
Bootstrapping Computer Science in Old North Wales

K.A.Hawick and H.A.James

Computer Science Division, School of Informatics
University of Wales, Bangor

Dean Street, Bangor, LL57 1UT, UK.

{hawick,heath}@bangor.ac.uk

Abstract
We describe our experiences in setting up a new Computer
Science department in an established University within the UK.
We drew upon our experiences in teaching Computing in
Australia, the USA and the UK. We discuss cultural differences
and constraints upon us in designing and teaching a BSc in
Computer Science. We also relate teaching and culture
bootstrap effects from having to start a whole new department
from origins in an Engineering and Mathematics School. We
relate our design decisions and experiences in setting up
teaching a nd learning methods and appropriate assessment
practices for the rapidly broadening discipline of Computer
Science. We also describe our PhD programme and our early
experiences of a taught MSc programme.

Keywords: curriculum design; teaching and learning
methodology; assessment techniques; computing culture

1 Introduction

Computer Science is perhaps one of the most popular
subjects amongst students worldwide at present and is
certainly one of the fastest growing and broadening
disciplines. Through a curious set of circumstances our
University did not have a Computer Science department
and we were given the fascinating opportunity of setting
one up.

Establishing any new department it not an easy task but
the competition for staff makes establishing a Computer
Science department particularly challenging. Our new
department is part of a School that contains the
Mathematics and the Engineering departments so we had
some material and some excellent colleagues to draw
upon. In particular some material for Software
Engineering was available from existing degrees as was a
portfolio of excellent mathematical modules that could be
used as options. Nevertheless a great deal had to be done.

In this paper we focus on our flagship undergraduate
degree programme – our BSc in Computer Science and
describe how it was designed and how it has grown. It
was with great satisfaction that we saw a cohort of
students achieve 1st, 2nd and 3rd class honours degrees
from this programme in July 2002, and we were also
delighted that the British Computer Society (BCS)

 Copyright 2002, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference (ACE2003), Adelaide, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 20. Tony Greening and Raymond
Lister, Eds. Reproduction for academic, not-for-profit
purposes provided this text is included.

accredited (British Computer Society 2001) the degree
through to 2005. Perhaps most satisfying has been the
steady growth and nearly annual doubling of student
enrolment to the degree. As well as describing our
curriculum design we relate our design decisions and
thoughts on teaching and learning methods and
assessment for our new degrees.

We also discuss some of the other departmental
programmes we have inaugurated and in particular how
they interrelate with the main undergraduate teaching
programme in Computer Science. We describe offshoot
degrees in interdisciplinary areas and developments in
MSc degrees. Our PhD programme has absorbed many
of our School’s students and working with those students
has given us some important insights into what was
missing prior to the Computer Science programme.
Finally we describe some of attempts at filling the gaps
between formal degree programmes and employment for
graduates. We have instigated a technology transfer
programme and a set of professional short courses that
provide practical experience on specific software
packages.

2 Background

The University of Wales is organised as a federation of
different geographical units, which were formerly known
as colleges. The University of Wales, Bangor located in
North Wales has been established since 1884 but only
recently made the decision to establish a computer
science programme. Despite the obvious popularity of
computing and Information Technology (IT) in the last 20
years, the federal University had only allowed computer
science programmes at the other campus sites. A
decision was made in 1999 to initiate a brand new
Computer Science programme and we were given the
opportunity to establish this. Some software engineering
teaching modules had been established as part of an
engineering programme but otherwise we have had to
develop material from scratch. This is a somewhat
unusual set of circumstances for a UK University.

The University of Wales, Bangor is located in the North
Wales coastal town of Bangor and has around 8000
students in total. The School of Informatics was formed
as an amalgamation of Engineering, Mathematics and the
new Computing Division as a way of addressing
resourcing issues connected with dropping student
numbers. Happily, computing student intake has nearly
doubled each year since the inception of our Computer
Science programme and we now have an annual cohort
size of over 60 computing undergraduate students.

3 BSc in Computer Science

The Association for Computing Machinery (ACM)
provides an excellent framework (Association for
Computing Machinery 2001) for considering a
Computing Curriculum and we used this as a starting
point for design of our degree. There has been a lot of
discussion in the literature about what balance of content
can be realistically achieved for a modern computing
degree (Piner 2001). We realised that it would be
important to design a degree that had a core programme
that was acceptable internationally and not just in the UK.
The English/Wels h system of 3 year honours degrees is
somewhat constraining (Quality Assurance Agency for
Higher Education 2000) and this led us later to set up an
MSc degree that would help provide that “extra year” that
seems to us to be a valuable aspect of the Scottis h and
Australian honours degree systems.

Another recent trend is the pressure on Universities in the
UK to widen their entry routes and in particular to lower
their Mathematics admissions criteria (Mosley 2000,
Maskell & Robinson 2001). We felt this could be done
providing we took on the burden of teaching students the
necessary mathematics for computer science within the
degree programme itself. This added even further to
pressure on curriculum space.

A final constraint on any new programme is to accept the
broadening of Computer Science as a discipline and the
need to cover new specialist topics within a limited
curriculum space and with limited staffing resources.

Accepting the constraints of our system we adopted the
degree philosophy of:

• Providing a core programme of discrete mathematics
and programming and algorithms in the first year.

• Providing a fairly broad exposure to concepts and
other specialisms in both first and second year

• Providing modules in all years that expose the
students to as much breadth as possible but provide
customisable strands of specialism.

• Ensuring the core programme is workable as fast as
possible and make use of staff / research group
special interests in setting the possible options.

The UK system has adopted a modular system for
organising degree programmes. In our University degrees
consist of 12 modules per year all of (usually) the same
credit weighting. We have found this system works well
for the more advanced years and specialist subjects. It is
not always easy to work around it for first year subjects
that require a lot of foundation teaching that does not
easily fit into a single module. Generally we have
circumvented this problem by establishing what are
effectively “double modules” one following on from the
other in our semester system. The modular system has
proved useful however in designing offshoot degrees
from our main Computer Science degree. We have been
able to reuse some modules between degrees. We are
also finding this feasible for a portfolio of MSc modules.

3.1 Curriculum Design

We have described the constraints upon us and now
describe our curriculum design. We were able to make
use of some common modules from mathematics and
engineering degrees but have had to design many
modules from scratch. Before giving details on individual
modules we first lay out the strands or themes that we
wished to cover.

3.1.1 Algorithms

We felt that algorithms and the necessary mathematics
had to have a very strong place in our programme and to
that end we chose a strand of eight modules to embody
this. Two custom designed discrete maths modules were
designed for first year and an additional module in
applied algorithm design is used in first year. A module
on probability and statistics was adapted from pure maths
modules to provide concepts exposure module in first
year. In second year custom modules on complexity
theory and automata theory are compulsory and in third
year modules on graphical algorithms and logic are
compulsory. We make available a set of continuous
(calculus and numerical analysis) modules.

In the early years of the degree there was a feeling that
we had set the demands of these modules too high with
students finding them quite difficult. However as the
cohorts have increased in size we now see student marks
following a more normal spread and achieving quite
satisfactory averages.

3.2 Programming

It is always controversial which core programming
language to adopt or even whether one should be adopted.
We decided that for all the usual pragmatic reasons we
would try to use Java as our first teaching language.
Following the ACM curricula advice however we were
also keen to ensure students would be exposed to other
programming paradigms. We chose Scheme to use as our
first year AI language and to use Haskell as a functional
programming language to introduce in third year. A
controversial decision was whether to expose students to
assembly language. Our engineering degree made use of
68000 series assembler language in teaching simple
control systems. We decided that a better compromise
would be to introduce a modern but lightweight control
chip such as the PIC series and to teach students how to
program this in C but still expose them to some low level
machine/assembly level code. The engineering degree
modules have embraced this compromise too and we see
some measure of success in that final year and
postgraduate projects are being successfully carried out
using the PIC system.

We have had difficulty explaining to engineers the
importance of teaching programming concepts as well as
mastery of just one language. We have also had the
criticism from our industry collaborators that they want to
employ graduates who can program a particular language
and can use a particular integrated development package.
We are trying to resist such compromises and continue to
teach programming concepts. We have however adopted

the supplementary practice of offering short intensive
professional courses in particular programming languages
and packages. These are run over the summer.

3.3 Software Engineering

It is notoriously difficult to teach realistic software
engineering practices to undergraduate students. Our
School has an active research group working on some of
the more recent software engineering methodologies and
practices. This group is closely involved in running what
we call our “Software Hut” modules. (The word “Hut”
being a diminutive version of “House”). In addition to
modules covering software engineering ideas and
methods in first and third year, the “Hut” modules
involve a group project carried out in second year.
Groups typically involve four or five students. A recent
idea has been to have groups design a software system in
first semester and then swap designs and have them build
and test some other group’s design in second semester.
Students find this challenging but it does seem to impart
some of the key ideas and frustrations of working in a
realistic software team environment.

3.4 Distributed and Network Computing

Our largest research group works in Distributed
Computing and we were keen to ensure good coverage of
relevant distributed computing ideas in the curriculum.
We cover networks and communications in both second
and third years and also expose the students to various
distributed programming models in modules covering
operating systems and parallel systems. Many students
are attracted by this area and see themselves as working
in the web services; telecommunications; systems
administration or e-commerce areas. We have
established good relations with several large companies
such as Vodafone and BT and are able to find summer
and work placements for our undergraduates and
graduates in this area. There is also a large uptake of final
year projects in this subject. Relatively recent national
interest in grid computing has built on this area and we
are introducing a new MSc on Distributed Computing
Systems and Computational Grids.

3.4.1 Artificial Intelligence

According to some practitioners of AI this field is just
emerging from a “winter” of disinterest perhaps brought
on by over-hyped expectations in the late 80’s and early
90’s. We believe it is an important area that is growing in
applicability again. We wanted to provide an introductory
core set of modules and a set of core specialist options for
second and third year. A new concept we have introduced
is that of a specialist module on agent technologies. This
has proved a very popular option with final year students.

There was a long-standing interest in applied neural
network techniques in the engineering department and
one of our own research interests is in smart and mobile
systems. It was therefore natural to set up this specialist
strand of teaching modules. We have also set up a
distributed robotics research activity that supports several
undergraduate projects.

3.4.2 Paralle l Computing

In some ways parallel computing is much more
mainstream than it was ten years ago and not such an
esoteric part of the curriculum. We cover parallel
computing and high performance computing in a
specialist module in third year. We also introduced
material on concurrency in second year. We found it was
feasible to build on student interest in Java programming
from first year and use the Java threads package to allow
students to experiment with simple concurrency ideas.
We also link concurrency and parallel programming ideas
to practical exercises using multi processor systems and
computer clusters. Students seem attracted by this area
and it has led to several final year projects.

3.5 Databases and Systems

Databases and Information systems play an imp ortant
part in student’s appreciation of IT. We introduce
database concepts in first year and build on these ideas
for another compulsory module in third year. Students
seem to recognise that this is another area of
employability and the modules seem popular.

3.6 Theoretical Computer Science

In addition to the modules we described under the
algorithms strand, we adopted many of the modules
available under our Mathematic degree as possible
options for Computer Science. These include operational
research; computational geometry; Markov chains and
statistical pattern recognition. We are presently
considering how far we can take the theoretical
computing strand within the undergraduate curriculum
and are preparing an advanced module on the theory of
languages and machines. Clearly some students do enjoy
theoretical computer science and computational science.

3.7 Miscellaneous Computing Modules

There are several other miscellaneous computing modules
covering other important aspects of computer science and
programming. There are various topics that we were
under pressure to include in the curriculum that while
important is not, we felt, justify having a whole module to
themselves. We have managed to combine topics like
computer graphics and Human Computer Interaction into
a single module for third year for example. Other areas
like professional ethics and transferable skills we felt are
very important but can be taught in context of other
modules rather than having a dedicated module. This is
an area where the modular system is less than ideal, and
we face curriculum design issues and compromises that
would not arise in a course-based curriculum. When we
designed the Computer Science programme we tried to
cover the key areas that have been recognized by
international computing bodies like the Association for
Computing Machinery (ACM). We believe we have
succeeded and that our curriculum coverage is not just to
British standards but is in fact to an International level.

4 Teaching and Learning

We are employing a fair variety of teaching and learning
methods in our modules. These are essentially designed
to ensure students are exposed to key concepts and ideas
in computer science, to reinforce the key ideas, and also
to encourage students to think laterally around a subject.
In this section we briefly describe these methods. We
have had to change the existing “traditional engineering”
approach to teaching and learning and essentially to
bootstrap a new computer science culture. This has been
an interesting and perhaps unusual experience.

Traditionally, the main method of information delivery in
the University setting has been lectures. The largest
lecture class sizes are found in those modules that are
common to all the School’s degree programmes, such as
first-year programming. We are fortunate in that the class
sizes for most lectures in the second and third years of
our degree programmes are fairly small. This allows us
to run our classes in a more interactive fashion than
would be possible for, say the first-year classes. We are
encouraging the more “traditional” lecturers to adopt
electronic presentation programmes to allow
demonstrations of concepts during lecture times. Using
these programmes has the additional benefit of allowing
lecturers to trivially make their lecture slides available to
the class after the lecture. Like most institutions we are
having a challenging time encouraging the students to
take lecture notes when they have the knowledge that the
lecture slides will be available electronically at a later
stage. We attempt to counter this problem by stressing
that the lecture slides are incomplete in terms of the
module’s examinable information.

We also introduced small-group tutorials to reinforce
ideas presented in lectures and also to encourage students
to think laterally. Similar to other institutions we find
that some students take a substantial amount of time to
become comfortable with some concepts and also to see
how to generalise a sometimes-specific example to the
general case. We distribute the tutorial questions to the
students the week before their tutorial; at the tutorial they
are expected to participate in the discussions in order to
satisfy the continuous assessment requirements of their
course.

One of the main methods that we use for teaching
computer science is that of supervised and unsupervised
laboratory sessions. We are fortunate that we have a
number of well-equipped laboratories featuring dual-boot
Unix and Windows PCs. Unfortunately the computing
culture of the building was such that only the systems
administrators used Unix, and most of the staff (and
hence the students) used Windows. This problem was
addressed by stressing the importance of not letting the
waning “Unix culture” in the department die; we
immediately required that all our continuous assessment
work be carried out using the Unix operating system.
This has had a marked effect in the perceived low-level
computing knowledge of most students. We employ
post-graduate students to supervise laboratory sessions in
which students are given exercises to complete and
problems to solve which draw on knowledge and
concepts from lectures and tutorials. We are also

attempting to set up a “guru on duty” system where
outside scheduled laboratory hours there will be a staff-
member (or post-graduate assistant) available in a well-
known location, willing to provide help on any computer
science module.

We also encourage students to spend as much time as
possible thinking about the material presented in lectures,
and to investigate any of the topics that we cover in
lectures more fully in their own time. There are two
avenues where we see computer science students actively
doing these things: firstly by ‘playing’ on the computers;
secondly, by doing independent reading. Until we arrived
we feel that the staff did not properly understand the
qualities that make a competent and confident
programmer; students were not encouraged to ‘play’ on
the computers. We suspect this came from the fact that
most staff were engineers and in this discipline students
had to be supervised by a laboratory technician at all
times. Independent reading was a vital component of our
own undergraduate educations and we encourage students
to read certain recommended textbooks and also discuss
useful programs that make up the “Unix culture.”

Associated with the above point is the reinforcement of
good study and research habits. It is a fact that there is a
huge body of material and experiential knowledge
available on the Internet via the World Wide Web.
Tutors and laboratory demonstrators are often encouraged
to help students, not by giving them direct answers to
their questions, but by telling them how, or sometimes
where to search for the answers. As would be expected,
we have found that students treated in this manner show a
more in-depth appreciation of the concepts covered in the
computer science curriculum.

In the second year we run a small group project. Part of
the software engineering module, this project allows
students to experience the difficulties in writing software
and specifications for larger groups, and also introduces
them to the more social aspects of software engineering
in a team environment. We feel this aspect of our
curriculum is vitally important, as traditionally computer
science students are not by nature very extroverted
people, so benefit immensely from the experience. We
also emphasise the importance of rigorous (unambiguous)
software specification by making groups exchange
specification documents before starting the
implementation.

Possibly the most important form of assessment in our
three-year computer science with honours programme is
the individual project. We have found that most of our
students look forward to this module. The individual
project allows the student to take ownership of a quite
substantial fraction of their assessment (three modules’
worth in their final year) that often helps to raise their
module average. The project is typically agreed upon by
the student and an academic staff member, who both
negotiate learning outcomes and project milestones.
Usually the student project topic is affiliated in some way
with the academic’s research group, or is at least in line
with the academic’s research interests. Due to a lack of
understanding of what computer science really is, we had
to work around some misconceptions by the “traditional”

staff that computing projects could be of ‘information
systems’ and IT project quality. Some computing topics
in recent years have included: building programmable
robots using Lego; building distributed web and network
applications; experimenting with virtual reality and
advanced graphics systems; building programmable
remote control systems; building wireless access protocol
mobile phone applications; programming personal digital
assistants to interact with wireless networks.

5 Assessment Methods

In this section we discuss some of the assessment
methods that we are using in our computer science
degree. When considering the assessment for a module,
there is a balance to be struck between the continual
assessment and end-of-semester unseen examination. It
is a fact that some students are more disposed towards the
bulk of assessment being continual with only minimal
contribution from the examination; whereas some
students would prefer the bulk of the assessment
contribution from the examination.

Unseen examinations are the traditional method which
universities assess subjects. We are, however, finding
that more and more computer science material must be
examined by practical demonstration of understanding
due their less theoretical natures. It is for this reason that
we are migrating from the situation in which nearly every
module has an 80% weighting on the exam, to many
lowering this to 50-75%. When we arrived it was also
‘custom’ for exams to be 1½ hours in duration; we
encountered a certain reluctance to suggestions that
exams be made longer in order to examine more of the
semester’s taught material. Traditionally the exams had
been structured in the form that required the students to
answer all the questions of approximately a third of the
paper, and then for the remainder choose one of, say five,
questions. We found that this format allowed students to
know only one section of the paper really well, which
exhibiting only basic knowledge of the rest of the course,
which the students were capitalising on. We also found
reluctance to change the format of exams to an all-
compulsory format.

Supervised laboratories attached to some modules also
have the requirement that logs be kept of the experiments
performed or the exercises attempted. Typically these
laboratories are of the more physical variety; students are
expected to submit word-processed reports showing
graphs, tables, or experimental data.

Most modules have some programming practical
exercises or essays to hand in. This is the traditional form
of continual assessment in computer science, and is often
the way in which undergraduates learn to be competent
programmers; it is by doing assignments they get the
practice needed to become familiar with the programming
concepts they need. This also allows academic staff to
provide much-needed feedback to the student and also
allows them to detect any weaknesses in the computing
curriculum. We have resisted the temptation to assign
more practical programming assignments to the students
as many already feel they are being over-examined and

do not have time to absorb the course material at their
own rate. We are also tempered by the need to ensure
that any material presented for continual assessment does
indeed originate with the student submitting it; with the
dearth of information and assignments available on the
Internet, plagiarism is on the increase, and we are having
to investigate mechanisms to detect it in the face of ever-
increasing student numbers.

When we arrived the mechanism that students had to use
to submit assessed work was to individually place it in an
open pigeon-holed box unit. Unfortunately these boxes
were in an area that was usually under the supervision of
a clerical assistant; there were times when the assistant
was busy elsewhere or has to leave early. At these times,
the security of the boxes could not be ensured. Clearly
this situation was not acceptable. Another solution was to
have students email the electronic version of their
exercise to the marker; this met with considerable
resistance as most of us get too much email already, and
this was not easy to do without creating a new email
account for every module. We eventually had the
systems adminis trators create a web-based hand-in
program through which the students could submit their
assignment (in one of a list of acceptable formats) either
from within the department or remotely. Lecturers (or
teaching assistants) could use this programme to
download and mark the assignments. Finally, the same
program could be used to return the assignments to the
students with feedback. A useful by-product of requiring
the students to use this program was that their
assignments could be fed into automated plagiarism
detection software.

Often associated with group projects are oral
presentations. Students are required to make short reports
describing such things as the problem, their approach to
the problem, and a discussion of any other relevant
details. In addition we reserve the right to use oral
examinations to resolve situations of suspected
plagiarism.

The final method of assessment is the project dissertation.
Coupled with the individual project, the dissertation is the
main deliverable. The dissertation is a substantial report
and often contributes to the body of knowledge in an
academic’s research group. The processes involved in
preparing and writing the dissertation educate the student
in the scientific process and the style that is expected
when writing scientific documents.

6 Offshoot Degrees

Once our BSc in Computer Science and its curriculum
and module set was established it was attractive to
consider how a greater set of programme options and
degrees could be offered to students. Our experience has
been that many students want to study computer science
but also want to study an associated applied discipline.
While we have we believe been successful in offering an
attractive set of options within the degree, we also wanted
to offer combined programmes. At a time when other
applied sciences and other departments were seeing
dropping numbers of student enrolments, they were also

pleased to collaborate over joint programmes. Figure 1
shows the joint degrees we now have on offer.

Figure 1 Offshoot degrees from our BSc in Computer
Science

Computer Systems Engineering emphasises engineering
aspects of computing including software engineering and
electronics. Other science departments such as chemistry
and ocean sciences had applied modular programs that it
was fairly easy to combine with our computing modules.
These joint degrees have smaller student cohorts but seem
to be working well so far.

7 MSc in Distributed Computing

Not content with the undergraduate portfolio of degrees
we set out to establish a portfolio of taught MSc degrees.
This endeavour was motivated by a need to provide a fill-
in year to bridge the gap between our three year honours
degrees and PhD study. Drawing on our own research
interests in distributed computing, we designed an MSc in
Distributed Computing and Computational Grids; our
only pre-requisite of applicants was they have a recent
numerate degree. The general ethos for this MSc is
essentially how to be a scientist. We have subjects with a
range of sophistication, from how to perform a literature
review, to advanced distributed computing concepts. As
in our undergraduate programmes, we aim to re-establish
the ‘Unix’ culture through a broad education of graduates
in the different computer operating systems available
today.

8 PhD Programme

When we arrived at our University we were somewhat
surprised to discover that there were very few
postgraduates in even the general area of computer
engineering. We took on several of our own engineering
students into a computing PhD programme. As
previously mentioned, we noticed a significant skills and
knowledge gap in the standard of Honours graduates
between those students who have completed a three-year

degree in England/Wales and those that have completed a
four-year degree in Scotland and various Asia-Pacific
universities. This was something of an eye opener and
reinforced our realisation of the missing ‘Unix culture’ in
our undergraduates.

The culture gap had a marked effect when we first
established the computing laboratory and tutorial system.
We found that not only did the undergraduates not get
exposed to the ‘usual’ material, but there were no
postgraduates available from whom they could learn.

In order to combat this gap we wrote a number of short
courses that would rapidly educate our postgraduates in
essential skills. We used a tutorial-based informal lecture
system that focussed on small class sizes. As our
students had a good (but basic) knowledge, the advanced
concepts were taught mainly through the use of examples
and having the students try to replicate and extend the
taught material.

We now have no less than 12 excellent postgraduate
students who are helping to pass on the computer science
culture to new generations.

9 Filling in the Gaps

Understandably, employers from both the local area and
across Britain want graduates with the highest degree of
skills and knowledge possible. In order to address this
skills gap, we have started a technology transfer centre
within the university. This technology transfer centre,
run by ourselves, runs essentially to up-skill our local
graduates and graduates of other universities, equipping
them with the programming skills necessary for them to
be immediately effective in the workplace. Our industrial
panel - a group of local business people interested in our
department, motivated the development of this centre.
They saw the extra need for training in specific packages
and languages, as opposed to the general education in
computing concepts as emphasised in our degree
programmes. We run short professional courses that are
not only attended by graduates in the area, but have also
attracted employers and employees from across Britain to
provide hands-on training for their research and
development staff. The table below lists some of the
short professional courses that we offer:

Core Java Programming 3 days

Advanced Java Programming 2 days

Introduction to JavaScript 3 days

Graphical JavaScript 2 days

C Programming 5 days

C++ Programming 5 days

Introduction to XML 2 days

Advanced XML: XPath and Stylesheets 1 day

Introduction to Extreme Programming 2 days

Perl Programming 2 days

Introduction to Unix 1 day

Introduction to PHP 1 day

Introduction to Statistics using SPSS 2 days

Multivariate Data Analy sis with SPSS 2 days

Introduction to Databases and SQL 2 days

Web Server Configuration and Administration 3 days

Table 1: Short professional courses offered by our
technology transfer centre.

These courses focus on specific skills and complement
the mo re general skills taught in the formal degree
programmes. We think it likely that many departments
will need to keep a weather eye on focussed industrial
needs and that providing courses like this is a palatable
way of doing so. Needless to add, industrial consulting
rates can be charged for such courses.

10 Resources

We have been able to build up the department to twelve
full-time equivalent academics. This has been possible
thanks to the support of our local government agency
providing a boot-strapping cash investment in 2000.
Undergraduate and postgraduate student numbers have
almost doubled since then, enabling us to maintain a
satisfactory level of staffing.

We have also been able to set up undergraduate and
postgraduate laboratories. Our general philosophy has
been one of diversity balanced against the support
capacity maintainable with three full-time systems
administrators. We have chosen to set up our main
teaching laboratories using dual-bootable PC systems
(Windows and Unix). We have supplemented this with a
number of similarly-equipped break-out laboratories.
Thanks to assistance from Sun Microsystems we have
been able to equip one laboratory with thin-client
workstations (SunRays). We are now contemplating a
new laboratory equipped with Macintosh systems. On
the server side, we have established a number of multi-
processor and large disk-array hosting systems.
Undergraduates also have access to: cluster computing
systems; virtual reality and stereo graphics projection
systems; a virtual private network; and wireless and
mobile computing systems through the auspices of the
research groups. At the time of writing, our workstation
to full-time student ratio is approximately 0.6. We believe
this is somewhat in excess of that provided by many
computing departments in the United Kingdom.

11 Discussion

A number of high level issues have arisen from our
opportunity to start from scratch. We present some of
these here in the hope that they will be of interest to those
involved in new and existing computer science
programmes.

Possibly the most significant issue facing the design and
implementation of a relevant and modern computing

programme is the perceived “dumbing-down” of
mathematics in secondary education. We have had no
choice but to address this directly through custom-
designed mathematics modules for our first-, second- and
third-year students. The biggest burden is obviously on
the first-year maths lecturers, who not only have to cover
an increased body of material, but also have to face the
traditional difficulties of bridging mathematical and
theoretical computer science material with practical
programming and algorithmics training. This is
particularly exacerbated by the pressures on curriculum
space; we have been forced to remove some the material
we would like to cover in first-year to make space for
this. We are not helped in this by the insistence of Quality
Assurance Agencies and Accreditation bodies of
explicitly covering issues like professional ethics,
transferable skills and entrepreneurial and business
process re-engineering issues. While we support the
inculcation of such broad subjects into the undergraduate
curriculum, it has been frustrating trying to do this under
the constraints of a modular system.

Unlike the Australasian education systems, the UK has
adopted the modular system at all levels of tertiary study.
Although the modular system does enable the design of
cross-disciplinary programmes, it is not without its
difficulties. We feel these are particularly prominent in
first-year study where the modular system is a positive
disruption to producing a coherent introduction to
computer science. We believe there is some merit in
having a single first-year computer science course and
only adopting the modular system in second, third and
higher years for specialised teaching components.

Like many computer science departments we have had to
face the challenge of which programming language to
cover in depth and breadth over the course of the
undergraduate degree. We have chosen to introduce Java
at first year level as a compromise between an
academically sound pedagological teaching choice and a
pragmatic means for graduates to gain immediate
employment. We also expose students to C, C++ (which
we believe covers imperative and object-oriented
programming), and in addition specialist modules cover
Scheme, Lisp and Haskell.

Although our School of Informatics was formed from
Engineering, Mathematics and Computing for pragmatic
resourcing reasons rather than academic ones, we do
believe this mixture is a good one. The mix of
programmes we are able to offer is useful for
undergraduates to customise and delay their choice of
specialisation until after they have entered University. It
also provides, we believe, a fertile breeding ground for
cross-disciplinary research. The number of engineering
students who are now currently undertaking computing
research evidences this. Of the approximately forty
postgraduates in the School, nearly half of these are
working on computing projects.

In spite of having limited teaching resource we do
strongly believe that offering elective modules at second
and third year adds to the distinctiveness and
attractiveness of our computing programme. We have
been guided by the ACM Model Curriculum in providing

a minimum set of options that we believe adequately
cover the requirement of a modern international
programme. We have chosen specialisms related to our
preferred research activities including Distributed and
High Performance Computing. We believe Artificial
Intelligence is emerging from its “winter” and we are
actively researching overlap areas such as autonomic
computing and smart distributed systems. These are
proving attractive areas for undergraduate projects and
prospective postgraduate students. Although we have
been surprisingly successful in attracting foreign
postgraduate research students, we make the observation
that for any successful computer science department
some retention of local students is critical.

We have had considerable success in establishing links
with local businesses. We have found an almost
bottomless demand for graduate programmers from our
programme. We have also established over £500,000 of
industry collaborative funding based on teaching and
research activities.

12 Conclusions

We conclude that, it is possible to start a Computer
Science department from scratch. Computer science, as a
discipline, is broadening and it is not possible to cover
every topic. It is, however, possible to cover the core
material, concepts and skills that constitute computer
science. Having identified this, it can be successfully
built upon to establish additional popular and relevant
computer-related degrees.

It has been very challenging setting up a new computing
culture but we believe once it is set up, its very
momentum keeps it going. We have, in fact, seen this
momentum spill over into other departments within the
university.

We think it has been absolutely vital to have
mathematical input to our degree programme. We make
the important observation that all the computing
technologies, from theoretical, to computer science, to the
engineering hardware aspects, combine rather well to
make an attractive portfolio of computing-related
degrees. We cannot over-emphasise the importance of
discrete mathematics to comp uter science and perhaps
our biggest challenge has been building up recognition
for this side of mathematics to complement material
developed for continuous mathematics, which is used
more in electronic engineering.

We have also found that it is not possible to consider
undergraduate teaching in isolation from the remainder of
the department. It is important to consider the complete
departmental culture and how the undergraduate teaching
links with the postgraduate training and research culture.

We have seen computing student numbers grow to 66
new students per annum in three years, with expectation
of continued steady growth.

13 References

ASSOCIATION FOR COMPUTING MACHINERY.
(2001): Computing Curricula 2001. Available from
www.computer.org/education/cc2001

BRITISH COMPUTER SOCIETY. (2001): Guidelines
on Course Exemption and Accreditation. The British
Computer Society, January 2001.

MASKELL, D. & Robinson, I. (2001): The New Idea of a
University. Haven Books.

MOSLEY, I. (ed) (2000): Dumbing Down: Culture,
Politics and the Mass Media. Imprint Academic.

PINER, M-L. G. (ed). (2001): Defining Computing
Curricula for the Modern Age. ACM Computer Society
Connection. June 2001.

QUALITY ASSURANCE AGENCY FOR HIGHER
EDUCATION. (2000): Computing Subject Benchmark
Statements. Quality Assurance Agency for Higher
Education.

14 Appendix

The following tables show our undergraduate teaching
curriculum. The first year is designed to cover the basic
topics of computer programming and discrete
mathematics. The second and third years introduce more
specialist core material and specialist options.

First Year = 10 Compulsory + 2 (any) options

ICP1020 Introduction to Artificial Intelligence

ICP1021 Introduction to Databases

ICP1022 Java Programming 1

ICP1023 Java Programming 2

ICP1024 Algorithm Design

ICP1028 Information Systems

ICP1029 Computer Systems 1

IDM1015 Discrete Maths 1

IDM1016 Discrete Maths 2

IPS1080 Probability and Statistics

ASB1202 Introduction to Banking

IAL1032 Algebra

ICM1011 Introduction to Communications

IME1006 Digital Circuits and Design

IMM1001 Mathematical Methods 1

IMM1002 Mathematical Methods 2

PCP1002 Perception and Cognition 1

PCP1003 Brain & Behaviour 1

Table 2: First-year subjects. Optional subjects are
represented in italics.

Second Year = 10 Compulsory + 2
(Informatics) Options

ICP2011 Data Communications and Networks

ICP2022 Systems Software

ICP2024 Advanced Software Design Methods

ICP2025 Artificial Intelligence 2

ICP2027 Data Structures and Algorithms

ICP2030 Concurrency and Operating Systems

ICP2301 Project Planning and Software Hut 1

ICP2302 Software Hut 2 & Maintenance

IDM2015 Automata Theory

IDM2016 Complexity Theory

IAL2031 Groups and Rings

IAL2035 Linear Algebra

ICM2017 Image Processing and Computer Vision

ICP2026 Computer Systems 2

ICP2028 Dataflow & Functional Programming

ICP2029 Theory of Languages and Machines

IED2066 Quality Value and TQM

IED2069 Entrepreneurship

IES2005 Digital Circuits and Systems

IOR2085 Operational Research 1

IPS2005 Data Analysis and Presentation

PCP2001 Perception and Cognition 2

Table 3: Second-year subjects. Optional subjects are
represented in italics.

Third Year = 6 Compulsory + Project (worth 3)
+ 3 (Informatics) Options

ICP3022 Parallel Algorithms and Architectures

ICP3027 Database Management Systems

ICP3029 Data Networks and Distributed Systems

ICP3030
Graphics and Human Computer
Interaction

ICP3099 Individual Project

IDM3004 Graphical Algorithms

IDM3015 Logic

IAL3007 Abstract Algebra

ICP3021 Real-Time Systems

ICP3028 Neural Networks

ICP3031 Quantum Computation

ICP3032 Agent Technologies

ICP3033 Artificial Intelligence 3

ICP3034 Compiler Construction

IED3064 Business Process Re-Engineering

IGT3001 Computational Geometry

IMM3050 Wavelets

IMM3061 Numerical Analysis

IOR3085 Operational Research 2

IOR3082 Markov Chains

IPS3083 Statistical Pattern Recognition

ICP4120 Formal Methods

ICP4121
Modelling & Analysis of Distributed
Systems

ICP4122 Computational Grid Systems

ICP4123 E-Commerce

ICP4124 Advanced Software Engineering

Table 4: Third-year subjects. Optional subjects are
represented in italics.

