
Bracket Capabili ties for Distr ibuted Systems Secur ity

Mark Evered
School of Mathematical and Computer Sciences

University of New England
Armidale, 2351, NSW, Australia

markev@mcs.une.edu.au

Abstract
The per-method access control lists of standard middleware
technologies allow only simple forms of access control to
be expressed and enforced. Research systems based on
capabilities provide a more secure mechanism but also fail
to support more flexible security constraints such as
parameter restrictions, logging and state-dependent access.
They also fail to enforce a strict need-to-know view of a
persistent object for each user. In this paper we present the
concept of bracket capabili ties as a new, simple security
mechanism which fulfils these requirements. We discuss the
reasons for integrating bracketing and view types at a
fundamental level of the security mechanism. We
demonstrate the use of the mechanism in a simple E-
commerce environment to provide secure electronic
cheques and describe a prototype implementation of the
mechanism in middleware for secure, distributed Java
applications.

Keywords: security, objects, distributed systems

1 Introduction
With the development of middleware technology, it
has become standard practice to construct software
systems as collections of heterogeneous distributed
components. Such systems are increasingly used for
database integration, decision support systems,
electronic commerce and many other applications. In
general, the information stored within the components
of these systems is sensitive and requires some form
of access control. This is particularly important as the
internet is increasingly used as the basis for
distributed systems and as the threat from hackers and
malicious software continues to grow. As well as
protecting a system from these external threats, the
access control mechanism also must ensure that each
user with access to the system only uses the
information exactly as required for their role within
the organization.

Despite the sensitivity of the data and the growing
threat, relatively lit tle attention has been paid to
security constraints in middleware development.
OMG’s Corba (Blakley 2000), Microsoft’s COM

Copyright © 2001, Australian Computer Society, Inc. This
paper appeared at the Twenty-Fifth Australasian Computer
Science Conference (ACSC2002), Melbourne, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 4. Michael Oudshoorn, Ed. Reproduction
for academic, not-for profit purposes permitted provided
this text is included.

(Eddon 1999) and Sun’s Java RMI (Sun 1999) all
include a form of access control li st (ACL) but these
are add-on features which remain limited and
inflexible. Much attention has been given to
encryption techniques but, while encryption is
certainly very important, it protects only the
communication and authentication in the system. It
provides only the basis for a secure access control
mechanism.

In this paper we introduce the concept of bracket
capabil ities, a new, simple security mechanism which
can be integrated into middleware technology at a
fundamental and therefore maximally secure level.
The mechanism provides for a finer-grained access
control than previously proposed mechanisms as well
as supporting other security factors such as the
logging of accesses and access attempts.

We begin in the next section by discussing semantic
protection and role-based access as supported in
standard commercial systems and research systems.
In the following section we demonstrate the need to
extend the framework of role-based access control. In
section 4 we describe the concept of bracket
capabil ities and in section 5 we show how this
mechanism can be used in an example E-commerce
application to provide secure electronic transfer of
funds. In section 6 we briefly describe a prototype
system using bracket capabil ities as the basis for
access to distributed components. Finall y, in section
7, we give an overview of and comparison with other
related research.

2 Semantic Role-based Access Control
The components of a distributed system can be
viewed as objects according to the object-oriented
paradigm with each object containing persistent data
hidden by encapsulation and accessible via interface
methods1. One advantage of an object-oriented
approach is that the security can be based on the
interface methods of an object. This provides a fine-
grained semantic protection (Evered 2000) in contrast
to the course-grained read/write protection of
traditional files and databases. This means that the
access rights can be based on meaningful, high-level
operations associated with the object in the real
world. So, for example, we may define a persistent
object which implements a bank accounts file with

1 This may, of course, simply be a façade around a legacy
component such as a relational database.

methods for creating a new account, depositing some
amount in one of the accounts, checking the balance
in one of the accounts etc. (Fig. 1).

 Fig 1: A bank accounts object

This corresponds to the Java interface definition:

interface Accounts {
 void new(Key newKey, String name);
 void deposit(Key key, Currency amount);
 void withdraw(Key key, Currency amount)
 throws insufficientFunds;
 Currency balance(Key key);
 String getName(Key key);
 void setInterest(Percent rate);
 void transfer(Key fromKey,
 Key toKey,
 Currency amount)
 throws insufficientFunds;
}

The access rights can then be granted on the basis of
the roles of the users within the organization. A bank
teller may have access to the deposit and withdraw
methods whereas the bank manager may also have
access to the method for setting the interest rate. This
idea goes back as far as Jones’ and Liskov’s (1978)
suggestion of a static type-based constraint
mechanism and has been adopted in contemporary
middleware mechanisms. Java’s RMI can be used in
conjunction with a standard package for access
control li sts but it is up to the programmer to
explicitl y establi sh the relationship between the
‘r ights’ and the allowed method call s. The COM
security mechanism does this automaticall y, offering
‘per-method access control li sts’ which record, for
each method, a li st of users allowed to invoke that
method (Eddon 1999).

The alternative to a protection mechanism based on
access control lists is an object-based capabilit y
protection mechanism. A capability for an object is
simultaneously an identifier for the object and a li st of
allowed methods. The possession of the capability
represents the right to call those methods on that
object. This has the added security advantage that the
naming of objects is unified with the protection
mechanism so that someone who has no access to an

object does not even know of the object’s existence
(Wilkes and Needham 1979). Among the
disadvantages of capabili ties are that they are held by
the user and not with the object and so must
themselves be protected in some way from forgery
and tampering. The Monads system (Rosenberg and
Abramson 1985) supports object-based capabili ties
for distributed systems but assumes a homogeneous
network and a special operating system kernel. The
author has proposed a middleware technology based
on a form of sparse capabil ities (Evered 2000). Brose
(1999) has proposed a language-based extension to
the Corba security model in which the allowed
‘views’ f or each user are defined in terms of the
methods of an object type.

3 Extending Role-based Secur ity
The access control mechanisms described in the
previous section all limit the access to an object by
returning an error message if certain methods are
invoked. However, this is not the only kind of access
restriction which is possible or useful in controlling
access to a persistent object.

In fact, even in terms of per-method access control,
the above mechanisms are not ideal. With each of
these mechanisms, all the methods of the object are
stil l known to all the users even if they cannot be
called. Ideally, in a need-to-know security
environment, someone who is not allowed to invoke a
method should not know of the existence of that
method, just as someone without a capability does not
even know of the existence of the object2. So, for
example, if an ATM machine only requires access to
the withdraw and balance methods of an
Accounts object, then the ATM software should
ideally see the object as if it had the type:

interface ATMAccounts {
 void withdraw(Key key, Currency amount)
 throws insufficientFunds;
 Currency balance(Key key);
}

instead of the type Accounts. This type effectively
defines the view that the software has of the
underlying object.

As an example of a form of access control not
supported by a simple per-method approach, we now
consider a role which is not within the organization
(the bank) in which the Accounts object is held, but
may be part of a broader distributed system of which
that object is a part. What access to an Accounts

2 As well as increasing security, it also simplifies the use of the
object by the user if only the relevant methods are visible.

 deposit

balancegetName

setInterest

transfer

…

withdraw

 new

Persistent
Data

object should be given to the owner of an individual
account? As well as restricting access to the methods
balance, getName and transfer, we must also
ensure that only the right account is being accessed.
This means that the Key parameter of balance and
getName and the fromKey parameter of
transfer must be restricted to a particular value.

This requires a mechanism which grants access rights
to the user in such a way that an error is returned if
the wrong account number is specified in the call. Or,
better still, in terms of views, we would li ke the
account owner to view the object as if it had the type:

interface MyAccount {
 Currency balance();
 String getName();
 void transfer(Key toKey,
 Currency amount)
 throws insufficientFunds;
}

where it is implicit that the appropriate account is to
be accessed.

A number of further kinds of access control are also
useful for flexibly specifying the security constraints
associated with different roles in a system. In (Evered
2001), the author has described a formalism in which
five basic type operators are used in combination to
specify security constraints in terms of a view type.
The operators modify the methods, parameters and
semantics of the type through which a user accesses
the underlying persistent object. The operators
provide for:

• specifying that some methods should return
an access violation error

• specifying that an access violation error
should be returned for parameter values
other than a specified value

• restricting the view type to exactly the
allowed methods and parameters

• enhancing the semantics of the object type
with logging of accesses and access
attempts

• specifying a state-dependent rule such as
‘access only at specified times’ or ‘access
allowed only once’

The view type effectively gives the user the illusion
of accessing an object of that type when in fact it is
just a representation of a restricted access to an object
of the original type. So, for example, the type
MyAccount would appear to be the type of an
individual bank account object but a call to this object
would actuall y be a call to an Accounts object with
the account number automaticall y inserted. The

MyAccount object can be seen as a virtual object3.

It is this extended concept of security constraints for
which bracket capabilities have been developed.

4 Bracket Capabil ities
Our mechanism is based on object capabili ties rather
than ACLs because, as mentioned above, security is
enhanced and simplified by the unification of object
naming with the protection mechanism. Capability
systems have traditionally had three major problems.
Firstly, the capabil ities themselves must be protected,
secondly, revocation of access rights is more diff icult
than with ACLs and, thirdly, garbage collection can
be more diff icult. In the context of persistent objects
in a distributed system, we neglect the third problem
since we want objects to be explicitl y deleted.

A number of possible alternatives have been
suggested for protecting capabil ities4. These include
special architectures (Rosenberg and Abramson
1985), encryption (Mullender and Tanenbaum 1986)
and sparse (or password) capabil ities (Anderson, Pose
and Wallace 1986). We base our mechanism on
sparse capabilities since these require no special
architecture or costly encryption algorithms and also
because they alleviate the revocation problem. A
sparse capability generally consists of an object
identifier (for locating the object) together with a
large (un-guessable) random number. The access
rights associated with the capabil ity (that is, with that
particular random number) are not stored in the
capabil ity itself but with the object being accessed, so
can easil y be modified or revoked without access to
the capability.

Our capabili ties differ from traditional sparse
capabil ities in that they contain not an object
identifier, but an identifier for a (capabil ity) server
which knows the location of the object. This
indirection allows for object migration. When a
persistent object is created, a capability for the object
is created and registered with the capabil ity server.
The capabilit y server also contains other information
about accessing the object, including the type of the
object as seen by the possessor of that capability.

To gain access to an object, the object is ‘opened’
using a capability. For example:

Accounts acc= c.open();

3 Such an object may actually exist within the Accounts object or
it may not exist if, for example, the Accounts object is just an
object-oriented façade around a relational database.
4 We mean here protection from tampering by the possessor of the
capabil ity. It is also necessary to protect the capabili ty from being
copied or modified by third parties when being sent across the
network. We assume that this done via message encryption.

where c is a variable of type Capability.

So far, our mechanism is not much different from
other mechanisms based on sparse capabilities. The
main difference is seen when the possessor of a
capabil ity wishes to grant a more restricted view of
the object to other users in the system. This is done
by a call to the refine method. Each persistent
object, as well as implementing an interface such as
Accounts also implements the standard interface
Persistent which includes methods such as
deleteObject, deleteCapability and
refine. The refine method is called as:

x= c.open();
Capability cref=x.refine(interface, class);

where interface denotes the type with which the
persistent object is to be viewed using the capabil ity
cref and class denotes the class of an object
through which calls to the persistent object will pass
when invoked via cref. This class must implement
the type interface and must have a constructor
with a single parameter of the view type associated
with the capabil ity c. The result of the refine call
is depicted in Fig. 2.

 Fig 2: The result of the ' refine' operation

It can be seen that calls using the capabil ity cref are
directed through a kind of proxy or bracketing object
of class class. This bracketing object is stored
together with the persistent object in the same way
that access rights are stored with the object for
traditional sparse capabili ties.

A copy of cref can be given to the users who are to
have this kind of access. Of course a possessor of the
capabil ity cref may wish to create an even more
restricted view of the object. This would result in the
situation shown in Fig 3., in which a second
bracketing object brackets the first.

Fig 3: The result of a fur ther ' refine' operation ('c'
and 'cref' not shown)

The power of this mechanism stems from the abil ity
to specify arbitrary classes as brackets (subject to the
rules just described). In a given security environment,
however, the allowed classes may be restricted to a
particular approved set. Traditional object-based
capabil ities or ACLs in which access is restricted to
particular methods can easily be simulated with our
mechanism. The ATM access described in section 3
could be achieved as:

acc= objc.open();
Capability atmCap=
 acc.refine(ATMAccounts, ATMBracket);

where ATMAccounts is defined as in section 3 and
ATMBracket is defined as:

class ATMBracket
 implements ATMAccounts {
 private Accounts underlying;

 public ATMBracket(Accounts acc) {
 underlying=acc;
 }

 public void withdraw(Key key,
 Currency amount)
 throws insufficientFunds {
 underlying.withdraw(key, amount);
 }

 public Currency balance(Key key) {
 return underlying.balance(key);
 }
}

Clearly, other bracket classes can be used to
implement the full range of security constraints
described in section 3, including restrictions on
parameters, logging of method call s and constraints
based on time, number of accesses etc. It should also
be noted that the bracketing class may have more
methods than those available in the view given by the
interface type. These extra methods can be used by
the creator of the capabil ity for monitoring or altering
the bracketing such as to inspect logging information
or to revoke or alter access constraints.

Before we turn to a more extensive example, one
possible criticism of the mechanism must be

Bracketing
ObjectInterface

Object

Capabili ty c

Capabili ty cref

Interface2

ObjectCapabili ty cref2

addressed. It is possible to simulate this mechanism
by using a traditional object-based capabilit y or ACL
mechanism. The bracketing object could be created as
a persistent object in the same way as the object being
protected. The user with the restricted view would be
given a capabil ity for this new object which would
contain a reference to the original object and pass on
the calls in the same way as in our mechanism. What
is the advantage in making the bracketing integral to
the protection mechanism? Apart from being easier to
use, there are three important reasons: information,
efficiency and control.

1. A possible problem with discretionary access
control is that the administrator of a system
can lose track of what different kinds of
access exist and how they are related. If the
bracketing is a part of the security
mechanism, then information about all the
capabil ities to the object and the nesting of
brackets associated with each capabil ity can
be stored centrall y with the object and
inspected by the administrator or owner5.

2. A persistent object in a distributed system is
not an ordinary object6. There is generally a
considerable overhead involved in invoking a
persistent object, for example in inter-
process communication. If the bracketing
objects are stored as persistent objects in the
same way as the protected object then this
overhead wil l be necessary for each step in
the call sequence. If, however, the bracket
objects are stored centrall y with the protected
object, they can be handled together by the
persistence mechanism and the call s between
bracketing objects and from the bracketing
objects to the protected object can be
ordinary method call s.

3. As indicated above, although the mechanism
itself allows arbitrary bracketing classes, in a
particular security environment, we may
want to limit the set of classes that can be
used. While still allowing users to create
more restricted views, we may want to
specify what kind of restriction they can
impose. This is only possible if the
bracketing is part of the security mechanism.
In fact, since the refine call is itself just a

5 While capabil ities are, in the first instance, a form of discretionary
access control it is nevertheless possible to implement mandatory
access control policies such as (Bell and LaPadula 1973) by using
them as a basis. This goes beyond the scope of the current paper but
has been discussed in (Keedy and Vosseberg 1992).
6 We mean here persistence in the sense of concurrent sharing of a
persistent object by different programs and processes, not the kind
of light-weight persistence supported in Java.

method call to the persistent object, we can
use the mechanism itself to specify that, for
some user, it can only be invoked with
certain values for the class parameter.

5 Example: Secure Electronic Cheques for
E-Commerce

In this section we demonstrate the potential of bracket
capabil ities by developing a simple system for
electronic funds management. At the centre of the
system is an object of the type Accounts as
described above. After creating this object, we have a
capabil ity objc for unrestricted access.

The first level of security is the logging of all accesses
and access attempts to the object. We can achieve this
by creating a new capability as:

acc = objc.open();
logc =
 acc.refine(Accounts, LoggedAccounts);

where LoggedAccounts is a class for an object
which records the parameters, time and state of the
relevant account and passes the call on to the
Accounts object. Note that, in this case, the
interface to the object remains unchanged. Only
copies of the logc capabil ity and not the original
objc capability will be further distributed in the
system.

Next we can create a capability for an individual bank
account holder. For account number 12345, this can
be achieved with:

acc = logc.open();
accountc =
 acc.refine(MyAccount, Account12345);

where MyAccount is defined as in section 3 and the
class Account12345 is defined as:

 class Account12345 implements MyAccount {
 private Accounts underlying;

 public Accounts12345(Accounts acc) {
 underlying=acc;
 }

 public Currency balance() {
 return underlying.balance(12345);
 }

 public String getName() {
 return underlying.getName(12345);
 }

 public void transfer(Key toKey,
 Currency amount)
 throws insufficientFunds {
 underlying.transfer(12345, toKey,
 amount);
 }
}

The possessor of a copy of the accountc capability
appears to have access to an object of type
MyAccount but is actually accessing the
Accounts object (through the logging object).

Finally, the account owner may wish to provide a
restricted access to his/her account so that another
account owner can transfer a certain amount out of
the account as a payment. The capabil ity for such an
access is in fact a secure electronic cheque. As well as
fixing the amount, we must ensure that this capabilit y
can only be used once. We can achieve this as:

MyAccount a= accountc.open();
chequec = a.refine(Cheque, ChequeXyz);

where Cheque is defined as:

interface Cheque {
 void transfer(Key toKey)
 throws insufficientFunds;
}

and ChequeXyz is defined as:

class ChequeXyz implements Cheque {
 private MyAccount underlying;

 public ChequeXyz(MyAccount acc) {
 underlying=acc;
 }

 public void transfer(Key toKey)
 throws insufficientFunds {
 underlying.transfer(toKey, 100);
 underlying.deleteCapability();
}

where, in this case, the cheque is for $100. The call
deleteCapability removes all access for the
capabil ity with which the object was called and so
prevents the cheque from being used again.

Clearly, the destination account could also be fixed if
desired, or, by using a class such as OncePerMonth
instead of ChequeXyz, the same mechanism could
be used to create a capabil ity for regular transfers
rather than a once-off payment.

Finally, it should be noted that, in a particular
implementation such as described in the next section,
the classes Account12345 and ChequeXyz need
not written by hand but are generated automaticall y

from templates using standard utilities.

6 Implementation
In this section we briefly describe a system for
constructing distributed Java applications based on
the mechanism of bracket capabilities. The system
consists of a middleware mechanism for connecting
distributed persistent objects and a set of util ities for
constructing the components of an application and
specifying the security constraints.

The two main features of the system are that:

• identifiers for persistent objects are 128-bit
bracket capabil ities

• it offers flexibilit y and transparency in the
mechanisms used for both distribution and
persistence

As described above, the capability essentiall y
specifies through which sequence of bracketing code
the object will be accessed and as what type of object
the object is viewed by a possessor of that capability.
Each capabil ity consists of a 36-bit capabil ity-server
identifier (CSID) and a 92-bit password. The CSID
identifies a server object which is guaranteed to know
the location of the persistent object7. The first 4 bits
of the CSID specify the protocol to be used to contact
the server. Currently, only one protocol is supported,
with the remaining 32-bits of the CSID specifying the
IP number of the server. The open operation on a
capabil ity leads to a look-up operation on the server,
using the lower 46-bits of the password in the
capabil ity as an index. Only these 46-bits are stored in
the capability server rather than the whole 92-bits
since otherwise the server would essentially own a
copy of the capabil ity and therefore have all the
associated access rights itself.

Two mechanisms for transparent distribution and two
mechanisms for transparent persistence are currently
supported. Remote method call s can be implemented
either via Java's RMI or via a web-based CGI
mechanism. The mechanism to be used in
communicating with a particular object is provided to
the middleware by the capabil ity server when the
object is opened and remains unknown to the user of
the capability. Persistence is implemented either via
Java's buil t-in light-weight persistence (using inter-
process communication to achieve sharing) or, for
limited object types, as a wrapper around a Postgres
database.

As described in section 4, the parameters to the
refine call are an interface and a class. In most

7 For robustness and eff iciency, the location may be cached
elsewhere as well .

object-oriented languages these are not first-class
objects so a language-dependent reali sation of these
must be used. In the Java implementation, the Java
reflection mechanism is used for this purpose as well
as for the dynamic binding of communication
mechanisms and view types.

As well as tools for the generation of communication
stubs, persistence wrappers etc., the system also
contains utilities which allow the generation of the
most common kinds of bracketing classes. So, for
example, given the interfaces Accounts and
MyAccount, the class Account12345 can be
generated by using the util ity bracket as:

bracket Account12345 MyAccount Accounts
 key=12345 fromKey=12345

7 Related Work
As mentioned above, Corba (Mowbray and Zahavi
1995) and COM (Eddon 1999) both include the
possibili ty of a per-method, role-based access control
li st for limiting the access of users to objects. In some
cases, fixed forms of rule-based access, such as access
at certain times of day, are supported. These
correspond only to simple, special cases of access
control. No direct equivalent of the logging and
parameter restrictions as required for the above E-
commerce example are supported. No direct
equivalent of a restricted view type is supported for
hiding the existence of unallowed methods and
parameters from the users. In both of these
middleware technologies, the use of ACLs instead of
capabil ities makes the security mechanism an add-on
feature rather than fundamental and detracts from the
security.

Object capabili ties have been used in a number of
research systems, most notably the Monads system
(Rosenberg and Abramson 1985) but these
capabil ities require architectural support (or at least a
special operating system kernel) and so are not
appropriate for heterogeneous networks. In a previous
project, the author has developed a capabilit y-based
mechanism for heterogeneous distributed applications
(Evered 2000). Like the Monads system and the ACL
approaches of Corba and COM, however, this
supported only simple per-method access control.

The concept of ‘bracketing’ for applying access
constraints has been suggested both as a programming
language construct (Keedy et al. 2000) and as a form
of ‘design pattern’ (Gamma et al. 1995). The
suggested programming language approach is
interesting in supporting the reuse of the bracketing
code but it does not allow modification of the
interface to the underlying object and, being
integrated into the type system of the language, it is a

static mechanism.

One use of the proxy design pattern is as a protection
(or access) proxy. In this case, the interface is
identical to the underlying object. The proxy decides
whether the access can proceed and returns an error if
it should not. Simple per-method access control can
be reali sed by this kind of protection proxy. A proxy
object which maintains a log of access attempts could
be seen as a kind of decorator pattern (though this is
most often seen as a graphical decoration) since it
maintains the original functionality while enhancing it
with a logging and reporting functionality. Bracketing
objects which modify the interface offered to a client
cannot be seen as strict proxies. They can be seen as
special cases of the adapter pattern but whereas an
adapter is usually used to provide the view the client
would like to have of the underlying object, in these
cases the adapter is providing the view the client is
allowed to have.

The concept of providing a user with a restricted view
of persistent data is reminiscent of database systems.
Database views are attribute-oriented and not method-
oriented, however, and do not support the flexible
kinds of access control demonstrated in our example.
This is true even for object-oriented databases
(Mishra and Eich 1994). Brose (1999) describes a
‘view-based’ mechanism for Corba but this is again
simply a kind of language-based per-method access
control. It does not hide the unallowed methods and
does not support views involving parameter
restrictions.

8 Conclusion
In applications based on distributed objects, the
access control can be expressed in terms of the
abstract interface operations of an object rather than
simple read or write access to the data. Ideally, this
access will be limited to exactly the access required
for a user to fulfil their role within the system. The
per-method access control li sts of standard
middleware technologies allows only simple forms of
such access control to be expressed and enforced.
Research systems based on capabil ities provide a
more secure mechanism but also fail to support more
flexible security constraints such as parameter
restrictions, logging and state-dependent access. They
also fail to enforce a strict need-to-know view of a
persistent object for each user.

We have presented the concept of bracket capabil ities
as a new, simple security mechanism which fulfil s
these requirements. A bracket capabil ity is a form of
sparse capability that determines, for a user
possessing the capabil ity, through what kind of
bracketing object and through what interface (ie. as

what type of object) the protected object can be
accessed. This allows a very high degree of security
and flexibility. We have discussed three important
reasons for integrating the bracketing into the security
mechanism. The concept of a capabil ity server allows
for object migration and flexible reali sation of remote
method call s.

The mechanism can be used with arbitrary bracketing
classes or, in a particular system or security
environment, with a fixed set of allowed bracket
classes and view types. This can be achieved by using
the mechanism itself to restrict the allowed values of
the class and interface parameters of the
refine call.

Finally, we have demonstrated the use of the
mechanism in a simple E-commerce environment to
provide secure electronic cheques and have described
a prototype implementation of the mechanism in
middleware for secure, distributed Java applications.

9 References

ANDERSON, M., POSE, R.D., WALLACE, C.S.
(1986) A Password-Capabil ity System, The Computer
Journal, 29,1, pp.1-8.

ATKINSON, M.P., JORDAN, M.J., DAYNES, L.
SPENCE, S. (1996) Design Issues for Persistent Java: a
Type-Safe Object-Oriented, Orthogonally Persistent
System, Proc. 7th Intl. Workshop Persistent Object
Systems, Cape May.

BELL, D.E., LAPADULA, L.J. (1973) Secure
Computer Systems: Mathematical Foundations, Mitre
Corp., Bedford, Ma., Technical Report, ESD-TR-73-
278.

BLAKLEY, B., BLAKLEY, R., SOLEY, R.M., (2000)
CORBA Security: An Introduction to Safe Computing
with Objects, Addison-Wesley.

BROSE, G., (1999) A View-Based Access Control
Model for CORBA, in: Jan Vitek, Christian Jensen
(eds.), Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, LNCS 1603,
Springer.

EDDON, G., (1999) The COM+ Security Model Gets
You Out of the Security Programming Business,
Microsoft Systems Journal, Nov. 1999.

EVERED, M., (2000) A Two-Level Architecture for
Semantic Protection of Persistent Distributed Objects,
Proc. Intl. Conf. on Software Methods and Tools,
Wollongong.

EVERED, M., (2001) Type Operators for Role-based
Object Security, 3rd IFIP/ACM Intl. Conf. on
Distributed Systems Platforms - Middleware (WiP),
Heidelberg.

FAIRTHORNE, B. et al., (1994) eds. Security White
Paper, OMG TC Document.

FONDÓN, M.A. et al. (1998) Merging Capabilities
with the Object Model of an Object-Oriented Abstract
Machine, 12th European Conference on Object-
Oriented Programming, Brussels

GAMMA, E. et al., (1995) Design Patterns, Addison-
Wesley.

GOSLING, J., JOY, B. AND STEELE, G., (1996) The
Java Language Specification, Reading, MA: Addison-
Wesley.

HARRISON, M.A., RUZZO, W.L., ULLMAN, J.D.,
(1976) Protection in Operating Systems,
Communications of the ACM, 19, 8.

JOSHI, J.B.D. ET AL., (2001) Security Models for
Web-based Applications, Communications of the ACM,
44, 2.

JONES, A. AND LISKOV, B. (1978) A language
extension for expressing constraints on data access.
Communications of the ACM, 21(5):358-367.

KEEDY, J.L. AND VOSSEBERG, K. (1992)
Persistent Protected Modules and Persistent Processes
as a Base for a More Secure Operating System, Proc.
25th Hawaii International Conference on System
Sciences, IEEE Computer Society Press, S. 747-756.

KEEDY, J.L., ET AL., (2000) Software Reuse in an
Object Oriented Framework: Distinguishing Types
from Implementations and Objects from Attributes,
Proc. Sixth International Conference on Software
Reuse, Vienna.

MISHRA, P. AND EICH, M.H., (1994) Taxonomy of
views in OODBs, Proc. ACM Computer Science
Conference.

MORRISON, R., BROWN, A.L., CARRICK, C. ET
AL. (1989) The Napier Type System, Proc. 3rd Intl.
Workshop on Persistent Object Systems, Newcastle.

MULLENDER, S.J., TANENBAUM, A.S. (1986) The
Design of a Capability-Based Distributed Operating
System, Computer Journal, 29,4, pp.289-299.

MOWBRAY, T.J. & ZAHAVI, R. (1995) The
Essential Corba - Systems Integration Using
Distributed Objects, Wiley, New York.

ROSENBERG, J., ABRAMSON, D. A. (1985) The
MONADS Architecture: Motivation and
Implementation, Proc. First Pan Pacific Computer
Conference, p. 4/10-4/23.

SUN MICROSYSTEMS INC. (1999) Java Remote
Method Invocation Tutorial, http://java.sun.com/docs/
books/tutorial/rmi/index.html

WILKES, M.V., NEEDHAM, R.M. (1979) The
Cambridge CAP Computer and its Operating System,
North Holland.

