Bracket Capabilitiesfor Distributed Systems Seaurity

Mark Evered

Schod of Mathematicd and Computer Sciences
University of New England
Armidale, 2351, NSW, Audrdia

mar kev@rcs. une. edu. au

Abstract

The per-method access control lists of standard middleware
technologies alow only simple forms of access contral to
be epressed and enforced. Research systems based
capabilities provide a more secure mechanism but aso fail
to support more flexible security constraints such as
parameter restrictions, loggng and state-dependent acoess
They aso fail to enforce astrict need-to-know view of a
persistent object for each user. In this paper we present the
concept of bracket capabilities as a new, smple security
mechanism whi ch fulfils these requirements. We discuss the
reasons for integrating bracketing and view types at a
fundamenta level of the security mechanism. We
demonstrate the use of the mechanism in a simple E-
commerce @awironment to provide secure dectronic
cheques and describe a prototype implementation of the
mechanism in middleware for secure, distributed Java
applications.

Keywords: security, objects, distributed systems

1 I ntroduction

With the development of middleware technology, it
has become standard practice to construct software
systems as colledions of heterogeneous distributed
components. Such systems are increasingly used for
database integration, dedsion support systems,
eledronic commerce and many other applications. In
general, theinformation stored within the components
of these systems is ensitive and requires ssme form
of access control. Thisis particularly important as the
internet is increasingly used as the basis for
distributed systems and as the threat from hackers and
madicious Dftware @ntinues to gow. As well as
proteding a system from these external threds, the
access control mechanism aso must ensure that each
user with access to the system only uses the
information exactly as required for their role within
the organization.

Despite the sensitivity of the data and the growing
threat, relatively little atention has been paid to
seaurity constraints in middleware development.
OMG's Corba (Blakley 2000, Microsoft's COM

Copyright © 2001, Austrdian Computer Society, Inc. This
paper appeaed a the Twenty-Fifth Australasan Computer
Science Conference (ACSC20(2), Mebourne, Austrdia.
Conferences in Research and Practice in Information
Technology, Vol. 4. Michad Oudshoorn, Ed. Reproduction
for academic, not-for profit purposes permitted provided
thistext isincluded.

(Eddon 199) and Sun’s Java RMI (Sun 199) all
include aform of accesscontrol list (ACL) but these
are add-on features which remain limited and
inflexible. Much atention has been given to
encryption tedchniques but, while encryption is
cetainly very important, it proteds only the
communication and authentication in the system. It
provides only the basis for a seaure access control
medhanism.

In this paper we introduce the cncept of bracket
capabilities, a new, smple searity mecanism which
can be integrated into middleware technology at a
fundamental and therefore maximally secure level.
The mechanism provides for a finer-grained access
control than previously proposed mechanisms as well
as spporting other seaurity factors such as the
logging of accesses and accessattempts.

We begin in the next sedion by discussng semantic
protedion and role-based access as upported in
standard commercial systems and reseach systems.
In the following sedion we demonstrate the need to
extend the framework of role-based accesscontrol. In
sedion 4 we describe the ncept of bracket
capabilities and in sedion 5 we show how this
medhanism can be used in an example E-commerce
application to provide seare dedronic transfer of
funds. In sedion 6 we briefly describe a prototype
system using bracket capabilities as the basis for
access to distributed components. Finally, in sedion
7, we give an overview of and comparison with other
related reseach.

2 Semantic Role-based AccessControl

The @mponents of a distributed system can be
viewed as objeds according to the ohjed-oriented
paradigm with each objed containing persstent data
hidden by encapsulation and accesshle via interface
methods’. One advantage of an ohjed-oriented
approach is that the seaurity can be based on the
interface methods of an ohject. This provides a fine-
grained semantic protection (Evered 2000) in contrast
to the murse-grained read/write protedion of
traditiona files and databases. This means that the
accessrights can be based on meaningful, high-level
operations asciated with the object in the red
world. So, for example, we may define a persstent
objead which implements a bank acoounts file with

! This may, of course, smply be a facade around a legacy
component such asareational database.

methods for creaing a new acoount, depositing some
amount in one of the acoounts, cheding the balance
in one of the acoounts etc. (Fig. 1).

t@

Fig 1: A bank accountsobjed

This corresponds to the Java interface definition:

interface Accounts {
voi d new(Key newKey, String nane);
voi d deposit(Key key, Currency anmount);
voi d wit hdraw(Key key, Currency anount)

throws insufficientFunds;

Currency bal ance(Key key);
String get Nane(Key key);
voi d setlnterest(Percent rate);

voi d transfer(Key fronkKey,
Key t oKey,
Currency anount)
throws insufficientFunds;

}

The accessrights can then be granted on the basis of
the roles of the users within the organization. A bank
teller may have access to the deposit and withdraw
methods whereas the bank manager may also have
accessto the method for setting the interest rate. This
idea goes back as far as Jones' and Liskov's (1978
sugeestion of a datic type-based constraint
medanism and has been adopted in contemporary
middleware mechanisms. Java’'s RMI can be used in
conjunction with a standard package for access
control lists but it is up to the programmer to
explicitly establish the relationship between the
‘rights and the allowed method cdls. The COM
seaurity mechanism does this automaticdly, offering
‘per-method access control lisgs which record, for
each method, a lig of users allowed to invoke that
method (Eddon 1999.

The dternative to a protedion mechanism based on
access control lists is an ohject-based capability
protedion mechanism. A capability for an objed is
simultaneoudly an identifier for the objed and alist of
allowed methods. The possesson of the caability
represents the right to call those methods on that
objed. This has the added seaurity advantage that the
naming o objects is unified with the protedion
medhanism so that someone who has no accessto an

objed does not even know of the objed’s existence
(Wilkes and Neealham 1979). Among the
disadvantages of capabili ties are that they are held by
the user and not with the obed and so must
themselves be proteded in some way from forgery
and tampering. The Monads system (Rosenberg and
Abramson 1985) supports ohjed-based capabilities
for distributed systems but assumes a homogeneous
network and a spedal operating system kernd. The
author has proposed a middleware technology based
on aform of sparse a@pabilities (Evered 200Q. Brose
(1999 has proposed a language-based extension to
the Corba searity model in which the allowed
‘views for each user are defined in terms of the
methods of an object type.

3 Extending Role-based Security

The access control medianisms described in the
previous fdion al limit the accessto an ohed by
returning an error message if cetain methods are
invoked. However, thisis not the only kind o access
restriction which is posshle or useful in controlling
accessto a persistent object.

In fact, even in terms of per-method access control,
the above medhanisms are not ided. With each of
these mechanisms, all the methods of the objed are
gill known to al the users even if they cannot be
cadled. Ideadlly, in a nea-to-know searity
environment, someone who is not al owed to invoke a
method should not know of the eistence of that
method, just as ©meone without a cgpability does not
even know of the existence of the object’. So, for
example, if an ATM machine only requires accessto
the wi t hdraw and bal ance methods of an
Account s object, then the ATM software should
ideally seethe object asiif it had the type:

interface ATMAccounts {
voi d wit hdraw(Key key, Currency anount)
throws insufficientFunds;
Currency bal ance(Key key);
}

instead o the type Account s. This type effectively
defines the view that the software has of the
underlying objed.

As an example of a form of access control not
supported by a simple per-method approach, we now
consider a role which is not within the organization
(the bank) in which the Account s objed isheld, but
may be part of a broader distributed system of which
that obed is a part. What accessto an Account s

2 As well as increasing seaurity, it also smplifies the use of the
object by theuser if only the relevant methods are visible.

objed should be given to the owner of an individual
acoount? As well as restricting accessto the methods
bal ance, get Nane andt r ansf er, we must dso
ensure that only the right acoount is being accessd.
This means that the Key parameter of bal ance and
getNane and the fronKey paameter of
t ransf er mus berestricted to a particular value.

This requires a mechanism which grants accessrights
to the user in such a way that an error is returned if
the wrong acocount number is gedfied in the cdl. Or,
better ill, in terms of views, we would like the
acoount owner to view the ohjed asif it had the type:

interface MyAccount {
Currency bal ance();
String getName();
voi d transfer(Key toKey,
Currency anount)
throws insufficientFunds;

}

where it is implicit that the gpropriate account is to
be accessed.

A number of further kinds of access control are also
useful for flexibly spedfying the seaurity constraints
asociated with different roles in a system. In (Evered
2001), the author has described a formalism in which
five basic type operators are used in combination to
spedfy security constraints in terms of a view type.
The operators modify the methods, parameters and
semantics of the type through which a user accesses
the underlying persistent object. The operators
provide for:

» gpedfying that some methods should return
an accessviolation error

» gpedfying that an access violation error
should be returned for parameter values
other than a spedfied value

e redricting the view type to exactly the
all owed methods and parameters

» enhancing the semantics of the obed type
with logging o accesses and access
attempts

e gpedfying a state-dependent rule such as
‘accessonly at spedfied times' or ‘access
all owed only oncé

The view type effectively gives the user the illusion
of accessing an ohjed of that type when in fact it is
just arepresentation of arestricted accessto an olject
of the original type. So, for example, the type
MyAccount would appea to be the type of an
individual bank acocount ohject but a all to this object
would actually be a call to an Account s objed with
the acoount number automaticdly inserted. The

MyAccount object can be seen asavirtual object®.

It is this extended concept of security constraints for
which bracket capabilities have been devel oped.

4 Bracket Capabilities

Our mechanism is based on objed capabili ties rather
than ACLs because, as mentioned above, seaurity is
enhanced and simplified by the unification of objed
naming with the protedion mecdhanism. Capability
systems have traditionally had threemajor problems.
Firgly, the cpabilities themselves must be proteded,
secondly, revocation of access rights is more difficult
than with ACLs and, thirdly, garbage mlledion can
be more difficult. In the mntext of persistent objects
in a distributed system, we negled the third problem
sincewe want objects to be eplicitly deleted.

A number of posshle aternatives have been
suggested for proteding capabilities’. These include
spedal architedures (Rosenberg and Abramson
1985, encryption (Mullender and Tanenbaum 1986)
and sparse (or password) capabil ities (Anderson, Pose
and Wallace 1986. We base our mechanism on
sparse pabilities snce these require no spedal
architedure or costly encryption algorithms and also
because they aleviate the revocation problem. A
sparse Gpability generally consists of an objed
identifier (for locating the objed) together with a
large (un-guessable) random number. The access
rights associated with the apability (that is, with that
particular random number) are not stored in the
capabil ity itself but with the objed being accessed, so
can easily be modified or revoked without access to
the capability.

Our capabilities differ from traditional sparse
capabilities in that they contain not an object
identifier, but an identifier for a (capability) server
which knows the location of the olhjed. This
indiredion alows for objed migration. When a
persistent objed is creaed, a apability for the object
is creaed and registered with the cpability server.
The @pability server also contains other information
about accessng the object, induding the type of the
objed as £ by the possessor of that capability.

To gain access to an objed, the ohed is ‘opened’
using a cgpability. For example:

Accounts acc= c.open();

% Such an dbjed may actually exist within the Account s object or
it may not exist if, for example, the Account s ohject is just an
object-oriented facade around a relational database.

4 We mean here protection from tampering by the possessor of the
capability. It is aso necessary to protect the apability from being
copied o modified by third parties when being sent across the
network. We assume that this done via message encryption.

where ¢ isavariable of type Capabi l i ty.

So far, our mechanism is not much dfferent from
other mechanisms based on sparse @pabilities. The
main difference is ' when the possessor of a
capability wishes to grant a more restricted view of
the object to ather users in the system. This is done
by a cal to the ref i ne method. Each persisent
objed, as wel as implementing an interface such as
Account s dso implements the standard interface
Per si stent which includes methods sich as
del eteCbj ect, deleteCapability and
refine. Therefi ne methodiscaled as:

x= c.open();
Capability cref=x.refine(interface, class);

where i nt er f ace denotes the type with which the
persistent objed is to be viewed using the cpability
cref and cl ass denotes the class of an ohject
through which calls to the persistent object will pass
when invoked via cr ef . This class must implement
the type i nt er f ace and must have a constructor
with a single parameter of the view type associated
with the @pability c. The result of the r ef i ne call
isdepictedin Fig. 2.

Capability ¢
Capability cref Bracketing
Interface Object

Fig 2 The result of the'refin€ operation

It can be seen that calls using the @pability cr ef are
direded through a kind o proxy or bracketing object
of class cl ass. This bracketing oljed is gored
together with the persistent objed in the same way
that access rights are stored with the object for
traditional sparse cpabili ties.

A copy of cr ef can be given to the users who are to
have this kind o access. Of course a possessor of the
capability cref may wish to cregde a1 even more
restricted view of the objed. This would result in the
situation shown in Fig 3, in which a semnd
bracketing oljed brackets the first.

Capability cref2

Fig 3 The result of a further 'refine' operation ('c'
and 'cref' not shown)

Interface?

The power of this mechanism stems from the ability
to spedfy arbitrary classs as brackets (subjed to the
rules just described). In a given searity environment,
however, the allowed classes may be restricted to a
particular approved set. Traditional oljed-based
capabilities or ACLs in which accessis restricted to
particular methods can easily be simulated with our
mecdhanism. The ATM access described in sedion 3
could be achieved as:

acc= obj c. open();
Capabi l ity at nmCap=
acc. refine(ATMAccounts, ATMBracket);

where ATMAcoounts is defined as in sedion 3 and
ATMBracket is defined as:

cl ass ATMBracket
i mpl ements ATMAccounts {

private Accounts underlying;

publ i c ATMBracket (Accounts acc) {
under | yi ng=acc;

}

public void withdrawm Key key,
Currency anount)
throws insufficientFunds {
under | yi ng. wi t hdrawm(key, anount);

}

public Currency bal ance(Key key) {
return underlying. bal ance(key);

}
}

Clealy, other bracket clases can be used to
implement the full range of seaurity constraints
described in sedion 3, incuding redtrictions on
parameters, logging o method cdls and constraints
based on time, number of accesses etc. It should also
be noted that the bracketing class may have more
methods than those avail able in the view given by the
interface type. These extra methods can be used by
the aeaor of the cpability for monitoring o atering
the bracketing such as to insped logging information
or to revoke or ater accessconstraints.

Before we turn to a more etensive example, one
possble aiticism of the mechanism must be

addressed. It is posshle to simulate this mechanism
by using a traditional object-based capability or ACL
medhanism. The bracketing oljed could be aeated as
apersistent ohjed in the same way as the object being
proteded. The user with the restricted view would be
given a capability for this new objea which would
contain a reference to the original object and passon
the allsin the same way as in our mechanism. What
is the advantage in making the bracketing integral to
the protedion mecdhanism? Apart from being easier to
use, there ae three important reasons. information,
efficiency and contral.

1. A posshle probem with discretionary access
contral is that the adminigtrator of a system
can lose track of what different kinds of
accessexist and how they are rdated. If the
bracketing is a pat of the searity
mechanism, then information about all the
capabilities to the objed and the nesting o
brackets associated with each capability can
be stored centrdly with the obed and
inspeded by the alministrator or owner®.

2. A persistent object in a distributed system is
not an ordinary objed®. There is generally a
considerable overhead involved in invoking a
persitent objed, for example in inter-
process communicaion. If the bracketing
objeds are stored as persistent ohjeds in the
same way as the proteded object then this
overhead will be necessary for each step in
the @l sequence If, however, the bracket
objeds are stored centrall y with the proteded
objed, they can be handled together by the
persistence mechanism and the call s between
bracketing oljeds and from the bracketing
objeds to the proteded dbjed can be
ordinary method cdls.

3. Asindicaed above, although the medchanism
itself allows arbitrary bracketing classes, in a
particular seaurity environment, we may
want to limit the set of classes that can be
used. While ill alowing users to creae
more redtricted views, we may want to
spedfy what kind of redtriction they can
impose. This is only posshle if the
bracketing is part of the seaurity mechanism.
In fact, sincether ef i ne call isitsdf just a

® While apabilitiesare, in the first instance, a form of discretionary
access control it is nevertheless possible to implement mandatory
access control policies such as (Bell and LaPadula 1973 by using
them asabass. This goes beyond the scope of the airrent paper but
has been dscussed in (Keedy and Vossberg 1992).

® We mean here persistence in the sense of concurrent sharing of a
persstent object by different programs and processes, not the kind
of light-weight persistence supported in Java.

method call to the persistent objed, we @n
use the mechanism itself to spedfy that, for
some user, it can only be invoked with
certain values for the cl ass parameter.

5 Example: Secure Electronic Cheques for
E-Commerce

In this £dion we demonstrate the potentia of bracket
capabilities by developing a smple system for
eledronic funds management. At the antre of the
system is an objead of the type Accounts as
described above. After creating this objed, we have a
capability obj ¢ for unrestricted access

Thefirg levd of seaurity isthe logging of all accesses
and accessattempts to the objed. We @an achieve this
by creating a new capability as:

acc = objc.open();
logc =
acc. refine(Accounts, LoggedAccounts);

where LoggedAccount s is a class for an objea
which remrds the parameters, time and state of the
relevant acoount and pases the @l on to the
Account s object. Note that, in this case, the
interface to the ohed remains unchanged. Only
copies of the | ogc capability and not the original
obj ¢ capability will be further distributed in the
system.

Next we @n create a @pability for an individual bank
acoount holder. For account number 12345, this can
be achieved with:

acc = | ogc.open();
accountc =
acc. refine(MAccount, Account12345);

where MyAccount is defined as in sedion 3 and the
classAcoount1234b is defined as:

class Account 12345 inpl ements MyAccount {
private Accounts underlying;

publ i c Accounts12345(Accounts acc) {
under | yi ng=acc;

}

public Currency bal ance() {
return underlying. bal ance(12345);
}

public String getName() ({
return underlying. get Name(12345) ;
}

public void transfer(Key toKey,
Currency anount)
throws insufficientFunds {
under | ying. transfer (12345, toKey,
amount) ;
}
}

The possessor of a copy of the account ¢ cagpability
appeas to have access to an objed of type
MyAccount but is actualy accessng the
Account s object (through the logging object).

Finally, the account owner may wish to provide a
restricted access to higher acoount so that another
acoount owner can transfer a cetain amount out of
the acoount as a payment. The cpability for such an
accessisin fact a seaure dedronic cheque. Aswell as
fixing the amount, we must ensure that this capability
can only be used once We @n achieve thisas:

MyAccount a= accountc. open();
chequec = a.refine(Cheque, ChequeXyz);

where Cheque is defined as:

interface Cheque {
voi d transfer(Key toKey)
throws insufficientFunds;

}
and ChequeXyz isdefined as:

cl ass ChequeXyz inpl ements Cheque {
private MyAccount underlying;

publ i c ChequeXyz(M/Account acc) {
under | yi ng=acc;

}

public void transfer(Key toKey)
throws insufficientFunds {
underlying.transfer(toKey, 100);
under | yi ng. del et eCapability();
}

where, in this case, the cheque is for $100. The cdl
del et eCapabi | ity removes all access for the
capability with which the object was called and so
prevents the cheque from being used again.

Clealy, the degtination account could also be fixed if
desired, or, by using a dass sich as OncePer Mont h
instead o ChequeXyz, the same mechanism could
be used to create a capability for regular transfers
rather than a once-off payment.

Finally, it should be noted that, in a particular
implementation such as described in the next sedion,
the dasses Account 12345 and ChequeXyz nedl
not written by hand but are generated automaticdly

from templates using standard utilities.

6 I mplementation

In this sdion we briefly describe a system for
congtructing distributed Java applicaions based on
the mechanism of bracket capabilities. The system
consists of a middleware mechanism for conneding
distributed persistent ohjects and a set of utilities for
congtructing the components of an applicaion and
spedfying the seaurity constraints.

The two main features of the system arethat:

e identifiers for persistent objects are 128-hit
bracket capahilities
e it offers flexibility and transparency in the

medanisms used for bath distribution and
persistence

As described above, the a@pability esentialy
spedfies through which sequence of bracketing code
the object will be accessed and as what type of objed
the object is viewed by a possessor of that cgpability.
Each cgability consists of a 36-hit cgpabil ity-server
identifier (CSID) and a 92-hit passwvord. The CSID
identifies a server olject which is guaranteed to know
the location of the persistent object’. The first 4 hits
of the CSID spedfy the protocol to be used to contact
the server. Currently, only one protocol is supported,
with the remaining 32-bits of the CSID spedfying the
IP number of the server. The open operation on a
capability leads to a look-up operation on the server,
using the lower 46-bits of the passwvord in the
capability as an index. Only these 46-bits are stored in
the pability server rather than the whole 92-bits
since otherwise the server would essentially own a
copy of the apability and therefore have all the
asciated accessrightsitsalf.

Two medhanisms for transparent distribution and two
medanisms for transparent persistence ae arrently
supported. Remote method call s can be implemented
either via Javas RMI or via a web-based CGI
mechanisn. The medcanisn to ke used in
communicating with a particular objed is provided to
the middleware by the cpability server when the
objed is opened and remains unknown to the user of
the apability. Persistence is implemented either via
Javas built-in light-weight persistence (using inter-
process communicaion to achieve sharing) or, for
limited dbject types, as a wrapper around a Postgres
database.

As described in sedion 4, the parameters to the
refine cal are a interface and a class In most

" For robustness and efficiency, the location may be cached
elsewhere ass well.

objed-oriented languages these ae not firs-class
objeds ® a language-dependent realisation of these
must be used. In the Java implementation, the Java
refledion mechanism is used for this purpose as well
as for the dynamic binding o communication
medhanisms and view types.

Aswell astods for the generation of communication
stubs, persstence wrappers etc., the system aso
contains utilities which allow the generation of the
most common kinds of bracketing clases. So, for
example, given the interfaces Accounts and
MyAccount, the dass Account 12345 can be
generated by using the utility br acket as:

bracket Account 12345 MyAccount Accounts
key=12345 fronKey=12345

7 Related Work

As mentioned above, Corba (Mowbray and Zahavi
1995 and COM (Eddon 1999 bath include the
posshility of a per-method, role-based access control
list for limiting the accessof usersto oljeds. In some
cases, fixed forms of rule-based access such as access
at ceatain times of day, are supported. These
correspond only to simple, speda cases of access
control. No direa equivalent of the logging and
parameter restrictions as required for the above E-
commerce e&le are supported. No dired
equivalent of arestricted view type is supported for
hiding the eistence of unalowed methods and
parameters from the usars. In bah of these
middleware technologies, the use of ACLs instead o
capabil ities makes the seaurity mechanism an add-on
feature rather than fundamental and detracts from the
seaurity.

Objed capabilities have been used in a number of
reseach systems, most notably the Monads s/stem
(Rosenberg and Abramson 1985) but these
capabilities require achitedural support (or at least a
spedal operating system kernel) and so are not
appropriate for heterogeneous networks. In a previous
projed, the author has developed a capabilit y-based
medhanism for heterogeneous distributed appli cations
(Evered 20@). Like the Monads g/stem and the ACL
approaches of Corba and COM, however, this
supported only simple per-method accesscontral.

The mncept of ‘bracketing’ for applying access
congtraints has been suggested bath as a programming
language monstruct (Keeady et a. 2000) and as a form
of ‘design patten’ (Gamma d& a. 1995. The
suggested programming language approach is
interesting in supporting the reuse of the bracketing
code but it does not alow modification of the
interfface to the underlying oljead and, being
integrated into the type system of the language, it isa

static mechanism.

One use of the proxy design pattern is as a protedion
(or accesy proxy. In this case, the interface is
identicd to the underlying objed. The proxy deddes
whether the accesscan proceed and returns an error if
it should not. Simple per-method access control can
be realised by this kind of protedion proxy. A proxy
objeda which maintains alog of accessattempts could
be seen as a kind of decorator pattern (though thisis
most often seen as a graphical decoration) since it
maintains the original functionality whil e enhancing it
with alogging and reporting functionality. Bracketing
objeds which modify the interface offered to a dient
cannot be seen as drict proxies. They can be seen as
spedal cases of the adapter pattern but whereas an
adapter is usudly used to provide the view the dient
would like to have of the underlying dbject, in these
cases the adapter is providing the view the dient is
allowed to have.

The concept of providing a user with arestricted view
of persistent data is reminiscent of database systems.
Database views are attribute-oriented and not method-
oriented, however, and do not support the flexible
kinds of accesscontrol demonstrated in our example.
This is true een for objed-oriented databases
(Mishra and Eich 1994). Brose (1999 describes a
‘view-based’” mechanism for Corba but this is again
simply a kind o language-based per-method access
control. It does not hide the unallowed methods and
does not support views involving parameter
restrictions.

8 Conclusion

In applications based on ddributed ohjeds, the
access control can be epressd in terms of the
abstract interface operations of an objed rather than
simple read or write accessto the data. Idedly, this
access will be limited to exactly the access required
for a user to fulfil their role within the system. The
per-method access control lists of standard
middleware technologies all ows only simple forms of
such access control to be epressed and enforced.
Research systems based on capabilities provide a
more seaure medhanism but also fail to support more
flexible security constraints such as parameter
restrictions, logging and state-dependent access They
also fail to enforce adtrict need-to-know view of a
persistent objed for each user.

We have presented the cncept of bracket capabilities
as a new, simple seaurity mechanism which fulfils
these requirements. A bracket capability is a form of
sparse Gpability that determines, for a user
possessng the apability, through what kind o
bracketing oljeda and through what interface (ie. as

what type of object) the proteded object can be
accessed. This allows a very high degree of security
and flexibility. We have discused three important
reasons for integrating the bracketing into the searity
medanism. The mncept of a capability server allows
for objed migration and flexible redi sation of remote
method calls.

The mechanism can be used with arbitrary bracketing
clases or, in a particular system or seairity
environment, with a fixed set of allowed bracket
classs and view types. This can be achieved by using
the mecdhanism itsdlf to restrict the alowed values of
the class and interface parameters of the
refine cal.

Finally, we have demonstrated the use of the
medanism in a simple E-commerce awironment to
provide seaure dedronic cheques and have described
a prototype implementation of the mechanism in
middleware for seaure, digtributed Java appli caions.

9 References

ANDERSON, M., POSE, R.D., WALLACE, C.S
(1986 A Password-Capability System, The Computer
Journal, 29,1, pp.1-8.

ATKINSON, M.P., JORDAN, M.J, DAYNES, L.
SFENCE, S. (1996) Design Issues for Persstent Java: a
Type-Safe Objed-Oriented, Orthogonaly Persistent
System, Proc. 7th Intl. Workshop Persistent Object
Systems, Cape May.

BELL, D.E., LAPADULA, L.J (1973) Seare
Computer Systems. Mathematical Foundations, Mitre
Corp., Bedford, Ma., Technica Report, ESD-TR-73
278

BLAKLEY, B., BLAKLEY, R,, SOLEY, RM., (2000
CORBA Security: An Introduction to Safe Computing
with Objects, Addison-Wesley.

BROSE, G., (1999 A View-Based Access Contral
Modd for CORBA, in: Jan Vitek, Chrigtian Jensen
(eds.), Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, LNCS 1603,
Springer.

EDDON, G., (1999 The COM+ Security Model Gets
You Out of the Security Programming Business,
Microsoft Systems Jburnal, Nov. 1999

EVERED, M., (2000) A Two-Level Architecture for
Semantic Protection of Persistent Distributed Objects,
Proc. Intl. Conf. on Software Methods and Tods,
Wollongong.

EVERED, M., (2001) Type Operators for Role-based
Object Security, 3° IFIPFACM Intl. Conf. on
Digtributed Systems Platforms - Middeware (WiP),
Heidelberg.

FAIRTHORNE, B. et a., (1994) eds. Security White
Paper, OMG TC Document.

FONDON, M.A. et a. (1998) Merging Capabilities
with the Object Modd of an Object-Oriented Abstract
Machine, 12th European Conference on Objed-
Oriented Programming, Brussls

GAMMA, E. & a., (1995) Design Patterns, Addison-
Wedley.

GOSLING, J,, JOY, B. AND STEELE, G., (1996) The
Java Language Specification, Reading, MA: Addison-
Wedley.

HARRISON, M.A., RUZZO, W.L., ULLMAN, JD.,
(1976 Protection in Operating Systems,
Communications of the ACM, 19, 8.

JOSHI, JB.D. ET AL., (2001) Security Models for
Web-based Applications, Communicaions of the ACM,
44, 2.

JONES, A. AND LISKOV, B. (1978 A language
extension for expressing consraints on data access.
Communications of the ACM, 21(5):358-367.

KEEDY, JL. AND VOSSEBERG, K. (199)
Persistent Protected Modules and Persistent Processes
as a Base for a More Secure Operating System, Proc.
25th Hawaii International Conference on System
Sciences, IEEE Computer Society Press S. 747-756.

KEEDY, JL., ET AL., (2000) Software Reuse in an
Object Oriented Framework: Distinguishing Types
from Implementations and Objects from Attributes,
Proc. Sixth International Conference on Software
Reuse, Vienna.

MISHRA, P. AND EICH, M.H., (199) Taxonomy of
views in OODBs, Proc. ACM Computer Science
Conference

MORRISON, R., BROWN, A.L., CARRICK, C. ET
AL. (1989) The Napier Type System, Proc. 3rd Intl.
Workshop on Persistent Object Systems, Newcastle.

MULLENDER, S.J., TANENBAUM, A.S. (1986) The
Design of a Capability-Based Distributed Operating
System, Computer Journal, 29,4, pp.289-299.
MOWBRAY, TJ & ZAHAVI, R (1995 The
Essential Corba - Sysems Integration Using
Digtributed Objects, Wiley, New Y ork.

ROSENBERG, J., ABRAMSON, D. A. (1985 The
MONADS Architecture: Motivation and
Implementation, Proc. First Pan Pacific Computer
Conference, p. 4/10-4/23.

SUN MICROSYSTEMS INC. (1999 Java Remote
Method Invocation Tutorial, http://java.sun.com/docs/
books/tutorial/rmi/index.html

WILKES, M.V., NEEDHAM, RM. (1979) The
Cambridge CAP Computer and its Operating System,
North Holl and.

