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Abstract 

An informatics issue common for many fields of medical 

research is the poor standardisation of baseline clinical 

management data, which can have a large negative impact 

on the statistical power of drug studies making use of that 

data. This baseline variation can be for many reasons – 

e.g. rarity of the condition – but, despite the development 

of standardised medical guidelines in many areas, it is still 

often the case that study data is affected by the "real 

world" differences in treatment protocols. To improve 

understanding of that management baseline in general, 

this paper describes work that builds up an empirical 

treatment pattern from retrospective intensive care unit 

(ICU) data. The ultimate goal is to build protocol 

“objects” that can be compared between specialist centres 

or “gold standard” guidelines. Variation and differences 

between these objects can then be quantified - and 

potentially mitigated - to allow a more standardised 

comparison of data for studies, as well as providing 

information on audit and guideline adherence. From a 

combination of event detection from high-resolution 

physiological output and association of those detected 

events with annotated treatment information, an empirical 

data-driven notion of treatment protocols across specialist 

centres can be built. Using data drawn from Traumatic 

Brain Injury (TBI) studies, the initial steps of this 

technological work – including the algorithms and 

assumptions of these two key functions – are presented. 

The results when applied to a specific TBI data-set (Piper 

et al 2010) show how the event numbers vary when key 

parameters are changed (e.g. the hold-down time) and 

how this impacts clinical decisions and trial conduct.  

Keywords:  treatment-protocol, study data, event-

detection 

1 Introduction 

Certain areas of medical research suffer from low 

statistical power – the ability to identify a statistically 

significant result – in drug and intervention trials and 

studies. There are many reasons that can contribute to 

this: the rarity of the medical conditions; the complexity 

of the organ affected; etc. Often the result of this low 

power is that trials must recruit from larger population 

distributions and necessarily involve more centres that 

specialise in the condition in question.  
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When this occurs, a large source of variation now 

includes the differences in treatment protocol between 

those specialist centres. A move to standardise the 

administration of treatment procedures has gained ground 

over recent decades, resulting in the widespread 

development and adoption of clinical guidelines (Woolf 

et al 1999). Following a clinical guideline allows 

clinicians to follow reproducible treatment procedures in 

a standard manner. Whilst providing the best available 

information on reproducible care, this standardisation in 

treatment and care also helps progress medical research 

using the bedrock of the scientific method: refine and 

improve treatment by understanding the current 

environment then vary one parameter at a time and 

monitor the effects.  

Despite this significant advance in medical treatment 

provision, it is still the case that guidelines are not always 

followed. This disparity can occur for many reasons but a 

common and important issue that has a subtle impact on 

the inputs to trial and study data, is the difference 

between reported and actual treatment or care actions. 

It is this difference that the overall goal of this work 

will attempt to capture technologically, by analysing 

retrospective study data in the Traumatic Brain Injury 

domain (TBI). TBI is a prime example of a medical 

research area with an abundance of low-power trial data. 

It is widely acknowledged that the progress in 

understanding putative drug treatments for TBI has been 

greatly hindered by this lack of useful trial data (Lu et al 

2012). The data provides little insight into effective 

treatment data because of the complex medical processes 

involved in TBI, which means that any trial must recruit 

large patient numbers, and therefore has to recruit from 

widely distributed areas. The result is an overall lack of 

confidence in treatments and interventions for TBI – most 

explicitly noted in the lack of certainty underpinning the 

recommendations made by the authoritative guidelines in 

the space, made by the Brain Trauma Foundation (BTF) 

(Bullock et al 1996). It should also be noted that these 

issues of poor trial data are certainly not exclusive to TBI 

and exist in other areas such as adrenal cancer where the 

rarity of the condition means that trials must recruit 

globally and similarly try to use novel analysis techniques 

to gain useful insight (Schteingart 2005). 

To pursue a solution to this general issue, a 

worthwhile endeavour is to analyse the data-sets of 

clinical trials and other studies that already exist and 

attempt to build patterns of treatment protocols that can 

then be re-used for future trials. The technological 

proposal outlined here is an approach for the compilation 
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and subsequent comparison of clinical workflows 

between specialist centres, clinicians and patients.  This 

approach can be broken down into the following stages: 

 

1. Detection of events from physiological ICU 

time-series data 

2. Association of those events with treatment 

information 

3. Compiling these associations into a pattern of 

treatment (a “protocol object”) that can be 

expressed in a standard manner 

4. Comparison of these protocol objects between 

centres within study data-sets (and outside those 

data-sets for validation) 

5. Quantifying the differences that are detected 

6. Mitigating or accounting for these differences so 

that the inputs to trial or studies can be more 

fairly understood. This is the critical aim of the 

work – mitigating these differences will 

potentially allow trial data to show more 

statistically significant findings. 

 

This paper describes the development and 

implementation of an algorithm to detect events and 

associate corresponding treatment from patient data (steps 

1 and 2 in the list above). 

2 Background  

2.1 Trial data 
 

Poor trial data is an issue that potentially affects all areas 

of medical research. In the specific domain of TBI, there 

is a general acknowledgement that trial data lacks the 

statistical significance to move the understanding of 

treatments forward (Lu et al 2012). Several Cochrane 

reviews (systematic reviews that analyse a collection of 

studies to draw additional insight) have been conducted 

and their findings are inconclusive (often contradicting 

the original “assumed” clinical finding, such as the use of 

barbiturates therapy in TBI (Roberts and Sydenham 

1999)). It is the case that meta-analyses are only as 

effective as the studies that they collectively review. 

Therefore, if those studies suffer from bad design or poor 

numbers and detail, then a meta-analysis won’t highlight 

anything new. The IMPACT project is an example 

initiative that attempts to solve the resulting problem 

using statistical techniques (Maas et al 2010), by 

modifying the outcome information into more detailed 

categories and specifically surveying the strictness of 

enrolment criteria. The results of this are that statistical 

efficiency is improved by 40%. However it is 

acknowledged that further validation of these results and 

an investigation of alternative methods is required. 

Differences in the baseline clinical management have 

been quoted as a primary concern in the lack of 

significant study output (Lingsma et al 2011), so attempts 

to analyse the nature of standardisation in this area is 

worth pursuing. 

To investigate differences in baseline data it is 

instructive to first understand the work conducted so far 

in standardising general treatment and other study 

protocols. This is best done by looking at the authoritative 

clinical guidelines in the domain. In TBI, these are the 

guidelines compiled and maintained by the Brain Trauma 

Foundation (BTF), which cover all types of situations 

including intensive care stays, emergency accident-scene 

care and other specific situations such as trauma sustained 

whilst in military combat (Bullock et al 1996). In 

recognition of the varying certainty of the evidence 

behind their effectiveness, the BTF guidelines provide a 

tabulation of the confidence level behind a specific 

recommendation. Three broad classifications of 

guidelines are published by the BTF (in decreasing order 

of certainty): Standards, Guidelines and Options. The 

classification of a specific guideline is based on the 

classification of the supporting evidence: level 1, 2 and 3 

treatment recommendations, supported by class 1, 2 and 3 

evidence respectively (and again in decreasing order of 

certainty of efficacy). Surveying the TBI online 

searchable guidelines, it appears to be the case that there 

are very few level 1 treatment recommendations, and 

therefore a corresponding lack of standards (Shafi et al 

2008). This appears to be especially the case for ICP 

monitoring, a particularly invasive treatment, which 

unfortunately has been identified as one of the primary 

avenues of potential progress in the treatment of TBI. 

The use of these guidelines has been demonstrated to 

be clinically effective (Faul et al 2007), but controversy 

on their utility still exists (Pascual et al 2011) and much 

work remains in providing broad agreement in their 

recommendations. A recent alternative viewpoint to 

guideline-based treatment is a move to set up research 

infrastructures that support personalized medicine 

(Saatman et al 2008). This approach attempts to embrace 

the variation in data, dealing with patient information on 

a case-by-case basis, though it is hard to see how this can 

be expanded to more generalized solutions without 

establishing what how the individual differences between 

patients arise. 

2.2 Technical background 
 

The technical details of what is proposed in this work 

require the understanding of events in the context of 

physiological monitoring. Work in this area has focused 

on the definition of a physiological event through the 

Edinburgh University Secondary Insult Grade (EUSIG) 

(Jones et al 1994). These focus on the specific details of 

what physiological values should be used for threshold 

crossing (e.g. a value of greater than 100 beats per minute 

(bpm) for heart rate) and hold-down times (e.g. greater 

than 100 bpm for 10 minutes), but do not necessarily 

cover all the clinical definitions that are accepted (Donald 

et al 2012). Hence a valuable area to investigate is to look 

at the spread of these definitions and how they are 

represented in output ICU data. Detecting such 

physiological monitoring events in the context of high-

resolution ICU data is a concept well-represented in the 

commercially available systems that can be found in 

modern ICU centres. Systems such as ICM+ (Smielewski 

et al 2005), Philips CareView (Philips 2013) and Datex 

Ohmeda (GE Healthcare 2013) are built upon algorithms 

similar to the event representations referred to above, 

some of which have the ability to actively vary threshold 

warnings in response to what the favoured clinical 
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definition is at a particular centre (Otero et al 2009). 

Therefore, the data analysed using these event definitions 

and sourced from these and similar systems, are highly 

relevant to the analysis. 

In terms of associating treatment annotations to 

detected events, causal association is a very difficult 

problem that requires much contextual information to 

unambiguously establish. High specification of the data-

set used is the ideal method (e.g. a clinician directly 

highlighting what event they are administering the 

treatment for) but it is often the case that such 

specification is not available (Enblad et al 2004). Work 

has been conducted to attempt to mathematically attach a 

treatment to a particular event, but these necessarily have 

an element of probability, and hence a confidence 

measure (Sackarelles et al 2010). Therefore, any method 

that tries to establish this association can only do so to a 

certain degree of certainty. 

In regard to the later steps outlined in section 1, there 

are many technological initiatives that have a potential 

impact on this area of evaluating data profile and clinical 

work-flow differences. Those that most closely link to the 

idea proposed (of building complex protocol objects) are 

clinical work-flow systems such as ProForma (Sutton and 

Fox 2003), which allow guidelines to be compiled and 

“run” (or enacted) in a programming environment. 

Similarly, various standards exist for describing the 

entities that would be required for electronic 

representations of clinical guidelines (Boxwala et al 

2004). The work presented in this paper uses the 

terminology of object-oriented programming 

(“instantiation”, ”attributes”, etc) but literature in this 

domain appears to have no analogy to such an approach. 

The ultimate goals of creating complex protocol objects 

also require further investigation of the best ways to 

parameterise, compare and measure the similarities of 

such objects. Initial searches in this area have highlighted 

the possibilities of using measures of semantic similarity 

(Pederson et al 2007) or using a case-based reasoning 

approach to establishing patient data profile similarity 

(Kumar et al 2009). 

3 Key technical requirements 

The first two functions detailed in the list in section 1 – 

event detection and association of treatment information 

– have their own set of specific requirements that are now 

outlined below. 

3.1 Event detection 
 

The requirements to detect events in a set of high-

resolution time-series data are 1) an understanding of the 

structure of the event that is being detected (i.e. the 

object), and 2) the specific numerical knowledge that 

populate that structure (i.e. the instantiation of an object 

for a particular domain). In the case of an event, the key 

structural characteristics are: 

 

• Event threshold for event start and finish – the 

value which acts the trigger for knowing when 

an event may have started 

• Event hold-down – the time beyond the 

threshold that indicates when an event has 

unambiguously occurred 

• Clear hold-down – the time below the threshold 

that indicates when an event has unambiguously 

finished) 

• Duration 

• Value range 

 

Figure 1 shows a schematic of a single physiological 

monitoring event, with a time-window for treatment 

overlaid (see section 3.2 for discussion of time windows). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: event definition for a given time-series 

physiological output. A threshold crossed for a 

specific period (the hold-down) indicates that an 

event has started. Clear hold-down indicates that 

the event has finished. Also shown are a treatment 

at a specific time-point and a time window 

overlaid for association of that treatment with the 

event. 

 

To use the object-oriented programming analogy, this 

event object can be thought of as a complex structure 

with various attributes. In the context of this work, it is 

very likely that the structural details of the defined object 

will never change, as this is a generally accepted 

definition of an event throughout medical literature 

(Donald et al 2012). This makes it a re-usable pattern 

ideal for use in searching physiological time-series data. 

In terms of the numerical content for the TBI domain, 

preliminary analyses suggest that when looking at key 

medical parameters – intracranial pressure (ICP) and 

cerebral perfusion pressure (CPP) – optimum values of 

20mmHg and 60mmHg respectively serve as the most 

popular thresholds for specialist neurosurgical centres 

(Jones et al 1994). 

With these key pieces of structural and numerical 

information about event definition, an analysis program 

has been built that detects this event pattern within the 

data-set and compiles related metrics, such as event 

numbers, distribution, and duration. By varying the key 

numerical input information (e.g. move event threshold 

value up or down), these metrics will change and provide 

information about the overall clinical situation. 

Though not addressed in this paper, a further 

significant refinement to this pattern-matching 

requirement is to recognise the common characteristic of 

extended periods of volatility in monitored physiological 
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output (groups of events). This is discussed further in 

section 6. 

3.2 Association of treatments with events 

The second key function is the association of treatment 

information with the events detected from the 

physiological data. A feature common to nearly all 

modern high-resolution ICU data-sets is the annotations 

of treatments administered to a patient during their stay in 

intensive care, such as a nurse administering analgesics to 

provide pain relief or a ventilator machine being attached 

to a patient to allow steady assistance of breathing. 

As shown by those two examples, the structure of a 

treatment object varies depending on the nature of the 

treatment and can be simple or complex. The simplest 

form of representing a treatment would be a timestamp, 

and a dosage of a certain amount of drug. A more 

complex object would be the attachment of the ventilator, 

which has start and end points, duration, and a range of 

values depending on the breathing assistance given. Other 

features could also be added to these lists (thereby 

increasing the complexity). 

For the purposes of the analysis described here, the 

treatment information has been reduced to the simplest 

point-like structure possible, consisting of only a 

timestamp, a value and a label. Where the treatments 

have more complex structures, the treatment information 

has been deconstructed to use the start and end points as 

the individual timestamps. The long-term view however 

is to develop the analysis to incorporate more complex 

definitions of treatments. 

Therefore, the method of association presented 

involves noting a simple treatment point in the timeline 

associated with the physiological data. The event 

detection algorithm is applied to the physiological dataset 

and for each event detected, several time-windows 

differing in length (30, 60, 90 and 120 minutes) are 

explored around the event to identify a corresponding 

treatment. The first treatment found in this time window 

is assumed to be in response to the event that the time 

window is associated with. Limitations to this approach 

include: that there may be more than one treatment falling 

within the time window, relating to that event; or 

overlapping event time-windows may confuse the 

particular association of a treatment with an event. These 

limitations are deemed to be acceptably negligible for the 

analysis run so far (estimated to be less than 1% of the 

overall event numbers), but must be incorporated as the 

work progresses. 

Association between two events and actions can be 

calculated in many ways (see section 2). In this context, 

the association being discussed is causal (we are 

attempting to establish where a treatment was applied in 

response to a particular event). If the data is well 

annotated with treatment information then an explicit 

parameter target (though not necessarily the exact event) 

will have been noted, but this level of detailed treatment 

information is not always available in medical data-sets. 

Also, the primary goal of the work is to establish 

treatment protocol independent of the input from the 

clinician themselves, so the ideal situation is where the 

treatment target is established without explicit direction 

from the clinician. However as discussed in section 2, 

association is an open (and largely unsolved) research 

question – in this context, the assumptions made to 

establish the association between treatment and events are 

as good as can be enacted in this context and time. This is 

an area of work that could be followed up as a separate 

avenue of research. 

4 Method 

This section describes the relevant clinical input used and 

the algorithms constructed to detect events and associate 

treatments.  

 

4.1 Numerical instance input 
 

As described in the previous section, for the purposes of 

detecting physiological monitoring events, the structural 

information describing such an event will remain 

unchanged. To implement the methods on real data-sets, 

the attributes listed in section 3.1 were populated with 

varying numerical information depending on the 

instantiation of the event objects. By varying the metrics 

in this way, information can be derived about what 

definitions of ICP and CPP events are most commonly 

used by clinicians. 

Following from the most clinically relevant 

definitions of ICP and CPP events (see section 2), eight 

parameter definitions are used to cover the most likely 

definitions. The key point about these parameters is that 

the threshold value and directions indicate when an event 

has started or finished (noted in italicized brackets). For 

instance, the first definition indicates that a raised ICP 

event will have considered to be started once the ICP 

goes above 10 mmHg. 

 

• Raised ICP #1 (> 10 mmHg) 

• Raised ICP #2 (> 15 mmHg) 

• Raised ICP #3 (> 20 mmHg) 

• Raised ICP #4 (> 25 mmHg) 

• Raised ICP #5 (> 30 mmHg) 

• Lowered CPP #1 (< 50 mmHg) 

• Lowered CPP #2 (< 60 mmHg) 

• Lowered CPP #3 (< 70 mmHg) 

 

The other required instance data points are the hold-down 

and clear hold-down times of an event. These represent 

the time period after a threshold-crossing where the 

output continues to remain above that threshold and 

therefore an event can be considered to have 

unambiguously occurred. The same method (with 

opposite polarity) applies at the end of an event – known 

as the clear hold-down time – to indicate when an event 

has unambiguously ended. Again, this is an attribute that 

remains structurally constant, but the numerical value of 

which can be (and is) varied according to different 

clinical specialists. In a similar fashion to the threshold 

value definitions – beginning with the most clinically 

relevant definitions – four values are applied representing 

the differences in hold-down and clear hold-down times. 
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These are 5 mins, 10 mins, 15 mins and 20 mins. 

Therefore, there are a total of 32 (8 * 4) ways that a 

physiological monitoring event can be detected in a data-

set.  

The last attribute requiring numerical variation is the 

time-window that provides the period over which the 

detected event can be associated with an annotated 

treatment. 

The basis for the size of the time-window has been the 

specified reaction times for clinicians in an ICU setting 

(i.e. administering a drug in response to an event can be 

reasonably expected to be around 30 minutes). However, 

a large uncertainty occurs in this variable as the actual 

administration time can vary to a great degree from the 

administration reporting time – a doctor saving a patient’s 

life was too busy saving their life, rather than reporting 

and annotating the treatment). Therefore, the time-

window post-event can be varied anywhere from 30 

minutes to 2 hours, a value established by surveying the 

clinicians that contributed to the data-set (Enblad et al 

2004). Extending the time-window before the event is a 

possibility considered due to reporting discrepancies, but 

the same survey established that pre-event administration 

reporting was unlikely. Therefore the four time-window 

definitions (starting at the point of event start) are: 30 

mins, 60 mins, 90 mins and 120 mins. With the four time-

windows, the total number of analyses for every pass of 

the data becomes 128 (32 * 4). 

The results of this association approach are simple 

number counts of the treatments that fall within those 

time windows. Other metrics that can be compiled using 

this approach include measuring the time to an associated 

treatment. The time of all the treatments from their 

associated event start are listed, and the mean and median 

values are calculated. Also the annotated treatment types 

are noted (“analgesia”, “sedation”, etc) so that an 

understanding of what treatments are administered and in 

which centres can be built into a definitive list. The 

treatment target is noted to match the treatment to the 

correct physiological event (i.e. only a treatment with a 

target of “CPP” is counted in response to a CPP 

physiological event). 

It is noted here that in the implementation of this work 

(using the Brain-IT data-set – see introduction to section 

5), the criteria are run against a total of 262 patients. The 

maximum number of analysis runs therefore becomes 

33536 (128 * 262). It is beyond the scope of this current 

paper, but this points to further work required in the 

optimisation of the analysis based on growing data-set 

patient numbers. 

4.2 Algorithms 
 

The algorithms that drive this method are detailed in this 

sub-section. The output of the full process requires 

careful analysis as the structure of the association data is 

listed per patient, however the number count totals will be 

compiled as the code traverses the 262 patients (e.g. we 

want to know the total number of events that have 

associated treatments for ICP > 20 mmHg, with a hold-

down of 10 minutes, within a time-window of 60 

minutes. This needs to be totalled up from each patient, 

then distributed throughout the final totals). 

4.2.1 Event-detection algorithm 
 

To detect events from a physiological output stream, the 

following algorithm is used. 

 

1) Compile the list of parameter objects ahead of 

processing. This is a list of the eight different 

definitions of ICP and CPP. A parameter in this 

context represents a physiological data stream – the 

parameter referring to a physical measurement of the 

patient’s brain. A representative parameter object is 

shown in figure 2. 

 

 

 

 

 

 

Figure 2: ICU parameter object with the values 

required to define an event within the data stream 

(example values in brackets) 

 

This list of parameter objects constitutes part of the 

minimum required domain knowledge to allow event 

detection in a physiological data stream to occur. This can 

be read in from any persistent data store, such as a 

database, a properties file or an XML ontology file. 

 

2) Querying the patient database: for each patient: 

• Read the patient data into an “n x n” vector of 

vectors (i.e. a matrix).  

• Each line in the object is a time-point (as the 

sampling rate is minute by minute, therefore 

each line increments by a minute) and each 

column is a particular parameter feed 

• The header line is used to identify the column 

index for the parameter that is of particular 

interest (ICPm, CPPm, etc) 

 

3) For each parameter in the list compiled in step (1): 

• Retrieve all of the parameter information for that 

indexed parameter object (name, unit, threshold, 

etc). 

• For each hold-down definition: 

o Read in the line, timestamp and value (from 

step 2) and check the time between this 

timestamp and the last 

� if (gap > 1min) 

• Reset all event metrics and jump to end 

of the entire checking loop 

� if (event is in progress) 

• Is value still above threshold? 

• if (no) 

o  Is the clear condition met? 

o if (yes) 
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� if (potentialClear option is false) 

• Set the potentialClear variable 

to true 

• Increment the clear hold-down 

count 

� if (clear hold-down count equals 

the hold-down definition) 

• Note the event end time and 

add to event object 

� Add the event to the list of 

events 

� Increment the event index 

� Add value and timestamp to 

the event list 

� if (event is not in progress) 

• Is value still below threshold? 

• if (no) 

� Is the event condition met? 

• if (yes) 

o if (potentialEvent option is 

false) 

� Set potentialEvent to true 

� Set event hold-down count 

to zero 

o else 

� Increment the event hold-

down count 

• if (event hold-down count equals 

hold-down definition) 

� Note the event start time and 

add to event object 

• if (event condition NOT met) 

o Reset potentialEvent to false 

o Reset event hold-down count 

 

Using this algorithm, the events are extracted for all 32 

definitions. 

4.2.2 Event/treatment association algorithm 
For each patient an association object is instantiated, 

shown in figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: a patient association object containing 

identifiers, a list of associated treatment times, 

treatment values (e.g. sedation etc), events and 

association numbers. A tree-map structure is used 

to store the indexed information so that the data 

can be retrieved in order when traversed for 

output. 

 

To associate the events and treatments for each patient, 

all treatment information is retrieved, then for each 

parameter (defined in step (1) of event detection), for 

each hold-down definition, and for each time-window 

definition, the following association algorithm is run. 

 

For each event: 

• Get the event start time 

• Define a time-window instance that begins at the 

event start and lasts for e.g. 30 minutes 

• For each treatment: 

o Get the treatment time 

o Get the treatment target, description and 

value 

o Isolate all treatment instances that have the 

tags “cpp”, “icp” or “hypotension” anywhere 

in the three string values 

o Isolate all the treatments that are end tags 

o If the treatment time is within the time-

window bounds: 

� If the treatment is not an end tag and the 

event does not already have an 

associated treatment: 

• Add the treatment to list of 

treatments associated with this 

event 

• Set the Boolean flag indicating the 

event now has an associated 

treatment  

• Get the time to this treatment 

• Add the list of associated treatments to the time-

window object for this event 

• If the associated treatment list is greater than 

zero: 

o Increment the associated event counter 

• Add all time and treatment data gathered to the 

patient’s association data object and return this 

to the calling function. 

 

The patient’s association data is then used to output the 

details to a text file and illustrative charts. As the 

association data is per-patient, the information must still 

be traversed for all summary counts and centre-specific 

information to be output. 

These algorithms and processes form the core of the 

key functions required by the work so far. In the next 

section, the results achieved when applied to the real-

world Brain-IT traumatic brain injury data-set are shown. 

5 Results 
 

The Brain-IT core data-set is a repository of 262 patients 

drawn from specialist neurological centres around 

Europe, collected with a view to enabling follow-on post-

hoc analyses. One of the most comprehensive collections 

of high resolution TBI data with treatment and surgery 
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annotations to date, it forms a detailed retrospective view 

of physiological and treatment data that is well suited to 

analyses such as the one described in this paper. For more 

information about the specific composition of this data-

set see Piper et al 2010. 

Although the BrainIT dataset contains a high number 

of neurological ICU parameters (e.g. surgery, 

neurological response, demographics, etc) the 

work described in this paper focuses on the high-

resolution physiological data and the annotated 

treatment data. 

5.1 Data coverage 

Preparatory to the analysis, the coverage of 

physiological parameters in the database is 

summarised in table 1. Coverage is defined by 

dividing the number of data points that are not 

“null” or blank by the overall number of data 

points for that physiological stream, and 

calculating the resulting percentage. Parameters 

with coverage less than 10% are omitted as 

contributing negligible information. 

 

ICU 

Parameter 

Coverage 

RR 26% 

HRT 87% 

BPs 84% 

BPd 84% 

BPm 96% 

ICPm 84% 

CVPm 20% 

CPP 82% 

TC 70% 

SaO2 82% 

SaO2pls 23% 

ETCO2 19% 

Table 1: physiological parameter 

coverage in the Brain-IT database  

By inspecting the coverage for the data 

points used, a level of initial confidence can 

be gained to see how well represented the 

data-points are. If the parameter stream is 

well covered, it is a reasonable expectation 

that the event detection algorithm will 

produce useful information. 

From the results shown in table 1, we 

can see that the blood pressure measures are 

all at least above 80%, including those of 

particular interest: mean intra-cranial 

pressure (ICPm) and cerebral perfusion pressure (CPP).  

5.2 Event detection 
 

The event detection algorithm is run across the 32 

definitions referred to in section 4.1. Figure 4 shows the 

relevant results for ICP. 

The bar chart in figure 4 shows the total counts of 

events as detected by the algorithm outlined in section 4. 

The graph shows 20 columns (the five ICP parameter 

definitions multiplied by the four hold-down values). The 

interpretation of the cyclical shape for every four bars 

makes intuitive sense: as the hold-down value for that 

particular definition increases, the number of events 

captured goes down (e.g. an event with a hold-down 

value of 20 minutes will be less common that one with 5 

minutes hold-down). However, slightly less intuitively, 

the overall numbers of these four-bar cycles will vary 

according to definition.  

Figure 4: event number distribution for ICP. 

 

From figure 4 we can see that the most populous number 

of events in ICP come from definition #2 (a crossing 

threshold of > 15 mmHg). This represents a minima 

inflection point that will inform the next steps of 

treatment association. It is believed that definition #3 (< 

70 mmHg) of CPP also represents this inflection point, 

but analysis time ran out before the writing of this 

publication and must be investigated further. 

 

 

 

 

 

Figure 5: number of ICP events that have 

treatment associations when a time window of 30 

minutes is applied.  

5.3 Treatment association 
 

The overall number of treatments annotated in the data-

set is 19175. The association of a treatment with an event 

provides a modifying parameter to the overall event 

number counts discussed in section 5.2. The inference 
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that can be made is that general clinical definitions of 

events dictate that an ICP event occurs when a patient’s 

ICP crosses a threshold of 20 mmHg. The effects of this 

modification can be most clearly seen in the bar chart that 

represents the number of events with an associated 

treatment per definition per hold-down value, with a 

time-window of 30 minutes (time window #1), shown in 

figure 5. 

The graph shape in figure 5 is evidently different 

from the event count numbers in isolation in figure 4. It is 

now definition #3 (> 20 mmHg) of ICP with hold-down 

of 5 minutes that appears to be most numerous, which 

would suggest that this definition input is triggering a 

larger number of clinical responses in terms of 

administrated treatments. Again, the intuitive physical 

interpretation of these graphs can be seen in the shape of 

the distribution as the time-window increases towards an 

asymptote of infinite time. According to the association 

algorithm presented in section 4, the number of events 

with associations will approach the total as the time-

window approaches infinity (with a sufficiently large 

time-window, every event will have an associated 

treatment). Figure 6 (at the end of paper) demonstrates 

this progression of shape of the ICP events with treatment 

associations as they move through the other three time-

window definitions (gradually definition #2 predominates 

again). 

5.4 Treatment composition 
 

For every combination of parameter definition, hold-

down and association time-window, a composition of the 

actual treatments included in the list can be constructed. It 

is this information that will eventually inform the 

construction of a predominating treatment protocol. 

Figure 7 shows the treatment distribution for ICP 

definition #3 (> 20 mmHg) with a hold-down value of 5 

minutes and a time-window for association of 30 minutes 

(the predominating EUSIG definition of an ICP event and 

“most reasonable” association time – see section 2). 

The top three treatments applied in this instance are 

paralysis (18.2%), sedation (17.2%) and osmotic therapy 

(16.2%), from an overall number of 582 events with 

treatment associations (7.7% of the total event number for 

this ICP definition). 

 

Figure 7: treatment distribution for ICP definition 

#3 (> 20 mmHg) with a hold-down value of 5 

minutes and a time-window of association of 30 

minutes. 

5.5 Centre-specific information 
 

Using the unique centre reference identifier, event counts, 

associated treatment counts and treatment composition 

and times can be applied for each individual centre. For 

the purposes of discussing the technological ability to 

derive a centre-specific protocol, the results for the centre 

in Uppsala, Sweden are as follows: 

The top three treatments are paralysis (32.9%), 

analgesia (13.4%) and a joint third place (11.4%) for 

ventilation, volume expansion and sedation, from an 

overall number of 373 events with treatment associations 

(3.1% of the total event numbers for this centre and ICP 

definition). 

Combined with the metrics for treatment times 

(measured as well but not presented in this paper), a 

profile can be built up for a specific centre detailing 

frequency, response time, and how this profile compares 

to the guideline-mandated responses or specific study 

protocols.   

6 Discussion and development 
 

The results presented in section 5 describe the first steps 

in drawing physiological event and treatment information 

out of high resolution ICU data and using this to form an 

empirical treatment protocol. In this example we have 

been able to extract from the results a predominantly 

accepted clinical definition of an ICP event (> 20 mmHg, 

5 minute hold-down). 

There are several limitations in this analysis. One is 

that causality and association of two objects is a difficult 

process to accomplish. A major assumption has been the 

one-to-one relationship between an event and an 

annotated treatment. An estimated measurement of many-

to-one (treatment to event) instances has been made and 

seems to be negligible but requires more exhaustive 

investigation. 

Other limitations are that the structural information 

used to define a physiological monitoring event object 

may require modification. The structural description of a 

single event is well described in this paper, however as 

mentioned previously, a further extension of this 

definition, is to describe multiple events as a more 

complex structure. A collection of events within a 

specified period, with a specified gap between them, 

would indicate an “episode”, which would have further 

characteristics likely to be different in nature to an 

isolated event (for instance, does the notion of a hold-

down time still apply to a collection of events?) Other 

types of events not captured in this work – such as very 

long-term “events” (e.g. a patient who has ICP just over 

the threshold for many days) or refractory events (those 

that end in patient death) – need to be considered. It 

should also be noted that the data-set used has been 

compiled by specialist centres that are known to focus on 

ICP and CPP measurements, so the detail in these 

readings may be unusually high. 

Despite these limitations the initial results do show 

promise: - an accepted clinical definition has appeared 
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and a usable treatment pattern has been derived, which, 

after further validation, can now be expressed in a work-

flow language to progress this research. 

The next steps in validation are to run the same 

processes against different data-sets. There are several 

that have been identified as potentially useful in this 

space. First is the MIMIC II data-set at MIT (Saeed, 

Singh and Sanyal 2002). This is a publicly accessible 

collection of high-resolution ICU data. It is ideal in that it 

captures similar data-points to that of the Brain-IT dataset 

but is not specifically targeted to traumatic brain injury. If 

similar findings in ICP and CPP can be found then this 

would be a highly significant validation of the event 

detection and treatment association processes.  

Second is the ICM+ (Smielewski et al 2005) data-

stream based at the neuro-trauma unit at the Alfred 

Hospital in Melbourne, Australia. This is very high 

resolution data (waveform) that is targeted towards 

traumatic brain injury. The challenge, and independent 

validation, here would be condensing the information 

down to the same sampling rate (minute-by-minute) and 

understand if the processes produce the same result.  

The third major data-set sourced to date that would be 

applicable, is the next generation of the Brain-IT data: the 

Avert-IT data repository (Stell et al 2009) with data 

capture tools (Philips CareView and Rhapsody products) 

which are in place at the Southern General Hospital in 

Glasgow, UK. 

The question of data quality should also be addressed 

here – the treatment annotations of the Brain-IT dataset 

have been noted to not have a high degree of (temporal) 

accuracy. This was largely due to the manual methods of 

treatment information input that were required. As this is 

such an important issue in establishing the validity of 

association, these other data-sets have been specifically 

inspected to make sure the accuracy of the treatment 

time-points are as high as possible. Examples of this 

include the connection of intubation pumps to the bedside 

monitoring system (allowing the immediate recording of 

an automatic or manual drug administration) and touch-

sensitive detection of hypothermic induction blankets, 

connected to the Philips Rhapsody system. 

As patient information capture technology improves, 

it is assumed to be the case that the data quality and 

accuracy improves commensurately. However, another 

possible avenue to this work is to attempt to infer where a 

treatment has been administered by analysing the 

physiological output in a way opposite to the methods 

described in this paper. The potential value of “repairing” 

a patchy data-set such as this could be very high indeed, 

however the number of variables and uncertainty in this 

procedure would also be high. Either way, these two 

parallel strands (better capture technology and data 

improvement algorithms) will likely result in the same 

outcome: high quality data that provides more useful 

insight on the state of a patient’s physiology, which can 

contribute to the overall goal of improving study data. 

The numbers of associated events shown in section 5 are 

of low representation (7.7% overall and 3.1% for the 

specific centre), so all work to improve this would be 

wise to investigate and pursue. 

If these validation procedures give rise to results 

similar to those described in this paper, it will be a 

significantly general technological solution to extracting 

treatment protocol information from widely available 

ICU data. However, in pursuit of the more ambitious 

goals of this overall work, the next step is to translate the 

treatment protocols derived into a form of abstract 

expression (referred to in the introduction as an object). A 

variety of possibilities exist in this space – for instance 

ProForma (Sutton and Fox 2003) is a clinical work-flow 

project that expresses guidelines as actions, conditions 

and states. But the primary characteristics that must be 

captured are a more detailed exploration of the nature of 

the treatment and event objects, and their individual and 

aggregate relationships. The key relationship measures 

will be the medical impact of the treatment, the temporal 

distance and causal characteristics between the treatment 

and event. In compiling a more complex protocol object 

that encapsulates this relationship, a key mathematical 

requirement will be the ability to parameterise such an 

object and allow it to be compared against others of a 

similar nature. 

The ultimate goal of the work remains to analyse the 

data variation itself and find a way to compare this 

against other sets of data (either for trials and studies or 

drawn from general ICU data collection). The steps 

described in this paper are a successful attempt to draw 

out the initial information but many more challenges lie 

ahead to make this approach to standardising trial data a 

reality. 
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Figure 6 (left): the three other time-window 

definitions for ICP event and treatment 

association. As the time-window increases 

(vertically downwards), the distribution shape 

reverts back to that of the event count without 

treatment association (note the transposition of 

the two largest columns in particular). These 

provide the transition from figure 4 to figure 5.  
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