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Abstract 
Integration of large databases by expert teams is only a 
small part of the data integration activities that take place. 
Users without data integration expertise very often gather, 
organize, reconcile, and use diverse information as a 
normal part of their jobs. Often, they do this by copying 
data into a text file or spreadsheet. In doing so, they make 
significant data integration decisions. They often express 
a mental model, or schema, over their data. They organize 
data to describe real-world entities. They reconcile 
redundancy and disagreements in their data. Such 
integration is both ubiquitous and not generally supported 
by experts and tools available for large integration efforts. 
We seek to capture and make explicit the user’s mental 
model, and the attribute and entity correspondences  they 
express, during these activities. This paper contributes the 
definition of a set of functions that support this type of 
data integration, a conceptual model to support these 
functions, and an associated simple tool that supports data 
integration by end-users in an entity-centric way, with an 
extensible schema, that makes the user’s job easier. 

Keywords:  information integration, entity resolution, data 
correspondence, superimposed information. 

1 Introduction 
We often consider data integration to be the province of 
the DBA and the integration expert, aided by specialized 
tools. However, data integration is often performed as 
part of everyday user tasks. End users gather, organize, 
reconcile, and use information from diverse sources all 
the time. They gather information from office documents, 
the Web, e-mail messages, and other places in order to 
inform, to influence, and to make decisions. Sometimes 
users gather information using hardcopy. Increasingly, 
users take advantage of computers to do this work, often 
cutting and pasting bits of information into a spreadsheet 
or text file.. 
 
The information gathered, and the semantics given it, are 
task-dependent. However, our experience shows that 
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users often gather information in much the same way. 
They collect information about real-world objects or 
concepts: that is, information gathering tends to be entity-
centric. They label information to keep track of its 
mean ing (for the most part users know both the meaning 
of each piece of information and the entity which it 
describes). They tend to organize gathered data in simple, 
tabular form. They frequently make on-the-fly decisions 
about the data: they combine what initially appear to be 
disparate real-world objects or concepts into single 
objects; they combine what initially appear to be different 
characteristics into single attributes; and they resolve 
conflicting items of information.  
 
Each of these actions helps to superimpose the user’s 
conceptual model on the gathered information, and adds 
significant value to the raw data. We seek to capture the 
information labeling and information integration 
decisions that are expressed during these activities, in the 
form of schema definition, attribute correspondences, 
entity correspondences, and attribute value conflict 
resolutions. In this research, we seek to: 

− make the user’s tasks of using and manipulating 
information drawn from various sources easier, 

− provide direct support for tracking the lineage of 
information extraction, use, and re-packaging, and 
ultimately, 

− exploit the collective user integration information 
to help solve the general problem of massive 
information integration. 

 
In this paper, Section 2 describes our understanding of 
user data integration activities, our refinement of this 
understanding into a set of specific user actions, and our 
definition of a conceptual model to support these actions. 
Section 3 formalizes these user actions into a set of 
functions on our conceptual model, encompassing entity 
resolution, attribute resolution, and attribute value 
conflict resolution. Section 4 describes a simple tool for 
evaluating both how to support users in performing these 
tasks, and how to capture the integration metadata they 
express during these tasks. Section 5 discusses related 
work from the literature. Section 6 summarizes our 
contribution and discusses future efforts. 

2 Conceptual Model 
In order to examine how users gather and organize 
information, we rely on ten years of one author’s direct 
observation and participation in managing engineering 
organizations and running a successful software business. 



We reviewed common, repeated projects and the 
information integration activities common in each. We 
summarize the most common projects, which taken 
together account for a significant majority of on-the-job 
effort, in Table 1. For each of these common projects, we 
describe the amount of effort required for the following 
information-related tasks: 
 
− Identifying sources from which to gather 

information 
− Integrating  (gathering and organizing) the 

information 
− Sense-making and decision-making 
− Deployment of the information for communication 

 
This table shows that data integration activities are 
significant in the overall management effort in the 
projects shown. Next, we identified common user actions 
that comprise the tasks from Table 1, and related these to 
corresponding data integration activities, as shown in 
Table 2. 
 

User action Data integration task 
Copying items from various 
sources and pasting into a 
“worksheet” form 

Data collection 

Creating and deleting columns 
for gathered items with similar 
semantics 

Schema 
creation/modification 

Creating and deleting rows of 
values for the real-world objects 
of interest 

Data instantiation 

Merging duplicate columns and 
resolving items which disagree 
during this process 

Attribute resolution, 
attribute value 
disambiguation 

Merging rows and resolving 
items which disagree during 
this process 

Entity resolution, 
attribute value 
disambiguation 

Tracking integration decisions Annotation/Not 
typically supported 

Undoing merges when needed Not typically 
addressed in data 
integration 

Table 2. Mapping user actions to data integration 
functions 

 
Users often make use of copy-and-paste and other simple 
tools to accomplish the tasks and actions outlined above. 

Our effort seeks to make this job easier, improve access 
to the context of gathered information, provide access to 
the history of user decisions about the data, and maintain 
both expressed schema and decision history for potential 
use in other ways. In support of this, we have developed a 
conceptual model called CHIME (Capturing Human 
Intension Metadata with Entities) that supports creation 
and manipulation of a single, virtual relation, or table, 
where rows correspond to real-world entities and columns 
correspond to attributes of these entities. As shown in 
Figure 1, our model consists of five entity types. We 
discuss three of these here: Column proxies, Row pro xies, 
and Cell proxies. 
 
Column proxies represent the column heading, or 
schema, of the user’s view of the conceptual model. Each 
column has a name, a data type common to all cells in the 
column, and a flag to indicate whether the column is 
visible or hidden.  Row proxies represent the rows of the 
user’s view of the CHIME model. Each row has a unique 
identifier and a flag to indicate whether the row is visible 
or hidden.  Cell proxies represent individual attribute 
values. Each cell has a unique identifier and is related to a 
mark [9], that is, an encapsulated address from which its 
value may be retrieved in a source document. A cell is 
related to the row of which it is a member via the 
“describes” relationship set. A cell is related to the 
column of which it is a member via the “member_of” 
relationship set. Any number of cells may be related to a 
row, and any number of cells may be related to a column. 
However, a cell may be related to only one row and one 
column via these relationship sets, giving the resulting 
structure its tabular form. 
 
If a cell proxy belongs to a row that has been merged 
from two others, it partic ipates in the “has_row_parents” 
relationship set with the two other rows from which the 
merged row was created. Because our model supports 
only pair-wise entity resolution, cells from a single row 
may be related only to a given pair of parent rows in this 
way. Similarly, if a cell proxy belongs to a column that 
has been merged, it participates in the 
“has_column_parents” relationship set with the two other 
columns from which the merged column was created. The 
user sees only a portion of the entity sets and relationship 
sets in the diagram. For the visible rows, columns, and 
cells, the user sees the row proxy, column proxy, and cell 
proxy entity sets, along with the Value portion of the item 
entity set. However, the UID attributes of the cell proxies 
and row proxies are hidden from view. As a result, the 

Common  
Projects 

Source  
Identification 

Data  
Integration 

Sense-
making 

Deployment 

Project line strategy and  
roadmap creation 

High High Medium Low 

Project Prioritization High High Medium Low 
Resource assignment Low Medium Medium High 
Project scheduling Medium High High Medium 
Project tracking Low High Low Low 
Budgeting Low High Medium Medium 

Table 1: Relative effort required for significant tasks in common engineering management projects. 



user sees only an intuitive tabular representation of the 
entity sets and their relationships. 
 
 

3 Functional Model 
In order to explore the data integration tasks outlined in 
Table 2 in the context of our conceptual model presented 
in Section 2, we wrote an emulator in Haskell. We built 
an emulator because it enabled a degree of formalization, 
allowing us to verify our ideas as a first step toward 
developing a tool for evaluating how to achieve the goals 
outlined in Section 1.  Haskell is a polymorphically 
typed, pure functional language. Haskell was attractive 
for our purpose for several reasons. Haskell’s 
polymorphism makes abstractions easy for both data 
types and functions. This allowed us to focus on what we 
needed to represent and what our functions needed to 
achieve, rather than focusing on how to implement them. 
These abstract definitions are also very concise, making it 
easier to reason about our code. The recursive approach 
to iteration required in functional languages, along with 
strong support for the lists we used to model rows of data, 
made data manipulation easy, as well.  
 
Though our conceptual model focuses on data integration, 
our Haskell implementation also includes the data 
gathering functions discussed in Table 2. In Figure 2, we 
describe the data structures used in emulating the 
conceptual model shown in Figure 1. 
 
The primary structure of interest is the Cellproxy. Rows 
are lists of Cellpro xies, providing a natural 
implementation of the “describes” relationship from 
Figure 1. A database is simply a list of rows. We model 
the “member_of” relationship implicitly, by keeping 
Cellproxies in the same order in each row and including 
the column name in each. The Cellproxy models the 
“has_value” relationship by including the cached value of 
the data item and a string representing the mark to the 
data item. The AttrVal type used for the data item value 

also specifies the data item’s type, thus modeling the 
“has_members_of_type” relationship. A union type, 
 
 

 
data Cellproxy = 
Attribute {attributeName:: String, 
      attributeValue:: AttrVal, 
      mark:: String, 
        rowMergeHistory:: Merge, 
           colMergeHistory:: Merge, 
      cellVisible:: Bool } 
 deriving (Eq, Show) 
 
data AttrVa l = Str String 
 | Int Integer 
 | Flag Bool 
 deriving (Eq, Show) 
 
data Merge = NeverMerged 
|RowMerged String Integer Integer 
|ColumnMerged   String String  String 
 deriving (Eq, Show) 
 

Fig. 2. Haskell definition of the data structures 
maintained by CHIME. 

  
called Merge, is used in Cellproxies to implement the 
“has_row_parents” and “has_column_parents” 
relationships. If a merge has been performed, the Merge 
structure denotes the reason as well as the source rows 
(columns) involved. Each cell also contains a flag to 
control vis ibility to the user.  

4  A Tool for Investigation 
We introduce our prototype tool, intended to help us 
evaluate how users integrate information and how we 
might capture their decisions, by way of an example 
project: researching flat-panel monitors. Based on 
browsing the web, and on advice in e-mail from 
colleagues, a user constructs a list of models to choose 
from and a list of criteria she will use to make a selection. 

User-defined 
“Column” 

User-defined 
“Row” 

member_of 

has_colum
n_parents

 

describes 

has_row_parents 

has_members_ 
of_type 

  Cell proxy 
  UID: GUID 

  Row proxy 
  UID: GUID  
  Visible: Bool 

            Type 

  Typename: String 
  Domain: DomDesc  

Reason 

Reason 

visible to the user hidden from the user Legend: 

        Item  
 Address: Mark  
 Value: Literal xx  

1..1 

1..1 

1..1 
0..1 

0..1 

0..1 

2..2 

2..2 

0..*  

0..*  

0..*  

0..*  

has_value 

  Column proxy 

  Name: String 
  Visible: Bool 

 
Fig. 1. E-R diagram for managing entity-centric schema and data 

 



The user gathers data from various on-line reviews, 
product catalogs, and marketing web sites by using the 
familiar copy-and-paste operation. Behind the scenes, the 
system creates a mark to each selected item. In CHIME, 
the user creates a new row, as shown at left in Figure 3, to  
represent each new monitor of interest. The system 
retains both the data item of interest and the mark to its 
source context.  
 
The user can also copy (and mark) a list of desired 
features, for example from an e-mail sent by a colleague, 
and use the pop-up menu function “New columns from 
clipboard”, as shown at right in Figure 3, generating a 
column for each of the items in the list. The user adds 
new rows and new columns as needed. At any time, the 
user can simply mouse-over data items to show them in 
the context of their source document. 

 
If the user decides that two rows in her worksheet 
represent the same product, she simply selects the two 
rows and merges them to create a new row, as shown in 
Figure 4. The system automatically identifies columns 
where data items in the two rows mismatch and allows 
the user to select which value is most appropriate. If the 
user realizes that two columns represent the same 
attribute, she can merge them in the same way. By using 
the Explore tab, the user can review the history of merge 
decisions that led to the current state of her worksheet and 
reverse those decisions if needed. 

 
The user can also create new information products 

using the data in CHIME. The user selects items or arrays 
of data from her worksheet and pastes them into an e-mail 
message. Behind the scenes, the CHIME system injects 
into the message not only the data values selected, but 
also the marks that provide access to both the worksheet 
and the original data sources of each data item. This 
allows the recipient of the message to review the data and 
draw his or her own conclusions. 

5 Related Work 
 Much of the literature in information integration 
focuses on integration of data from structured sources, 
often performed as a “bulk” operation. The goal of Clio 
[8], for example, is to integrate existing databases by 
matching schemas and generating inter-schema mappings 
with human assistance. The schema engine of the Clio 
suite provides a graphical interface that displays schema 

and example data to assist the user in understanding 
schema semantics. Although Clio attempts to make the 
schema integration task easier, for example by providing 
data examples to help the user understand 
correspondences, it is a tool intended for use by database 
specialists. Our tool is  intended for use by end-users.  
Also, we capture data integration decisions, including 
entity resolution and attribute value conflict resolution, 
whereas Clio supports only schema integration. 
 
Windik [13] and Bernstein and Melnik’s extensions to the 
Microsoft BizTalk Mapper [1], are similar to Clio in that 
they focus only on schema matching.  
 
MOBS [11] seeks to retrieve information relevant to a 
real-world entity from both structured and unstructured 
sources, given certain initial information about the entity. 
Seeded with some initial semantic mappings, the MOBS 
approach relies on deploying these mappings to a 
community of users who then augment the available 
metadata. Our long-term vision is similar to MOBS. 
However, our approach differs in that MOBS emphasizes 
a system-driven approach to gathering entity-related 
information, while our approach emphasizes assis ting 
users as they gather entity-related data for their own 
purposes. 
 
SEMEX [3] uses a pre-defined but extensible ontology to 
construct an entity-centric, logical view of a user’s 
desktop by constructing a database of objects and 
associations between them. In this way, SEMEX provides 
access to data stored in mu ltiple applications without 
imposing a data organization that is application-centric. 
The SEMEX approach differs from ours in that SEMEX 
takes in a user’s entire personal information space and 
automatically builds its logical view, while our approach 
focuses on user selection of data and user expression of 
schema and associations.  
 
Superimp osed Schematics [2] uses E-R modeling 
constructs and marks [9] to superimpose an application-
specific conceptual structure over unstructured 
information. With this approach, a user can browse the 
unstructured base layer information in the context of the 
superimposed schematic. Our work differs from this 
approach in that we allow the user to express the 
conceptual structure to be superimposed on data of 
interest, rather than pre-defining the conceptual structure. 

 

 
 

Fig. 3. Pasting data into the CHIME worksheet. 



In addition, superimposed schematics do not provide for 
data integration as CHIME does. 
 
 Several personal information management approaches  
(including CREAM [6], WiCK [4], SemanticWord [12],  
Semantic neighborhoods [5], and MIT’s Haystack[7]) 
provide varying capabilities for users to superimpose 
mental models over their data. However, we know of no 
data integration capabilities in these tools such as those 
provided by CHIME.  

6 Conclusions and Future Work 
We have observed that data integration is a common 
activity for a wide variety of users who are not experts in 
data management.  In the conceptual model we present 
here, we capture and make explicit the user’s mental 
model as well as any information integration decisions 
they make along the way. We have implemented an 
emulator to demonstrate important properties of the 
conceptual model. We have presented one tool that 
implements these functions and supports further 
investigation. We plan to prove the correctness of the key 
properties of the functions described here. In addition, we 
intend to deploy the described application to study the 
benefits of this approach. 
 
If a user community adopts the practice of using tools that 
embody our conceptual model, then the ultimate goal of 
our research is to exploit this end-user integration 
information to integrate information sources – a difficult 
and very large-scale problem.  One benefit of our 
approach is that rich and detailed integration information 
is captured essentially for free – as end-users do their 
day-to-day tasks.  Another benefit is that we 
simultaneously capture schema integration information as 
well as data resolution information. Finally, we observe 
that our captured data, since it is associated with its 
original source data through the use of marks, is 
associated with rich contextual information extracted 
from the source files.  We believe that we may ultimately 
be able to use this context information to facilitate 

schema creation, entity resolution, attribute resolution, 
and schema matching while integrating databases. 
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