procedure:
1: if (ZD is a sink node) then
2: Terminal case:

return ZD

3: end if
Let ZD = node(x, ZDx

, ZDx
),

prefixx = prefix ∪ {x}
4: if (support(prefixx) < α) then
5: Infrequent prefix pruning:

ZFIx
= 0

6: else
7: Grow new prefix prefixx and mine FIs:

ZFIx
= FIMiner(ZDx

, α, prefixx)
8: end if
9: DB-merging and grow prefix without x:

ZFIx
= FIMiner(ZDx

⋃

maxZDx
, α, prefix)

10: return ZFI = getNode(x, ZFIx
, ZFIx

)

Note:
support(prefixx) = |bitmap(prefix)∩bitmap({x})|.

come the 1-child node, which are seen as patterns
which contain item x, and the frequent patterns which
are found in the merged database become the 0-child.
When creating such a node, ZBDD’s library checks
whether the node has been existed. If it has, then the
existing node is shared.

Let us consider again the sample dataset in Fig-
ure 1. Figure 3(a) shows the conditional DB for the
first item, i.e. d-conditional DB which is given by
the 1-child of the top-node. Figure 3(b) illustrates
the DB-merging operation. The merged database
contains the set-union between itemsets in the two
child-nodes of ZD. In order to achieve higher data
compression and mining efficiency, the non-maximal
itemsets are simultaneously removed while computing
the set-union. Identical nodes in the merged ZBDD
are shared with the input database, as well as the
other databases (nodes which are newly created for
the merged ZBDD are drawn with a bold outline).

3.2 Maximal Frequent Itemset (MFI) Miner

We now describe some optimisations that can be ap-
plied to our FI mining technique for mining maxi-
mal frequent itemsets (MFIs). We call the algorithm
MFI-Miner. Using the same core operations as FI-
Miner, MFI-Miner has an additional procedure for re-
moving the non-maximal patterns. This is performed
using a progressive focusing technique (Burdick et al.
2001), which removes the locally non-maximal pat-
terns from each conditional DB. It can be computed
using a ZBDD primitive set-subtraction routine i.e.
ZFIx

\ ZFIx
, where ZFIx

and ZFIx
are computed as

in Algorithm 1. This subtraction operation removes
the frequent extensions of prefix which also occur
as frequent extensions of prefixx since they are non-
maximal local to the current database.

Additionally, our framework can adopt some ad-
vanced pruning techniques such as those used in
(Burdick et al. 2001, Grahne & Zhu 2003, Wang et al.
2003). For this purpose, an itemset tail is maintained
for each conditional DB. It contains the items that oc-
cur in the relevant database, and ZBDD library func-
tions are employed for manipulating each database
with its tail. For instance, to remove infrequent items
from a database D, crossProd can be employed upon
the ZBDDs of D and freqTail, where freqTail is

obtained from tail by removing the infrequent items.
Since freqTail is a single itemset, then the crossProd
operation returns the intersection between each item-
set in D with freqTail.

3.3 Closed Frequent Itemset (CFI)-Miner

Our algorithm for mining closed frequent itemsets
namely CFI-Miner has a similar framework as MFI-
Miner, which uses a progressive focusing technique
for removing the non-closed patterns. However, the
closed constraint requires the support of an itemset to
be compared against its subset(s). Thus, the support
information has to be represented in the output data
structure, which was not necessary for FI/MFI-Miner.
Note that the support information does not need to
be represented in the input ZBDD as it may reduce
its compactness. Additionally, CFI-Miner can also
adopt the more advanced pruning techniques found
in existing algorithms, using a similar mechanism to
MFI-Miner which maintains a tail itemset.

To represent the patterns’ support in the ZBDD
output, additional variables are used, which are ap-
pended to each pattern. We refer to these extended
pattern representations as item-support-sets. In order
to achieve higher compression, we use the binary rep-
resentation of the support values. For a database of
n transactions, log2(n) binary variables are reserved.
Suppose the database containing 5 transactions, 3
support-encoding variables are reserved. Let r0 r1 r2
be the support-encoding binary variables, such that
r2 = 0, r1 = 0, r0 = 1 represents a support of 1,
r2 = 0, r1 = 1, r0 = 0 represents 2, etc. For instance,
the item-support-set representation of itemsets (with
their corresponding frequencies) {be:3, abe:2, ab:2}
is {ber1r0, aber1, abr1}. Furthermore, itemsets in the
maximal item-support-sets correspond to closed item-
sets. Item-support-set abr1 is not maximal since aber1
exists. However, aber1 is maximal, and abe is a closed
itemset.

4 Weighted Zero-suppressed Binary Decision
Diagrams

Support counting using bitmap in our above-
described techniques can be costly, especially in dense
high dimensional datasets which contain long pat-
terns. To eliminate this overhead, we introduce a
weighted variant of ZBDD, namely Weighted Zero-
suppressed Binary Decision Diagram (WZDD)
which allows the support values to be represented us-
ing edge-weights and in turn allows a more efficient
frequent itemset mining. There exist other weighted
types of Decision Diagrams (Bryant & Chen 1995,
Vrudhula et al. 1996, Ossowski & Baier 2006) for ma-
nipulating pseudo-boolean functions, but the seman-
tics are different.

In a WZDD, every edge is attributed by a pos-
itive integer value. Formally, we define an internal
WZDD node as a pair of 〈ϕ, ϑ〉, where ϕ is the total
weight of this node’s outgoing edges, ϑ is a ZBDD
node. The edge-weights are anti-monotonic, with
their values descreasing as the nodes are positioned
lower in the structure. The weight on its incom-
ing edge corresponds to the total support of item-
sets being represented(see Figure 4(a)). WZDDs are
also canonical, that is, nodes which contain the same
set of itemsets with the same corresponding supports
are merged. Consequently, ZBDD’s set-union routine
needs to be adapted for WZDDs to add the supports
of any itemset which occurs in both of its operands.
Figure 4(b) shows an example of a WZDD which rep-
resents itemsets (with their corresponding support) :
{ace:1, abe:2, ab:2}. The weight on node a’s incoming

139

Var. ordering: d < a < c < g < b < e

(a) ZD = ZBDD representation for dataset D,
d-conditional DB is ZD’s 1-child node

(b) DB merging (nodes marked with bold lines are the
newly created nodes)

Figure 3: ZBDD representations for sample dataset D

WZDD node

(a)

Var. ordering: a < b < c < d < e

WZDD representation for
{abe : 2,ace : 2, ab : 1}

(b)

Figure 4: Weighted ZBDDs

link is 5, i.e. the total support of the itemsets. The
two node e’s are not shared since their edges have
different weights, respectively.

Although WZDDs may use more nodes than the
ZBDDs, due to their weighted-edges, they allow fur-
ther use of the caching utility for mining frequent
itemsets. More specifically, WZDDs allow more ef-
ficient mining algorithm to be developed by caching
the computed patterns from each conditional DB. In
WZDDs, any two identical nodes contain the same
set of itemsets and their corresponding support, thus,
the two nodes also contain the same set of frequent
patterns. Suppose different prefixes project the same
conditional DB, patterns from the earlier computa-
tion can be reused and redundant computation can
be avoided.

5 Row-wise Mining of Closed Frequent Item-
sets using ZBDDs

Let us now describe how our ZBDD-based mining
framework can be adopted to the row-wise mining
framework for finding CFIs which have been intro-
duced in (Pan et al. 2003, Liu et al. 2006, Pan et al.
2004). In this framework, the patterns are mined
by searching for possible row (instead of item) com-
binations. We can employ the column-wise mining
framework described earlier, except now the ZBDD
variables correspond to row-IDs (instead of items).
Before we describe our technique, we firstly provide
some background and terminology.

Let R be the set of row-ids. A rowset is a sub-
set of R. For a given rowset X , row support set(X)

is the maximal itemset which occurs in all the rows
in X . Moreover, for a given item x, we call the set
of row-ids in which x occurs as x’s bit support. By
definition, every row support set is a closed itemset.
Works in (Pan et al. 2003, Liu et al. 2006) proposed
a row-wise mining framework which is efficient for
mining of CFIs in microarray datasets. It performs
a depth-first search in the lattice of row-id (instead
of item) combinations. We will describe a pattern
growth, bottom-up algorithm (Pan et al. 2003) based
on the use of ZBDD, although adapting it to the top-
down algorithm (Liu et al. 2006) is certainly possible.

Our row-wise mining technique adopts the al-
gorithm in (Pan et al. 2004), using a similar ap-
proach to FIMiner for creating database projections
and performing a top-down traversal of the input
ZBDD. Here, the input ZBDD is used to generate
possible row combinations. A supplementary bitmap
data structure is used accordingly for computing the
row support set for each row combination. Unlike in
our column-wise mining algorithms, there is no shar-
ing between the input and the output ZBDDs in a
row-wise mining since now they contain different sets
of variables. To maximise node sharing within the
output ZBDD which stores the closed frequent item-
sets, we use the same variable ordering as in our
column-wise algorithm i.e. by increasing frequency.
The mining procedure is summarised as the follow-
ing. Due to lack of space, we omit the implementation
details of our algorithm.

The input ZBDD initially contains the bit support
of each item in the input dataset. Rowset pre-
fixes are grown using the first variable (i.e. row
id) in the ZBDD, which has a similar mechanism as
growing itemset prefixes in our column-wise frame-
work, while the minimum support threshold has not
yet been reached by the rowset prefix or while the
row support set is not empty. More specifically, as
each rowset is being grown, its row support set is in-
crementally computed from the bitmap data repre-
sentation. When the length of the prefix reaches the
minimum support, its row support set is a fully-grown
CFI, and it is inserted into the output ZBDD using
ZBDD’s set-union operation.

6 Performance Study

In this section, we analyse the performance of our
ZBDD-based techniques for mining maximal frequent
itemsets (MFIs) and closed frequent itemsets (CFIs).
The algorithms were implemented in C++ using the
BDD library, JINC, which was developed by the au-
thor of (Ossowski & Baier 2006) and used in their

140

study of another weighted variant of BDD. All ex-
periments were performed on four 4.0 GHz CPUs, 32
GB RAM, running RedHat Linux 5, with a CPU-
timeout limit of 100,000 seconds per mining task. We
used two gene-expression datasets: Leukaemia ALL-
AML 1, and lung cancer2 which was previously stud-
ied in (Pan et al. 2004). The ALL-AML dataset con-
tains 72 samples (i.e. transactions), each sample is de-
scribed by 7129 genes (i.e. attributes). The lung can-
cer dataset contains 32 samples, described by 12533
genes.

Continuous attribute values are discretised using
an entropy discretisation method, then, the discre-
tised attributes are ordered according to their en-
tropy values from highest to lowest (i.e. attr.1 has
highest entropy reduction value). Entropy-based dis-
cretisation is the commonly used method for discretis-
ing microarray datasets (Creighton & Hanash 2003).
To obtain results for low support threshold values,
we performed our experiments using the first 100 at-
tributes from ALL-AML dataset (All methods could
not complete mining at low support thresholds when
all of the attributes were used due to the CPU time
out constraint). For a similar reason, we used the
first 750 attributes from the lung cancer dataset. In
the following discussions, we refer to the respective
datasets as ALLAML-100 and lung-cancer-750.

We performed experiments for mining CFIs and
MFIs in both datasets, but we do not include the re-
sults from mining MFIs in the ALLAML-100 dataset
in this paper due to the similar output characteristics
between the MFIs and CFIs. The pattern character-
istics from both datasets will be shown shortly. We
did some experiments for mining CFIs in the row-wise
mining framework, but we do not include the results
in this paper. Overall, our ZBDD-based method out-
performs the FP-tree based method (Pan et al. 2004)
when mining at low support thresholds.

In the item-wise framework, we implemented our
techniques, i.e. ZBDDMiner, WZDDMiner, which
are our ZBDD and WZDD based algorithms, using
only the basic infrequent prefix pruning, and ZB-
DDMiner* and WZDDMiner* which use the more
advanced pruning techniques. Their performance is
compared against the state-of-the-art FP-tree based
algorithms for mining CFIs and MFIs, i.e. FP-close*
and FP-max* (Grahne & Zhu 2003)3, which per-
formed best on dense datasets. From each algorithm,
we measure (i) the CPU time which is the total time
spent for mining, (ii) the size of the output FP-trees,
ZBDDs, or WZDDs which store the mined patterns in
terms of the number of nodes, and (iii) the total nodes
usage which is the total number of nodes used through
out mining, which include the data structures for stor-
ing the input database, the intermediate databases,
and the final output patterns. In ZBDDs or WZDDs,
shared nodes are counted only once. When WZDDs
are used for mining MFIs, storing support values in
the output is not necessary, thus, they are removed
from the output WZDDs

6.1 Patterns Distribution

In the ALLAML-100 dataset, the length distribution
of closed frequent itemsets at support threshold 40%
is shown in Figure 5(a). It shows that there are mil-
lions of relatively long patterns (the longest pattern
contains 32 items). In lung cancer dataset, the length
distribution of the closed frequent itemsets given sup-
port threshold of 40% is shown in Figure 5(b), and the

1http://research.i2r.a-star.edu.sg
2http://www-genome.wi.mit.edu/cgi-bin/cancer
3FP-close* is a variant of FP-growth* for mining CFIs, FP-

max* is a variant of FP-growth* for mining MFIs. Their imple-
mentation can be found in (Goethals 2004)

length distribution of the maximal frequent itemsets
is shown in Figure 5(c). Both output characteristics
show there are only a relatively small number of pat-
terns in this dataset, compared to the patterns con-
tained in ALLAML-100 dataset. Thus, we categorise
ALLAML-100 dataset as a dense dataset, and lung
cancer-750 as a sparse dataset.

6.2 Mining CFI in a Sparse Dataset

Firstly, let us observe the performance comparison be-
tween our ZBDD-based and WZDD-based algorithms
for mining CFIs in lung cancer-750 dataset against
FP-close*. Our WZDD-based algorithms could not
complete mining for support threshold < 40%, whilst
the ZBDD-based algorithms could not complete min-
ing for support threshold < 50%, due to the CPU
timeout constraint.

Even though this dataset is relatively sparse, in
Figure 6(a) it is shown that the ZBDD representa-
tions (with support encoding variables) for storing
the output patterns are smaller than the FP-trees for
support threshold < 60%, with the weighted ZBDDs
being the most compact. Figure 6(b) shows that FP-
close* has the fastest running times, and the WZDD
based algorithms are faster than the ZBDD based al-
gorithms. This is expected from this dataset due to
its sparse characteristics, in which there is less likely
that many nodes are shared across the conditional
databases. Now let us look closer at the performance
of our algorithms which use advanced pruning strate-
gies, i.e. ZBDDMiner* and WZDDMiner*. It shows
that ZBDDMiner* improves the efficiency of ZBD-
DMiner, but WZDDMiner* does not improve WZD-
DMiner except for the low support threshold of 36%.
When the support threshold is low, many conditional
databases are being induced, and WZDDMiner* ben-
efits from its ability to re-use intermediate pruning
computations.

The total nodes usage of all algorithms is shown
in Figure 6(c). It shows that FP-close* uses the
least number of FP-tree nodes for representing all the
databases (including the input, the output patterns,
and the intermediate structures). However, the dis-
crepancies with our ZBDD and WZDD based algo-
rithms are decreasing as the support threshold de-
creases, with the WZDDs having a similar nodes us-
age to FP-trees at support threshold of 37%.

Furthermore, ZBDDMiner* uses about 5 times
fewer nodes than ZBDDMiner, which shows the ef-
fectiveness of the advanced pruning strategies for re-
ducing the size of the intermediate structures, and
in turn results in a more efficient mining of ZB-
DDMiner* over ZBDDMiner. On the other hand,
WZDDMiner* has a slightly more nodes usage than
WZDDMiner. This shows that there are more nodes
being shared between the input database and the con-
ditional databases when no advanced pruning is used.
Given high support threshold, moreover, there are not
many patterns in this sparse dataset, hence, not much
nodes are shared across the conditional databases.

6.3 Mining CFI in a Dense Dataset

When mining CFIs in ALLAML-100 dataset, ZBD-
DMiner could not complete within the CPU time
limit for support threshold < 50%, and FP-close*
exceeds the memory limits for support threshold as
low as 27%. The WZDDs for storing the output pat-
terns are significantly smaller than FP-trees, as shown
in Figure 7(a), which demonstrates the ability of
WZDDs to compactly represent huge volume of pat-
terns. The ZBDD (with additional support-encoding
variables) representations are about 100 times larger
than WZDDs.

141

1

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25 30 35

N
um

be
r

of
 p

at
te

rn
s

Itemset length

CFI, minsup = 40%

1

10

100

1000

0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 p

at
te

rn
s

Itemset length

CFI, minsup = 40%

1

10

100

1000

0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 p

at
te

rn
s

Itemset length

MFI, minsup = 40%

(a) CFI, ALL-AML-100 (b) CFI, lung-cancer-750 (c) MFI, lung-cancer-750

Figure 5: Patterns Length Distribution

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

O
ut

pu
t s

iz
e

(#
 o

f n
od

es
)

Minsup

ZBDD
WZDD

FP-tree

1

10

100

1000

10000

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

C
F

I M
in

in
g

tim
e

(s
ec

on
ds

)

Minsup

ZBDDMiner
WZDDMiner
ZBDDMiner*
WZDDMiner*

FP-close*

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
ot

al
 n

od
es

 u
sa

ge

Minsup

ZBDDMiner
WZDDMiner
ZBDDMiner*
WZDDMiner*

FP-close*

(a) Output size (b) CPU Time (seconds) (c) Total nodes usage

Figure 6: Results from mining CFIs in lung-cancer-750 dataset

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.20.250.30.350.40.450.50.550.60.650.7

O
ut

pu
t s

iz
e

(#
 o

f n
od

es
)

Minsup

ZBDD
WZDD

FP-tree

1

10

100

1000

10000

100000

0.20.250.30.350.40.450.50.550.60.650.7

C
F

I M
in

in
g

tim
e

(s
ec

on
ds

)

Minsup

ZBDDMiner
WZDDMiner
ZBDDMiner*
WZDDMiner*

FP-close*

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.20.250.30.350.40.450.50.550.60.650.7

T
ot

al
 n

od
es

 u
sa

ge

Minsup

ZBDDMiner
WZDDMiner
ZBDDMiner*
WZDDMiner*

FP-close*

(a) Output size (b) CPU Time (seconds) (c) Total nodes usage

Figure 7: Results from mining CFIs in ALL-AML-100 dataset

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

O
ut

pu
t s

iz
e

(#
 o

f n
od

es
)

Minsup

ZBDD,WZDD
FP-tree

1

10

100

1000

10000

100000

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

M
F

I M
in

in
g

tim
e

(s
ec

on
ds

)

Minsup

ZBDDMiner
WZDDMiner
ZBDDMiner*
WZDDMiner*

FP-max*

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
ot

al
 n

od
es

 u
sa

ge

Minsup

ZBDDMiner
WZDDMiner
ZBDDMiner*
WZDDMiner*

FP-max*

(a) Output size (b) CPU Time (seconds) (c) Total nodes usage

Figure 8: Results from mining MFIs in lung-cancer-750 dataset

142

Figure 7(b) shows the runtime comparison be-
tween the algorithms. WZDDMiner has the fastest
runtime for low support thresholds , i.e. < 40%.
When advanced pruning strategies are used, WZD-
DMiner* is up to 500 times slower than WZDDMiner,
but on the other hand, ZBDDMiner* can achieve up
to 100 times speedup factor over ZBDDMiner.

Furthermore, Figure 7(c) shows WZDDMiner has
the least total nodes usage compared to all the other
algorithms except for support threshold ≥ 60% for
which the FP-trees have the least total nodes usage.

6.4 Mining MFI in a Sparse Dataset

When mining MFIs in this sparse dataset, Figure 8(a)
shows that the ZBDD representations for storing the
output patterns are smaller than the FP-trees for sup-
port threshold < 60%, being up to 1000 times smaller
at support threshold of 40%. This shows the signifi-
cant data compression being achieved by ZBDDs over
FP-trees.

Figure 8(b) shows the runtime comparison be-
tween our algorithms against FP-max*. It shows that
for high support threshold, i.e. ≥ 50%, FP-max* is
the fastest, but WZDDMiner* is the fastest for lower
support threshold. Unlike in mining CFIs, WZD-
DMiner* does improve the mining efficiency of WZD-
DMiner for low support threshold, which indicates
that in this dataset, re-using the pruning computa-
tions from multiple conditional databases in WZD-
DMiner* is beneficial.

Although ZBDDMiner* is slower, but it uses the
least number of nodes through out mining for sup-
port threshold < 60%, which is shown in Figure 8(c).
More specifically, ZBDDMiner* could achieve about
50 times data compression over both WZDDMiner
and WZDDMiner*, FP-max* uses up to 100-1000
times more nodes than both WZDDMiners and ZBD-
DMiners when support threshold is low, i.e. < 50%.

7 ZBDD VS FP-tree

In this section we discuss some advantages and dis-
advantages of using ZBDDs (and their weighted vari-
ants) in an FI mining framework, based on our exper-
imental results, with respect to a number of dimen-
sions: the compactness of ZBDD data structure, the
effectiveness of pruning in a ZBDD-based technique,
and the effectiveness of ZBDD’s caching utility.

7.1 ZBDD’s canonicity

The canonical structure of a ZBDD is a a powerful
feature which we have shown useful for not only com-
pressing high dimensional output patterns, but also
for compressing the intermediate structures used for
mining them, by allowing the various databases to
share nodes. This compression has been proven in
our experimental results when mining MFIs and CFIs
at relatively low support threshold, for which the FP-
trees had billions of overall nodes usage. In particular,
in the dense dataset, WZDDs are able to achieve up
to 500 times overall data compression over FP-trees,
as shown in the total nodes usage comparison. In such
a circumstance, many long patterns exist and many
sub-trees may be shared across multiple databases
(including the conditional DBs) which is not possi-
ble using FP-trees. On the other hand, in the sparse
dataset in which not too many conditional DBs are
being projected, ZBDDs allow a higher overall data
compression than WZDDs, being able to share more
nodes when representing the intermediate databases
but they require the use of bitmap for support count-
ing as a tradeoff.

Furthermore, when ZBDDs are used for comput-
ing CFIs and the output data structure contains ad-
ditional support-encoding variables, we found that al-
though the size of the ZBDDs is increased, they can
still contain fewer nodes than FP-trees when the sup-
port threshold is relatively low.

7.2 Pruning effectiveness

Our techniques use a basic infrequent prefix prun-
ing as well as some advanced pruning strategies. We
will discuss the effectiveness of each type of pruning
shortly. Firstly, let us consider the infrequent prefix
pruning. FP-trees may allow earlier pruning of in-
frequent prefixes by allowing different item orderings
to be used for different database projections. On the
other hand, ZBDDs and WZDDs use static item or-
dering as a tradeoff for achieving data compression.
This explains a number of situations in our experi-
mental results when ZBDDs and WZDDs are less ef-
ficient than FP-trees, when mining CFIs in the sparse
dataset or mining MFIs/CFIs in the other dataset
given a high support threshold, in which a large search
space can be pruned earlier by the FP-trees.

Secondly, the effectiveness of advanced pruning
strategies rely upon the amount of search space re-
duction over the overhead of performing the pruning
routines. As part of the advanced pruning routines,
ZBDDMiner* uses a bit-wise-and operation for sup-
port counting, whereas WZDDMiner* has to traverse
the database which is an expensive computation to
perform in high-dimensional datasets. Based on our
experiments, ZBDDMiner* does improve mining effi-
ciency of ZBDDMiner when the total size of the con-
ditional DBs is significantly reduced, such as when
mining MFIs/CFIs in the sparse dataset.

WZDDMiner*, on the other hand, although it has
a higher computation overhead for performing the ad-
vanced pruning, it is able to use ZBDD’s caching util-
ity for remembering the set of frequent items in each
database. It is therefore beneficial when there is a
large number of nodes being shared across the various
conditional databases, as shown in our experiments
when mining MFIs/CFIs at low support threshold in
the sparse dataset. In other circumstances, WZD-
DMiner* is less efficient than WZDDMiner. For in-
stance when the support threshold is relatively high,
only a few database projections are required (and the
databases are less likely to share many nodes), for
which ZBDD’s ability to re-use the intermediate prun-
ing computations is not beneficial. Also, in the dense
dataset, since a large volume of patterns exist, the ef-
fects of pruning do not greatly reduce the size of the
databases, thus, the overhead of performing advanced
pruning in WZDDMiner* is not compensated.

7.3 Cached computation results

Another powerful feature of ZBDDs is their caching
principle. The ZBDD routines used in our framework
allow the result from intermediate computations, to
be cached. More particularly in the WZDD-based
framework, the output patterns from every condi-
tional DB are cached and it has been proven useful
to allow more efficient mining. In dense datasets,
or in sparse datasets with low support threshold,
millions of long patterns exist and different prefix
itemsets may project similar conditional DBs (and
thus, similar patterns). This has proven a significant
time improvement by WZDDs over FP-trees, despite
the use of static item ordering which may hurt its
efficiency as we have discussed earlier. In particular,
our experimental results show the WZDD-based
technique (without advanced pruning) outperforms
the FP-tree based technique (with advanced pruning)

143

when mining huge volume of MFIs (indicated by
the number of nodes in the output data structures)
at low support threshold, and it has similar time
performance as the FP-tree based technique for
mining CFIs in the relatively denser dataset.

Summary of Performance: We now return to
the questions which were posed at the beginning of
the paper:

1. Does the canonical property of ZBDDs allow an
efficient and scalable algorithm for frequent item-
set mining to be developed ?

As we have seen in our experimental results, the
WZDD based algorithm is superior over both
ZBDDs and FP-trees for mining MFIs at low
support threshold, or mining CFIs in a dense
dataset. In such a circumstance, millions of
auxiliary conditional DBs are induced, as indi-
cated by the volume of patterns. Their canon-
ical WZDD representations (which are substan-
tially smaller than FP-trees) allow the computed
patterns and other intermediate results to be re-
used, which in turn allow mining to be performed
efficiently.

2. How much data compression can a ZBDD
achieve compared to an FP-tree ?

(a) When mining CFIs, the total size of non-
weighted ZBDDs used throughout mining
may be larger than the FP-trees, this being
a result of having the extra support encod-
ing variables on the output. They, however,
could achieve slightly higher overall data
compression by a factor of 2 compared to
FP-trees, as shown in our results when min-
ing CFIs at low support in dense datasets.
More specifically, for storing the output
CFIs, ZBDDs with support-encoding vari-
ables increase the size of the traditional ZB-
DDs (without support-encoding variables)
by 100 times, yet, they may contain fewer
nodes than FP-trees when mining CFIs at
low support threshold.

(b) When mining MFIs, non-weighted ZBDDs
are able to achieve further overall data com-
pression up to 100 times more compact than
WZDDs, as found in our experiments. This
shows WZDDs achieve lower data compres-
sion than ZBDDs due to their weighted
edges. However, WZDDs are still much
more compact than FP-trees for represent-
ing all of the databases created through-
out mining, more particularly if the support
threshold is not too high, as shown in our re-
sults that they used up to 1000 times fewer
nodes than the FP-trees

3. Does the use of a more compact data structure
really mean that mining is more efficient?

Not always. When compared to FP-trees, there
are situations where the intermediate ZBDDs
or WZDDs are highly compressed and the total
nodes usage is much less, for which intermedi-
ate results can be reused effectively and mining
speedups are increased over the FP-tree based
technique. More particularly, such situations
were found in our experimental results when min-
ing huge volume of MFIs/CFIs. On the other
hand, if the ZBDD/WZDD data representations
were of similar size than FP-trees, the FP-tree
based techniques are more efficient as they use a
more flexible variable ordering which allows ear-
lier search space pruning.

Moreover, if we compare ZBDDs against the
weighted ZBDDs, although the ZBDD repre-
sentations in the intermediate computations are
often smaller than the WZDDs, based on our
findings, it does not always mean a more ef-
ficient mining was obtained. This can be ex-
plained by the extra cost of using a secondary
data bitmap with (non-weighted) ZBDDs, which
may require expensive computation in high di-
mensional datasets.

8 Related Work

We are aware of several other works which use ZBDDs
for itemset mining (Minato & Arimura 2006, Minato
& Ito 2007). Work in (Minato & Ito 2007) demon-
strated that ZBDDs are useful for mining patterns in
high dimensional amino acid datasets.

Work in (Minato & Arimura 2006) proposed
a ZBDD-based pattern growth mining of frequent
itemsets, which uses a different data representation
schema to that used in our proposed technique. Its
optimised variant for mining closed frequent item-
sets is proposed in (Minato & Arimura 2007). Their
ZBDD representation of the databases encode the
support values by storing the itemsets in multiple
ZBDD functions based on their binary support val-
ues, whose representations are referred as tuple his-
tograms. Their experiments show their technique out-
performs FP-growth (Han et al. 2004) for mining
huge volume of patterns in the traditional, low di-
mensional, type of datasets. Such a representation
is less compact and requires more complex routines
to construct, instead of the simpler, and faster, basic
ZBDD routines used in our framework. Therefore,
their technique does not seem scalable for mining the
more challenging microarray datasets which have ex-
ponentially large search space. Furthermore, we have
shown our technique can be adapted to the row-wise
mining framework.

A more recent work in (Iwasaki et al. 2007) pro-
posed a method for choosing a good variable ordering
for ZBDDs in data mining applications. The method
computes the variable ordering after the ZBDD has
been built, and re-arranges the nodes. This method
is different to ours which decides the variable order-
ing prior to constructing the ZBDDs. Our variable
ordering heuristics aim to achieve an efficient mining
of frequent itemsets, as well as to achieve an over-
all compact data representation across multiple in-
termediate data structures used throughout mining,
whereas their method finds a variable ordering which
is optimised for a particular ZBDD.

Other tree data structures have been proposed in
other frequent itemset mining techniques (Zaki et al.
2004, Liu et al. 2003, Pietracaprina & Zandolin 2003).
None of them, however, allows node sharing across
the auxiliary databases, which is a key feature of our
technique. AFOPT (Liu et al. 2003) is a prefix-tree
structure which is designed to work for a top-down
traversal in projecting the conditional DBs similar to
our traversal strategy. However, it cannot achieve
much data compression. Patricia trie (Pietracaprina
& Zandolin 2003) combines prefix trees with array-
list to achieve a more compressed structure but it
does not allow sharing among multiple databases, and
it does not yet have optimisations for mining maxi-
mal/closed frequent itemsets.

Work in (Loekito & Bailey 2006) demonstrated
that ZBDDs can be used to efficiently mine con-
trast patterns, which include two support constraints
on two respective datasets, one being anti-monotonic
and the other monotonic. Their technique also uses
a supplementary bitmap data representation for sup-

144

port counting in a similar mechanism to the ZBDD-
based techniques proposed in this paper.

9 Conclusions and Future Work

In this paper, we have examined the use of ad-
vanced data structures, ZBDDs, for mining (maxi-
mal/closed) frequent itemsets, and identified situa-
tions where they are superior over state of the art FP-
tree-based technique. Overall, we found that ZBDD
allows much higher data compression for storing huge
volume of long patterns as well as the intermediate
structures used in mining them. We also introduced
a weighted type of ZBDD, which is able to improve
mining efficiency than the classic ZBDD. Although
our ZBDD-based framework is not uniformly superior
than FP-trees, it can sometimes allow more efficient
mining in relatively dense high dimensional datasets
at low support thresholds. We believe this result sug-
gests that ZBDDs can be a very valuable tool in data
mining. We would like to further investigate their
use in other scenarios, considering more complex con-
straints and other types of patterns.

Acknowledgement

We would like to thank Jian Pei, one of the authors of
the FP-growth technique, for his useful comments on
the compactness of a ZBDD compared to an FP-tree,
and the efficiency of the mining algorithm between
those two database representations.

We also would like to thank Joern Ossowski for
providing us the JINC package and for his helpful
comments on the implementation of our WZDD data
structure which relies on JINC’s core library.

This work is partially supported by National ICT
Australia. National ICT Australia is funded by the
Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research
Council.

References

Aloul, F. A., Mneimneh, M. N. & Sakallah, K. (2002),
ZBDD-based backtrack search SAT solver, in ‘In-
ternational Workshop on Logic Synthesis’, Univer-
sity of Michigan.

Bryant, R. E. (1986), ‘Graph-based algorithms for
boolean function manipulation’, IEEE Transac-
tions on Computers 35(8), 677–691.

Bryant, R. E. & Chen, Y.-A. (1995), Verification of
arithmetic circuits with Binary Moment Diagrams,
in ‘DAC’95: Proceedings of the 32nd ACM/IEEE
Conference on Design Automation’, pp. 535–541.

Burdick, D., Calimlim, M. & Gehrke, J. (2001),
MAFIA: A maximal frequent itemset algorithm for
transactional databases, in ‘International Confer-
ence on Data Engineering (ICDE’01)’, pp. 443–452.

Coudert, O. (1997), ‘Solving graph optimization
problems with ZBDDs’, In Design, Automation
and Test in Europe pp. 224–228.

Creighton, C. & Hanash, S. (2003), ‘Mining gene ex-
pression databases for association rules’, Bioinfor-
matics 19(1), 79–86.

Goethals, B. (2004), ‘Frequent itemset mining imple-
mentations (FIMI) repository’.
URL: http://fimi.cs.helsinki.fi/

Grahne, G. & Zhu, J. (2003), Efficiently using prefix-
trees in mining frequent itemsets, in ‘Proceedings
of the 1st IEEE ICDM FIMI’03 Workshop on Fre-
quent Itemset Mining Implementations’.

Han, J., Pei, J., Yin, Y. & Mao, R. (2004), ‘Min-
ing frequent patterns without candidate generation:
An FP-Tree approach’, Data Mining and Knowl-
edge Discovery 8(1), 53–87.

Iwasaki, H., Minato, S. & Zeugmann, T. (2007), A
method of variable ordering for Zero-suppressed Bi-
nary Decision Diagrams in data mining applica-
tions, in ‘Proceedings of the 3rd IEEE International
Workshop on Databases for Next-Generation Re-
searchers, SWOD 2007’, pp. 85–90.

Li, J., Liu, H., Downing, J. R., Yeoh, A. & Wong,
L. (2003), ‘Simple rules underlying gene expression
profiles of more than six subtypes of Acute Lym-
phoblastic Leukemia (ALL) patients’, Bioinformat-
ics 19, 71–78.

Liu, G., Lu, H., Yu, J. X., Wei, W. & Xiao, X.
(2003), AFOPT: An efficient implementation of
pattern growth approach, in ‘Proceedings of the
1st IEEE ICDM FIMI’03 Workshop on Frequent
Itemset Mining Implementations’.

Liu, H., Han, J., Xin, D. & Shao, Z. (2006), Top-
down mining of interesting patterns from very
high dimensional data, in ‘Proceedings of the
22nd International Conference on Data Engineer-
ing (ICDE’06)’, p. 114.

Loekito, E. & Bailey, J. (2006), Fast mining of high
dimensional expressive contrast patterns using ZB-
DDs, in ‘Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (KDD’06)’, pp. 307–316.

Minato, S. (1993), Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems, in ‘Proceed-
ings of the 30th International Conference on Design
Automation’, pp. 272–277.

Minato, S. (2001), ‘Zero-suppressed BDDs and their
applications’, International Journal on Software
Tools for Technology Transfer (STTT) 3(2), 156–
170.

Minato, S. (2005), Finding simple disjoint de-
compositions in frequent itemset data using
Zero-suppressed BDD, in ‘Proceedings of IEEE
ICDM’05 Workshop on Computational Intelligence
in Data Mining’, pp. 3–11.

Minato, S. & Arimura, H. (2005), Combinatorial item
set analysis based on Zero-suppressed BDDs, in
‘IEEE Workshop on WIRI 2005’, pp. 3–10.

Minato, S. & Arimura, H. (2006), Frequent pat-
tern mining and knowledge indexing based on
Zero-suppressed BDDs, in ‘The 5th International
Workshop on Knowledge Discovery in Inductive
Databases (KDID’06)’, pp. 83–94.

Minato, S. & Arimura, H. (2007), ‘Frequent closed
item set mining based on Zero-suppressed BDDs’,
Transaction of the Japanese Society of Artificial In-
telligence 22(2), 165–172.

Minato, S. & Ito, K. (2007), ‘Symmetric item
set mining method using Zero-suppressed BDDs
and application to biological data’, Transaction
of the Japanese Society of Artificial Intelligence
22(2), 156–164.

145

Mishchenko, A. (2001), ‘An introduction to Zero-
suppressed Binary Decision Diagrams’.
URL: http://www.ee.pdx.edu/ãlanmi/research.htm

Ossowski, J. & Baier, C. (2006), Symbolic reasoning
with weighted and normalized decision diagrams, in
‘Proceedings of the 12th Symposium on the Inte-
gration of Symbolic Computation and Mechanized
Reasoning’, pp. 35–96.

Pan, F., Cong, G., Tung, A. K. H., Yang, J. & Zaki,
M. (2003), CARPENTER: Finding closed patterns
in long biological datasets, in ‘Proceedings of the
9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’03)’,
pp. 637–642.

Pan, F., Cong, G. & Tung, A. K. H.and Tan, K.
(2004), Mining frequent closed patterns in microar-
ray data, in ‘Proceedings of the 2nd IEEE ICDM
FIMI’04 Workshop on Frequent Itemset Mining Im-
plementations’, pp. 363–366.

Pietracaprina, A. & Zandolin, D. (2003), Mining fre-
quent itemsets using patricia tries, in ‘Proceedings
of the 1st IEEE ICDM FIMI’03 Workshop on Fre-
quent Itemset Mining Implementations’.

Rioult, F., Boulicaut, J., Crémilleux, D. & Besson,
J. (2003), Using transposition for pattern discovery
from microarray data., in ‘Proceedings of 8th ACM
SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD’03)’,
pp. 73–79.

Uno, T., Kiyomi, M. & Arimura, H. (2005), LCM
ver. 3: Collaboration of array, bitmap and prefix
tree for frequent itemset mining, in ‘Proceedings of
ACM SIGKDD Open Source Data Mining Work-
shop on Frequent Pattern Mining Implementations
(OSDM’05)’, pp. 77–85.

Vrudhula, S., Pedram, M. & Lai, Y. (1996), ‘Edge-
valued binary decision diagram’, Representation of
Discrete Functions pp. 109–132.

Wang, J., Han, J. & Pei, J. (2003), CLOSET+:
Searching for the best strategies for mining frequent
closed itemsets, in ‘Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’03)’, pp. 236–
245.

Zaki, M., Goethals, B. & Bayardo, R., eds (2004),
Proceedings of the 2nd IEEE ICDM FIMI’04 Work-
shop on Frequent Itemset Mining Implementations,
Vol. 126 of CEUR Workshop Proceedings.

Zaki, M. & Goethals, B., eds (2003), Proceedings of
the 1st IEEE ICDM FIMI’03 Workshop on Fre-
quent Itemset Mining Implementations, Vol. 80 of
CEUR Workshop Proceedings.

146

