
CLIP, a Command Line InterPreter for a subset of C++

Harri Luoma Essi Lahtinen Hannu-Matti Järvinen

Tampere University of Technology
Institute of Software Systems,

Tampere, Finland.
harri.luoma@tut.fi, essi.lahtinen@tut.fi, hannu-matti.jarvinen@tut.fi

Abstract

C++ is not the best choice for a first programming
language, but if it is used, the learning circumstances
need to be as easy as possible. We have developed
a pedagogically designed interpreter for this purpose.
Our hypothesis is that an interpreter is easier than a
compiler for a novice programmer to use. We do not
want students to use language properties they do not
yet fully understand, so our approach is imperative-
first. In addition, when using an interpreter, learning
concepts such as libraries can be postponed until later
in the course.

C++ is a complex language and most of its lan-
guage features are not needed by a novice program-
mer. Therefore we have simplified the language to a
subset of C++ that we call C--. For instance, classes
have been omitted. We have also put a lot of ef-
fort into producing clear, informative error messages,
something that is made possible by of the simpler
programming language.

This article introduces some other C/C++ inter-
preters, their evaluation, and the description of our
interpreter called CLIP. So far CLIP has not been
used by students, so its evaluation is left as future
work.

Keywords: interpreter, C++, novice programmers,
education

1 Introduction

To make the start of learning programming as easy
as possible for our students, we have developed a tai-
lored interpreter to address the needs of novice pro-
grammers. For external reasons, we have to use C++
as the programming language for our first program-
ming course. However, to keep the concepts needed
in the first programs as simple as possible, our teach-
ing approach is imperative-first. Since C++ is such
a complex programming language, we have chosen a
subset of C++ to use in the beginning.

Our hypothesis is that using an interpreter is sim-
pler than using a compiler. One of the reasons for this
is that the feedback is received faster from an inter-
preter than from a compiler. When using a compiler,
there is a lot of overhead in writing the first complete
program. In C++, the student has to write include di-
rectives, using statements and a main function with-
out knowing what they actually do. These are often
experienced as mystical phrases or ‘spells’ since their

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Seventh Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2007), Koli National
Park, Finland, November 15-18, 2007. Conferences in Research
and Practice in Information Technology, Vol. 88. Raymond
Lister and Simon, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

meaning is not yet understood. Using a compiler also
requires the novice students to learn how to edit the
program, save it, compile it, and, finally, run it. All
these form a set of obstacles to the comprehension of
the whole programming process. The use of an inter-
preter can help postpone the learning of these difficult
phases.

In addition to eliminating the need for these
‘spells’, excluding the complicated language features,
and simplifying the programming process, the pur-
pose of our interpreter is to be able to give clear error
messages in the students’ native language.

In this article, we introduce the CLIP C-- inter-
preter. We also present some reasons why the tool
has been implemented and explain how it is going to
be used. The article is organized as follows: In Sec-
tion 2 we present the background of CLIP. Section
3 discusses novice programmer behaviour in general
and Section 4 presents some other C++ interpreters
for comparison. Section 5 describes CLIP and its pro-
gramming language. Section 6 contains some evalua-
tion, and Section 7 the conclusions.

2 Background

In teaching programming, the intention is to teach
not just a programming language and its concepts but
problem solving and programming knowledge in gen-
eral. However, a real programming language is needed
for practical training. Some teachers have tried a
syntax-free approach to programming (Fincher 1999)
where instead of a programming language, some kind
of formal structures are used to present programs.
This has not been well received, mainly because of
the lack of motivation of students. They feel that
they are not learning ‘real programming’ if no real-
world programming language is used in teaching.

To address this problem, there are many languages
designed especially for teaching novice programmers.
Their approaches vary widely (Kelleher & Pausch
2005). One of the approaches to ease learning is to
simplify an existing language, which normally leads
to a separate language for teaching purposes.

Unfortunately, the teacher is often not free to base
the choice of the first programming language on ped-
agogical criteria alone. For instance, the choice might
be influenced by the university or the requirements of
industry. Thus the teachers’ duty is often to make it
as easy as possible for the students to learn the cho-
sen language. Since in our context the pressure to use
C++ is quite high, we have chosen to simplify C++
to get the benefits of a simple language.

3 Behaviour of novice programmers

Winslow (1996) has listed differences between expert
and novice programmers, one of which is that the



novices do not have routines for the lower-level pro-
gramming activities the same way the experts do.
Thus, in the beginning it is essential to make the use
of the programming tools as simple as possible, leav-
ing the novice with more time and energy for learning
the higher-level activities. This is the main reason
why we decided to use an interpreter instead of a
compiler.

Jadud (2006) has followed the edit-compile-cycle
of novice programmers. He reports that students of-
ten get stuck with an error reported by the compiler
and have problems in proceeding further. Surpris-
ingly, a novice programmer can take hours to correct
a simple syntax error that would require a couple of
seconds from an experienced programmer. Perkins
et al. (1989) report similar findings. They identified
groups of novice programmers that behave in differ-
ent ways when using a compiler: the stoppers, the
movers, and the tinkerers. The stoppers tend to give
up when they face a problematic situation, while the
movers try to explore the problem and often finally
solve it. The tinkerers can also be called the fast
movers since their strategy is to try all different pos-
sibilities. Unfortunately, they choose the changes in a
random way, so this kind of learning is not effective.
Jadud’s study also reveals that tinkering is a common
strategy among novice programmers.

To prevent students from tinkering or stopping,
and generally wasting their time with practical prob-
lems, the compiler’s error messages should be made
as informative and clear as possible. If the error mes-
sages directly give the first hint on how to proceed in
correcting the program, the student can solve more
problems without help, and hence get more confidence
in his or her programming skills. This has been our
goal when implementing CLIP.

4 Existing C/C++ interpreters

Before implementing CLIP we familiarized ourselves
with some other C/C++ interpreters. Kölling (1999)
discusses object-oriented programming languages and
environments and gives a set of requirements for
them. Most of these requirements also apply to im-
perative programming environments: ease of use, in-
tegrated tools, support for code reuse, learning sup-
port, group support, and availability. We have used
these requirements to evaluate the following inter-
preters.

Ch (2007) is a C/C++ interpreter that supports a
superset of C with C++ classes. It extends the
C language for scripting, numerical computing
and 2D/3D plotting. It has a graphical interface
called ChSciTE, where the code can be edited.
We did not evaluate the commercial version, but
found the free version unreliable.

CINT (2007) is a command line C/C++ inter-
preter aimed at processing C/C++ scripts. The
language interpreted by CINT is a hybrid of C
and C++. The syntax is less strict than C++,
which means that not everything that runs on
CINT can be compiled with a normal C++ com-
piler. There are also some differences in template
libraries. Some C++ code may not work with it
or may even be run in a wrong way. The in-
terpreter is not very intuitive to use and is not
meant for novice programmers or programming
education.

UnderC (2007) is a fast C/C++ interpreter and is
intended for programming education. It has a
graphical editor, and it is working pretty well.
There were some issues left in the GUI, and it

has been in beta phase since 2003, so we do not
expect it to be developed further.

IfNCP (Sankupellay & Subramanian 2005) is an in-
terpreter for novice C programmers. It is not
available free of cost so we did not have an op-
portunity to test it. It is a web-based interpreter
with an interactive online learning package but it
only covers five basic C programming concepts.
C++ is not supported.

Unfortunately, none of these interpreters meets
our requirements or the requirements set by Kölling
(1999). In brief, Ch is not reliable enough, CINT is
not simple to use, and UnderC and IfNCP do not
meet the availability requirement.

We also want to be able to add graphical features
to our interpreter. It would be quite difficult to in-
tegrate a visualization module with these existing in-
terpreters, so that is another reason for implementing
our own interpreter.

5 CLIP

The main ideas of CLIP are to support interpreter-
based teaching and to give students better and clearer
error messages in their native language. In addition
to these, it should be possible to integrate a visualiza-
tion module with the interpreter. This requirement
has its roots in our visualization tool VIP (Virtanen
et al. 2005), since we are not willing to maintain two
separate interpreters.

C--, as we call the subset of C++ interpreted by
CLIP, includes most of the basic structures of C++.
We have selected the imperative paradigm for our el-
ementary courses, which is a common approach when
teaching C++ as the first programming language.
Hence we have omitted some advanced features such
as classes, namespaces, and exceptions. In addition,
constructs that most often cause careless mistakes
have been removed, or the interpreter deals with them
more strictly.

This way, some of the problems of C++ can be
diminished, if not avoided. We are aware that our
changes do not make C-- an optimal language for
teaching, but they do ease the task of the novice
learner.

CLIP can be used in two modes, an interactive
mode or a single-file mode. In the interactive mode,
users write commands directly for the interpreter as
they would be written inside the main function. The
user can still define structs and functions normally. In
the single-file mode, the user can give CLIP a single
file, which is then interpreted and executed like any
script. The command line interface of CLIP can be
seen in Figure 1.

5.1 The supported properties

The features of C-- were dictated mainly by the re-
quirements of the first programming course where we
intend to use CLIP. Some features were left out be-
cause they were considered harmful for students.

The main features that are missing are following:

• goto statement

• classes (except cin, cout, string, vector)

• file streams and string streams

• bit operators (to prevent confusion between &
and &&)

• exceptions

• namespaces



Figure 1: CLIP user interface

• templates (except vector)

• overloading of function names.

CLIP adds these features compared to a standard
compiler:

• When an error is found from the code, the line
that caused the error is shown.

• Error messages are localizable to student’s native
language.

• Contents of the symbol table are shown in run-
time.

• We introduce constraints, which mean that the
teacher can turn some features on or off depend-
ing on the topic to be taught.

• There are commands to save and load functions
to and from external files.

5.2 Errors, warnings and other messages

There are eight different kinds of message: syntax,
lexical, semantic, runtime, other errors, warnings,
info messages, and constraints.

When an error occurs, it is shown instantly to the
user, with no attempt to read the source code further.
Further reading is usually needless because the later
errors are often caused by the first error and do not
clarify the situation at all. In fact, they may confuse
the student and lengthen the error message output in
vain. This approach has been proved to be viable in
BlueJ (Kölling et al. 1999).

The constraints are a way to disable some C++
features from the interpreter. When disabled, the use
of a feature will only produce an error message. At
preset the following constraints can be enabled:

• switch statement

• pointers

• altering the for loop variable inside the for loop

• subroutines that have both non-const parameters
and a return value (This constraint forces stu-
dents to make a clear choice between a function
and a procedure.)

• global variables

• arrays and vectors as members of a struct (This
makes students use arrays of structs instead of a
single struct with arrays in it.)

With the constraints, teacher can, for example, dis-
able pointers when references are taught so that stu-
dents cannot use pointers by mistake.

The interpreter also supports the following run-
time error messages:

• divide by zero

• too deep recursion

• infinite loop

• reference through a null pointer

• index or pointer out of bounds

• use of uninitialized variables.
The output of CLIP is automatically split to fit

the lines of the console. Individual words will not be
split over multiple lines unless it is unavoidable.

5.3 CLIP compared to a normal compiler

The error messages given by a regular compiler, such
as g++, are sometimes next to impossible to under-
stand. This is often a consequence of the use of tem-
plate libraries, but a missing semicolon in a vulnera-
ble place can also cause very confusing error messages.
The language supported by CLIP is much more con-
stricted than C++, which makes it easier to check the
syntax and to form clearer error messages.

In the next example we compare CLIP and the
GNU C++ compiler (g++). We gave this piece of
code to both of them:
#include <iostream>
#include <vector>
using namespace std;
int main() {

vector<int> i;
cout << i;
return EXIT_SUCCESS;

}

The g++ compiler gave an error that was about
80 lines long and started with the following lines:
example.cc: In function ’int main()’:
example.cc:6: error: no match for ’operator<<’ in
’std::cout << i’
/share/gcc/gcc-4.1.1/lib/gcc/i686-pc-linux-gnu/4.1.1/
../../../../include/c++/4.1.1/bits/ ostream.tcc:67:
note: candidates are: std::basic_ostream<_CharT,
_Traits>& std::basic_ostream<_CharT, _Traits>::
operator<<(std::basic_ostream <_CharT, _Traits>& (*)
(std::basic_ostream<_CharT, _Traits>&))
[with _CharT = char, _Traits = std::char_traits<char>]

CLIP gave the following error
Semantic error on line 6: Can’t print type
"vector of int" to cout.

cout << i;
^

Clearly the error message of CLIP is easier for a
novice programmer to understand.

In addition, when using CLIP, students would only
need to write the following two lines to test the ex-
ample code:

vector<int> i;
cout << i;

No struggling with namespaces or the main function
is needed.



6 Evaluation of the tool

Since the interpreters discussed in Section 4 did not
meet our requirements, we had to write an interpreter
of our own. Hence, it is not a surprise that CLIP
clearly meets our requirements. Unfortunately, we
have not yet been able to gather student feedback on
it. Tentative use by some faculty members has given
encouraging feedback, so we are quite optimistic.

As mentioned above, Kölling (1999) lists prop-
erties of programming environments for the object-
oriented approach. Of the applicable properties for
imperative programming, CLIP does not provide
group support at all, since in the first programming
course each student should learn all the basic features
individually. We believe that the rest of the properties
have been met at least at the basic level, but without
actual student feedback they cannot be evaluated.

However, we want to point out that in our opinion,
CLIP gives good learning support. The main prop-
erties to support this have already been given: clear
and informative error messages and the fast response
of an interpreter. Furthermore, CLIP logs all the code
the students input, so we get some data to examine.
This data is intended to be used for improving the
tool and the lectures. It will not be used for assessing
the students.

Although we already think that CLIP is useful for
our current course, utilizing its full potential requires
rewriting the lecture material. The basic idea of the
new material is that there will be no segment of pro-
gram code in the material if the student does not
understand why. We expect to have the first version
of the new lecture material available for the academic
year 2008-2009.

7 Conclusions

Selection of the first programming language for teach-
ing should be done mostly on pedagogical basis. How-
ever, when facing cruel reality, this cannot always be
the case. Our compromise has been to define C--, a
limited subset of C++, and to offer a friendly inter-
preter, CLIP.

In this stage it is hard to tell how successful CLIP
will be. With the new lecture material and integra-
tion of a visualization module, we expect to get a
system in which the learner only uses the properties
he or she knows, and in which the visualization will
help the students not only to understand the program
behaviour but also to debug their code.

8 Acknowledgements

The Federation of Finnish Technology Industries
100th anniversary and Nokia Foundation have partly
funded this work.

References

Ch (2007). A C/C++ interpreter,
http://www.softintegration.com/ (referenced
18 October 2007).

CINT (2007). A C/C++ interpreter,
http://root.cern.ch/twiki/bin/view/ROOT/CINT
(referenced 18 October 2007).

Fincher, S. (1999). What are we doing when we teach
programming?, in ‘Proc. of the 29th ASEE/IEEE
Frontiers in Education Conference’, pp. 12a4–1–
12a4–5.

Jadud, M. C. (2006). Methods and tools for explor-
ing novice compilation behaviour, in ‘ICER ’06:
Proceedings of the 2006 international workshop on
Computing education research’, ACM, New York,
NY, USA, pp. 73–84.

Kelleher, C. & Pausch, R. (2005). ‘Lowering the barri-
ers to programming: A taxonomy of programming
environments and languages for novice program-
mers’, ACM Comput. Surv. 37(2), 83–137.

Kölling, M. (1999). ‘The problem of teaching object-
oriented programming, part ii: Environments’,
Journal of Object-Oriented Programming 11(9), 6–
12.

Kölling, M., Quig, B., Patterson, A. & Rosenberg,
J. (1999). ‘The BlueJ system and its pedagogy’,
Journal of Computer Science Education, Special is-
sue on Learning and Teaching Object Technology
11(4), 249–268.

Perkins, D. N., Hancock, C., Hobbs, R., Martin,
F. & Simmons, R. (1989). Conditions of learn-
ing in novice programmers, in ‘Elliot Soloway and
James C. Spohrer, Studying the Novice Program-
mer’, pp. 261–279.

Sankupellay, M. & Subramanian, P. (2005). ‘Teaching
C programming with the aid of an interpreter - on-
line interpreter for novice C programmer (IfNCP)’,
Jurnal Teknologi 11, 33–44.

UnderC (2007). A C/C++ interpreter,
http://home.mweb.co.za/sd/sdonovan/underc.html
(referenced 18 October 2007).

Virtanen, A. T., Lahtinen, E. & Järvinen, H.-M.
(2005). ‘VIP, a visual interpreter for learning in-
troductory programming with C++’, Proceedings
of The Fifth Koli Calling Conference on Computer
Science Education pp. 125–130.

Winslow, L. E. (1996). ‘Programming pedagogy – a
psychological overview’, SIGCSE Bulletin 28(3).


