
Bridging Semantic Gap

Pronab Ganguly*, Fethi A. Rabhi and Pradeep K. Ray

School of Information Systems, Technology and Management
The University of New South Wales, Kensington

*Tel: 61 2 9691 5762; Fax: 61 2 9691 9574
E-mail: pganguly@qantas.com.au

1. Intent

Software interoperation by semantics ensures that the
requestor and the provider have a common understanding
of the requested information. An example of semantic
heterogeneity is the use of synonyms, such as employees
or staff, which are used to refer to the same concept in
different information systems. This type of software
interoperation includes the semantics of the user queries
and of information sources. The bridging gap pattern
intends to bridge the semantic gap between the requestor
and the provider .

2. Context

Semantic incompatibility often occurs when old data or
procedures are used for new purposes not anticipated by
their original developers or among new systems that are
the product of independent development efforts. In both
the cases, this is because the semantics and procedures and
data are not explicit. Requesters cannot determine whether
providers match their assumptions. The results of such
mismatch can be catastrophic – wrong results, sometimes
with hidden or delayed indication that they are wrong. For
example, in the late 1980’s, the Regan administration in
USA began including military personnel in the base figure
for calculating “unemployment”. When those figures were
combined with earlier figures that did not include the
military, the “unemployment” rate appeared to drop by
0.3%. Another example is Ariane 5, where an exception
occurred while converting one type of number into another
type in the upgraded version of software where code was
reused from previous version.

3. Problem

XML provides a common syntax to exchange
heterogeneous information. Usually a Document Type
Definition (DTD) or an Extensible Markup Language
(XML) Schema is used as a standard mechanism to
exchange information. But these schema-level
specifications cannot resolve the issues related to semantic
heterogeneity due to following reasons:

 Copyright (c) 2002, Australian Computer Society, Inc. This
paper appeared at the Third Asian Pacific Conference on Pattern
Languages of Programs (KoalaPLoP 2002), Melbourne,
Australia.Conferences in Research and Practice in Information
Technology,Vol. 13. James Noble and Paul Taylor, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

• There are many such schema-level specifications and
they do not use the consistent set of terminology

• Data, captured in different files, having the same set
of labels are not true representative of the consistent
terminology.

• For a small number of systems, programs can be
developed to translate terminologies between systems
but scalability cannot be achieved.

4. Forces

The major forces involved are:

• Meta-level data capture the richness of meanings
conveyed by the data and normally human
intelligence resolves any differences associated with
the meaning..

• To develop a computer readable meta-data is hard as
the semantics of a term varies from context to context
such as one information source may refer the term
“apple” as a type of computer while another
information source may refer the same term “apple” a
type of fruit.

• Meta-data contains highest-level user/ business
information requirement. You develop ER diagrams
and database schema from the metadata. Schemas are
implementation platform specific. Constrains at this
level are implementation specific. Implementation
specific schemas may not explicitly represent the
constraints that are present in the meta-data level.
Thus each meta-data may have different
implementation specific schemas.

• Usually XML a Document Type Definition (DTD) or
an Extensible Markup Language (XML) Schema is
used as a standard mechanism to exchange
information. It does not provide dynamic mapping
and transformation between terms in a given context.

• Scalability – for a small system, programs can be
developed to translate the terminologies, but that is
not possible for a large system.

5. Solution

To address the above forces, draw on a formal Ontology –
a shared model of the domain – for the vocabulary and
formalism of the computational specifications. The
Ontology helps to structure our concepts for effective
computing. Ontology abstracts reality in order to
understand and process it. This model is computer

readable. Thus Ontology is a formal, explicit specification
of a shared conceptualization [DIE01].
As Ontologies are formal theories of about a certain
domain, it requires a formal logical language to express
them. Some of the ontological languages include [DIE01]:
• CycL and Knowledge Interchange Format (KIF)
• Ontolingua
• Frame Logic
• Description Logics

Ontolingua is designed with a clear logical semantics
based on KIF to support the design and specification of
Ontologies. Ontolingua definitions are Lisp-style forms,
which contains a symbol with an argument list, a
documentation string, and a set of KIF sentences labeled
by keywords. An Ontolingua Ontology includes
definitions of classes, relations, functions, distinguished
objects and axioms that relate these terms. Document Type
Definitions (DTDs) in XML are closest to ontological
modeling with the following significant differences
[DIE01]:
• Is-a relationship of classes is a central theme in

ontology but this is absent in DTDs.
• DTD’s do not have inherent mechanisms
• In Ontology, the ordering of attribute descriptions

does not matter but in DTDs it does.
However mapping between ontology and DTD and vice
versa are possible and realized [DIE01].

6. Example Implementation

Our proposed bridging gap pattern revolves around the use
of a Domain Ontology Server and a DTD Mapper as
described below:

• Given a data source, the domain experts build the
domain ontology. The abstract concepts are used for
higher level communications. Additionally, it is
capable of mapping terms for a given context,
relationships between terms and attributes associated
with the terms. The scope of a domain , such as
diabetes management in healthcare informatics, needs
to be specified to manage the task. Within that
domain, mappings such as relation between different
units of measurement, relation between similar terms
are specified.

• If the user application does not comprehend the
default DTD, the user application of the default DTD
submits its request to the domain ontology server.
Domain ontology server resolves the issue and
generates the relevant DTD with the help of DTD
mapper. Then the ontology server guides the user
application to the regenerated DTD.

• The application uses the regenerated DTD to access
the information.

• These regenerated DTDs will constitute a repository
for reuse

The diagram in figure 1 illustrates the structure of our
pattern. It consists of following elements:

6.1 Domain Ontology Server - Given a data source, the
domain experts build the domain ontology. The abstract
concepts are used for higher level communications.
Additionally, the ontology server is capable of mapping
terms, relationships between terms and attributes
associated with the terms.

 6.2 DTD Mapper - Depending on the chosen ontological
agreements, the mapper produces the relevant DTD. The
mapper takes the resolved meta level information from
ontology server and map that information into relevant
DTD .

The interaction sequences are described below:

1. The ontology, with the help of DTD mapper,
generates the default DTDs for a given data source.

2. When an application requires access to the data
source, it will construct a set of queries through the
default DTD encoding.

3. If the user application does not understand the tags of
default DTD, it will submit a request to the Ontology
server specifying the inadequacy of the default DTD.

4. The Ontology server is capable of mapping terms. It
can also return relationship between terms and
associated attributes.

5. Based on the request of the user application, the
ontology server, with the help of DTD mapper, will
generate a new DTD relevant to the user application
and guide the user application to the regenerated
DTD.

6. Over time, the ontology server and the DTD mapper
will build a repository of DTDs for reuse.

7. Known Uses

7.1 Diabetes Management in Telehealthcare

Our main use of this pattern is in Telehealthcare where it
is under implementation. The focus is on diabetes
management. In diabetes management, the semantically
equivalent concepts can be described as:
• Property mismatch such as different units for blood

sugar e.g. mmol/l or mg/dl
• Different Properties – Measurement of

glycohaemoglobin (GHb) provides a measurement of
blood sugar level over time. There are four different
major techniques and twenty different units [COL01].
Hence integration of results requires semantic
integration.

• Different terms – “Intensive” and “Tight” glycemic
control may be used to refer to the same concept but
inner components may be different.

Depending on the application specific requests, the
ontology will generate relevant DTD and request the
application to commit to that DTD. The tagged DTD will
provide the necessary information that will be used for
integration.

7.2 Other Application Areas

Other application areas include business-to-business e-
commerce, where dynamic information exchange is vital,
following semantic issues may need to be resolved.

• Different Terms: One business application may refer
to their personnel as employees whereas another
business application may refer to their personnel as
staffs.

• Different Properties: One business application may
specify monthly for their employees’ salary whereas
the other application may specify them as annual
salary.

• Property Mismatch: The salaries may be expressed in
different currency units.

In other business-to-business e-commerce, following
scenario may arise:

• For the same product, one business application may
include colour in its catalogue whereas the other may
not.

7.3 Related Patterns

This pattern is similar to agent based following patterns
[FER00]:

• The Dependency Separation Pattern which reflects
inter-application dependencies

• Interface connection pattern that reflects domain
based communication mechanisms

 But the above patterns do not explicitly address the issues
related to semantic interoperation based on Ontology and
DTD.

8. Resulting Context

This pattern uses DTD mapper to generate the relevant
DTD from ontology. However instead of using DTD
mapper, the Ontology can advise the user application to
restructure its query based on default DTD [ZHA01]. In
that case, the computing load will be transferred to user
application side whereas in our model, the ontology server
carries out the related tasks. If the computing load is
transferred to the user application side, the application
needs to reconstruct its query which involves additional
and undesirable computational processing. However
development of a comprehensive domain-specific
Ontology and corresponding DTD mapper is complex task.
The following patterns will work well with this pattern:
• Any pattern which can relate to DTD as well as to

Ontology either directly or through an interface.
• In software agent oriented paradigm, as the agents will

be able to interact directly with Ontology [PRO01],
the DTD mapper and corresponding DTDs are not
required.

9. References

[COL01] Colman.A et al; Glycemic Control;
http://www.mja.com.au/public/issues/jul21/colman/colma
n.html. Accessed on 28/2/02

[DIE01] Dietel Fensel; Ontologies: A silver Bullet for
Knowledge Managemen t and E lec t ron ic
Commerce;Springer-Verlag Berlin Heidelberg; 2001

[FER00] Fernandez, George & Zhao Liping: A Pattern
Language for Federated Architecture; Proceedings of
KoalaPLoP 2000: 24-26 May: Melbourne Australia,
Technical Report TR-00-7, Department of Computer
Science, RMIT, Australia,pp.21-31

[PRO01] Pronab Ganguly, Fethi A. Rabhi & P.Ray; The
Semantic Interpreter Pattern;
Proceedings of KoalaPLoP 2001: Melbourne Australia,

[ROS99] Rosenthal A, Sciore E; Description, Conversion,
and Planning for Semantic Interoperability;
 http://www.mitre.org/pubs/data.mgt/papers/sem.pdf
Accessed on 29/12/1999

[ZHA01] Zhan Cui, Dean Hones and Paul
O’Brien;Semantic B2B Integration: Issues in Ontology-
based Approaches;

Data
Source

Domain
Ontology
Server

DTD
Mapper

User
Application

DTDs

Figure 1: Structure of Ontology based system
for semantic Interoperation

