
Capturing Users’ Everyday, Implicit
Information Integration Decisions

David W. Archer Lois M. L. Delcambre
Department of Computer Science
Portland State University

Portland, OR 97207

{darcher, lmd} @ cs.pdx.edu

Abstract
Integration of large databases by expert teams is only a
small part of the data integration activities that take place.
Users without data integration expertise very often gather,
organize, reconcile, and use diverse information as a
normal part of their jobs. Often, they do this by copying
data into a text file or spreadsheet. In doing so, they make
significant data integration decisions. They often express
a mental model, or schema, over their data. They organize
data to describe real-world entities. They reconcile
redundancy and disagreements in their data. Such
integration is both ubiquitous and not generally supported
by experts and tools available for large integration efforts.
We seek to capture and make explicit the user’s mental
model, and the attribute and entity correspondences they
express, during these activities. This paper contributes the
definition of a set of functions that support this type of
data integration, a conceptual model to support these
functions, and an associated simple tool that supports data
integration by end-users in an entity-centric way, with an
extensible schema, that makes the user’s job easier.

Keywords: information integration, entity resolution, data
correspondence, superimposed information.

1 Introduction
We often consider data integration to be the province of
the DBA and the integration expert, aided by specialized
tools. However, data integration is often performed as
part of everyday user tasks. End users gather, organize,
reconcile, and use information from diverse sources all
the time. They gather information from office documents,
the Web, e-mail messages, and other places in order to
inform, to influence, and to make decisions. Sometimes
users gather information using hardcopy. Increasingly,
users take advantage of computers to do this work, often
cutting and pasting bits of information into a spreadsheet
or text file..

The information gathered, and the semantics given it, are
task-dependent. However, our experience shows that

Copyright (c) 2007, Australian Computer Society, Inc. This
paper appeared at the Twenty-Sixth International Conference on
Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels and
Industrial Contributions, Auckland, New Zealand. Conferences
in Research and Practice in Information Technology, Vol. 83.
John Grundy, Sven Hartmann, Alberto H. F. Laender, Leszek
Maciaszek and John F. Roddick, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

users often gather information in much the same way.
They collect information about real-world objects or
concepts: that is, information gathering tends to be entity-
centric. They label information to keep track of its
mean ing (for the most part users know both the meaning
of each piece of information and the entity which it
describes). They tend to organize gathered data in simple,
tabular form. They frequently make on-the-fly decisions
about the data: they combine what initially appear to be
disparate real-world objects or concepts into single
objects; they combine what initially appear to be different
characteristics into single attributes; and they resolve
conflicting items of information.

Each of these actions helps to superimpose the user’s
conceptual model on the gathered information, and adds
significant value to the raw data. We seek to capture the
information labeling and information integration
decisions that are expressed during these activities, in the
form of schema definition, attribute correspondences,
entity correspondences, and attribute value conflict
resolutions. In this research, we seek to:

− make the user’s tasks of using and manipulating
information drawn from various sources easier,

− provide direct support for tracking the lineage of
information extraction, use, and re-packaging, and
ultimately,

− exploit the collective user integration information
to help solve the general problem of massive
information integration.

In this paper, Section 2 describes our understanding of
user data integration activities, our refinement of this
understanding into a set of specific user actions, and our
definition of a conceptual model to support these actions.
Section 3 formalizes these user actions into a set of
functions on our conceptual model, encompassing entity
resolution, attribute resolution, and attribute value
conflict resolution. Section 4 describes a simple tool for
evaluating both how to support users in performing these
tasks, and how to capture the integration metadata they
express during these tasks. Section 5 discusses related
work from the literature. Section 6 summarizes our
contribution and discusses future efforts.

2 Conceptual Model
In order to examine how users gather and organize
information, we rely on ten years of one author’s direct
observation and participation in managing engineering
organizations and running a successful software business.

We reviewed common, repeated projects and the
information integration activities common in each. We
summarize the most common projects, which taken
together account for a significant majority of on-the-job
effort, in Table 1. For each of these common projects, we
describe the amount of effort required for the following
information-related tasks:

− Identifying sources from which to gather

information
− Integrating (gathering and organizing) the

information
− Sense-making and decision-making
− Deployment of the information for communication

This table shows that data integration activities are
significant in the overall management effort in the
projects shown. Next, we identified common user actions
that comprise the tasks from Table 1, and related these to
corresponding data integration activities, as shown in
Table 2.

User action Data integration task
Copying items from various
sources and pasting into a
“worksheet” form

Data collection

Creating and deleting columns
for gathered items with similar
semantics

Schema
creation/modification

Creating and deleting rows of
values for the real-world objects
of interest

Data instantiation

Merging duplicate columns and
resolving items which disagree
during this process

Attribute resolution,
attribute value
disambiguation

Merging rows and resolving
items which disagree during
this process

Entity resolution,
attribute value
disambiguation

Tracking integration decisions Annotation/Not
typically supported

Undoing merges when needed Not typically
addressed in data
integration

Table 2. Mapping user actions to data integration
functions

Users often make use of copy-and-paste and other simple
tools to accomplish the tasks and actions outlined above.

Our effort seeks to make this job easier, improve access
to the context of gathered information, provide access to
the history of user decisions about the data, and maintain
both expressed schema and decision history for potential
use in other ways. In support of this, we have developed a
conceptual model called CHIME (Capturing Human
Intension Metadata with Entities) that supports creation
and manipulation of a single, virtual relation, or table,
where rows correspond to real-world entities and columns
correspond to attributes of these entities. As shown in
Figure 1, our model consists of five entity types. We
discuss three of these here: Column proxies, Row pro xies,
and Cell proxies.

Column proxies represent the column heading, or
schema, of the user’s view of the conceptual model. Each
column has a name, a data type common to all cells in the
column, and a flag to indicate whether the column is
visible or hidden. Row proxies represent the rows of the
user’s view of the CHIME model. Each row has a unique
identifier and a flag to indicate whether the row is visible
or hidden. Cell proxies represent individual attribute
values. Each cell has a unique identifier and is related to a
mark [9], that is, an encapsulated address from which its
value may be retrieved in a source document. A cell is
related to the row of which it is a member via the
“describes” relationship set. A cell is related to the
column of which it is a member via the “member_of”
relationship set. Any number of cells may be related to a
row, and any number of cells may be related to a column.
However, a cell may be related to only one row and one
column via these relationship sets, giving the resulting
structure its tabular form.

If a cell proxy belongs to a row that has been merged
from two others, it partic ipates in the “has_row_parents”
relationship set with the two other rows from which the
merged row was created. Because our model supports
only pair-wise entity resolution, cells from a single row
may be related only to a given pair of parent rows in this
way. Similarly, if a cell proxy belongs to a column that
has been merged, it participates in the
“has_column_parents” relationship set with the two other
columns from which the merged column was created. The
user sees only a portion of the entity sets and relationship
sets in the diagram. For the visible rows, columns, and
cells, the user sees the row proxy, column proxy, and cell
proxy entity sets, along with the Value portion of the item
entity set. However, the UID attributes of the cell proxies
and row proxies are hidden from view. As a result, the

Common
Projects

Source
Identification

Data
Integration

Sense-
making

Deployment

Project line strategy and
roadmap creation

High High Medium Low

Project Prioritization High High Medium Low
Resource assignment Low Medium Medium High
Project scheduling Medium High High Medium
Project tracking Low High Low Low
Budgeting Low High Medium Medium

Table 1: Relative effort required for significant tasks in common engineering management projects.

user sees only an intuitive tabular representation of the
entity sets and their relationships.

3 Functional Model
In order to explore the data integration tasks outlined in
Table 2 in the context of our conceptual model presented
in Section 2, we wrote an emulator in Haskell. We built
an emulator because it enabled a degree of formalization,
allowing us to verify our ideas as a first step toward
developing a tool for evaluating how to achieve the goals
outlined in Section 1. Haskell is a polymorphically
typed, pure functional language. Haskell was attractive
for our purpose for several reasons. Haskell’s
polymorphism makes abstractions easy for both data
types and functions. This allowed us to focus on what we
needed to represent and what our functions needed to
achieve, rather than focusing on how to implement them.
These abstract definitions are also very concise, making it
easier to reason about our code. The recursive approach
to iteration required in functional languages, along with
strong support for the lists we used to model rows of data,
made data manipulation easy, as well.

Though our conceptual model focuses on data integration,
our Haskell implementation also includes the data
gathering functions discussed in Table 2. In Figure 2, we
describe the data structures used in emulating the
conceptual model shown in Figure 1.

The primary structure of interest is the Cellproxy. Rows
are lists of Cellpro xies, providing a natural
implementation of the “describes” relationship from
Figure 1. A database is simply a list of rows. We model
the “member_of” relationship implicitly, by keeping
Cellproxies in the same order in each row and including
the column name in each. The Cellproxy models the
“has_value” relationship by including the cached value of
the data item and a string representing the mark to the
data item. The AttrVal type used for the data item value

also specifies the data item’s type, thus modeling the
“has_members_of_type” relationship. A union type,

data Cellproxy =
Attribute {attributeName:: String,
 attributeValue:: AttrVal,
 mark:: String,
 rowMergeHistory:: Merge,
 colMergeHistory:: Merge,
 cellVisible:: Bool }
 deriving (Eq, Show)

data AttrVa l = Str String
 | Int Integer
 | Flag Bool
 deriving (Eq, Show)

data Merge = NeverMerged
|RowMerged String Integer Integer
|ColumnMerged String String String
 deriving (Eq, Show)

Fig. 2. Haskell definition of the data structures
maintained by CHIME.

called Merge, is used in Cellproxies to implement the
“has_row_parents” and “has_column_parents”
relationships. If a merge has been performed, the Merge
structure denotes the reason as well as the source rows
(columns) involved. Each cell also contains a flag to
control vis ibility to the user.

4 A Tool for Investigation
We introduce our prototype tool, intended to help us
evaluate how users integrate information and how we
might capture their decisions, by way of an example
project: researching flat-panel monitors. Based on
browsing the web, and on advice in e-mail from
colleagues, a user constructs a list of models to choose
from and a list of criteria she will use to make a selection.

User-defined
“Column”

User-defined
“Row”

member_of

has_colum
n_parents

describes

has_row_parents

has_members_
of_type

 Cell proxy
 UID: GUID

 Row proxy
 UID: GUID
 Visible: Bool

 Type

 Typename: String
 Domain: DomDesc

Reason

Reason

visible to the user hidden from the user Legend:

 Item
 Address: Mark
 Value: Literal xx

1..1

1..1

1..1
0..1

0..1

0..1

2..2

2..2

0..*

0..*

0..*

0..*

has_value

 Column proxy

 Name: String
 Visible: Bool

Fig. 1. E-R diagram for managing entity-centric schema and data

The user gathers data from various on-line reviews,
product catalogs, and marketing web sites by using the
familiar copy-and-paste operation. Behind the scenes, the
system creates a mark to each selected item. In CHIME,
the user creates a new row, as shown at left in Figure 3, to
represent each new monitor of interest. The system
retains both the data item of interest and the mark to its
source context.

The user can also copy (and mark) a list of desired
features, for example from an e-mail sent by a colleague,
and use the pop-up menu function “New columns from
clipboard”, as shown at right in Figure 3, generating a
column for each of the items in the list. The user adds
new rows and new columns as needed. At any time, the
user can simply mouse-over data items to show them in
the context of their source document.

If the user decides that two rows in her worksheet
represent the same product, she simply selects the two
rows and merges them to create a new row, as shown in
Figure 4. The system automatically identifies columns
where data items in the two rows mismatch and allows
the user to select which value is most appropriate. If the
user realizes that two columns represent the same
attribute, she can merge them in the same way. By using
the Explore tab, the user can review the history of merge
decisions that led to the current state of her worksheet and
reverse those decisions if needed.

The user can also create new information products

using the data in CHIME. The user selects items or arrays
of data from her worksheet and pastes them into an e-mail
message. Behind the scenes, the CHIME system injects
into the message not only the data values selected, but
also the marks that provide access to both the worksheet
and the original data sources of each data item. This
allows the recipient of the message to review the data and
draw his or her own conclusions.

5 Related Work
 Much of the literature in information integration
focuses on integration of data from structured sources,
often performed as a “bulk” operation. The goal of Clio
[8], for example, is to integrate existing databases by
matching schemas and generating inter-schema mappings
with human assistance. The schema engine of the Clio
suite provides a graphical interface that displays schema

and example data to assist the user in understanding
schema semantics. Although Clio attempts to make the
schema integration task easier, for example by providing
data examples to help the user understand
correspondences, it is a tool intended for use by database
specialists. Our tool is intended for use by end-users.
Also, we capture data integration decisions, including
entity resolution and attribute value conflict resolution,
whereas Clio supports only schema integration.

Windik [13] and Bernstein and Melnik’s extensions to the
Microsoft BizTalk Mapper [1], are similar to Clio in that
they focus only on schema matching.

MOBS [11] seeks to retrieve information relevant to a
real-world entity from both structured and unstructured
sources, given certain initial information about the entity.
Seeded with some initial semantic mappings, the MOBS
approach relies on deploying these mappings to a
community of users who then augment the available
metadata. Our long-term vision is similar to MOBS.
However, our approach differs in that MOBS emphasizes
a system-driven approach to gathering entity-related
information, while our approach emphasizes assis ting
users as they gather entity-related data for their own
purposes.

SEMEX [3] uses a pre-defined but extensible ontology to
construct an entity-centric, logical view of a user’s
desktop by constructing a database of objects and
associations between them. In this way, SEMEX provides
access to data stored in mu ltiple applications without
imposing a data organization that is application-centric.
The SEMEX approach differs from ours in that SEMEX
takes in a user’s entire personal information space and
automatically builds its logical view, while our approach
focuses on user selection of data and user expression of
schema and associations.

Superimp osed Schematics [2] uses E-R modeling
constructs and marks [9] to superimpose an application-
specific conceptual structure over unstructured
information. With this approach, a user can browse the
unstructured base layer information in the context of the
superimposed schematic. Our work differs from this
approach in that we allow the user to express the
conceptual structure to be superimposed on data of
interest, rather than pre-defining the conceptual structure.

Fig. 3. Pasting data into the CHIME worksheet.

In addition, superimposed schematics do not provide for
data integration as CHIME does.

 Several personal information management approaches
(including CREAM [6], WiCK [4], SemanticWord [12],
Semantic neighborhoods [5], and MIT’s Haystack[7])
provide varying capabilities for users to superimpose
mental models over their data. However, we know of no
data integration capabilities in these tools such as those
provided by CHIME.

6 Conclusions and Future Work
We have observed that data integration is a common
activity for a wide variety of users who are not experts in
data management. In the conceptual model we present
here, we capture and make explicit the user’s mental
model as well as any information integration decisions
they make along the way. We have implemented an
emulator to demonstrate important properties of the
conceptual model. We have presented one tool that
implements these functions and supports further
investigation. We plan to prove the correctness of the key
properties of the functions described here. In addition, we
intend to deploy the described application to study the
benefits of this approach.

If a user community adopts the practice of using tools that
embody our conceptual model, then the ultimate goal of
our research is to exploit this end-user integration
information to integrate information sources – a difficult
and very large-scale problem. One benefit of our
approach is that rich and detailed integration information
is captured essentially for free – as end-users do their
day-to-day tasks. Another benefit is that we
simultaneously capture schema integration information as
well as data resolution information. Finally, we observe
that our captured data, since it is associated with its
original source data through the use of marks, is
associated with rich contextual information extracted
from the source files. We believe that we may ultimately
be able to use this context information to facilitate

schema creation, entity resolution, attribute resolution,
and schema matching while integrating databases.

7 References
 [1] Bernstein, P., Melnik, S. (2006): Incremental Schema

Matching. In Proceedings of the 32nd International
Conference on Very Large Data Bases Seoul, Korea.

[2] Bowers, S. Delcambre, L., Maier, D. (2002):

Superimposed Schematics: Introducing E-R Structure
for In -Situ Information Selections. In Proceedings of
the 21st International Conference on Conceptual
Modeling. Tampere, Finland.

[3] Cai, Y., Dong, X., Halevy, A., Liu, J., Madhavan, J.

(2005): Personal Information Management with
SEMEX. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
Baltimore, Maryland, USA.

[4] Carr, L., Miles-Board, T., Wills, G., Woukeu, A.,

Hall, W. (2003): Towards a Knowledge-Aware Office
Environment. In Proceedings of 14th International
Conference on Knowledge Engineering and
Knowledge Management.

[5] Gersh, J., Lewis, B., Montemayor, J., Piatko, C.,

Turner, R. (2006) Supporting Insight-Based
Information Exploration in Intelligence Analysis.
Communications of the ACM, Vol. 49, No. 4, pp. 63-
68.

[6] Handschuh, S., Staab, S. (2002): Authoring and

Annotation of Web Pages in CREAM. In Proceedings
of WWW2002. Honolulu, Hawaii, USA.

[7] Karger, D., Bakshi, K., Huynh, D., Quan, D., and

Sinha, V. (2005): Haystack: A general-purpose
information management tool for end users of
semistructured data. In Proceedings of the Second
Biennial Conference on Innovative Data Systems
Research. Asilomar, CA.

Explore

Maker Model Brightness Contrast Nits Size Response Refresh Vert. Freq.

Acme AV2020 280 600 280 20 8ms 75 75
Acme AV2220 280 700 260 22 6ms 75 75
Acme AP2130 300 800 300 21 5ms 75 75
Acme AP2230 300 800 300 22 5ms 75 75
Acme 20-inch 260 600 280 20 8ms 75 75
Acme 22-inch 290 700 290 22 6ms 75 75
HAL H2000 280 600 280 20 8ms 75 75
HAL H4000 300 800 300 22 5ms 85 85

¨
Merge

þ

þ

Merge

Integrate

Delete

¨
¨
¨

¨
¨

Explore

Maker Model Brightness Contrast Nits Size Response Refresh Vert. Freq.

Acme AV2020 280 600 280 20 8ms 75 75
Acme AV2220 280 700 260 22 6ms 75 75
Acme AP2130 300 800 300 21 5ms 75 75
Acme AP2230 300 800 300 22 5ms 75 75
Acme 20-inch 260 600 280 20 8ms 75 75
Acme 22-inch 290 700 290 22 6ms 75 75
HAL H2000 280 600 280 20 8ms 75 75
HAL H4000 300 800 300 22 5ms 85 85

¨
þ

þ

Merge

Integrate

¨
¨
¨

¨
¨

1. Select first row
2. Select second row

Differing attribute
values highlighted

Candidate new row
shown here

Acme AV2220 280? 700 260? 22 6ms 75 75

Confirm

Acme AV2220 290 700 260? 22 6ms 75 75
Abandon

3. Select preferred
attribute values, or
accept values from
first row

4. Enter reason for
choices (optional),
then “Confirm”
to create new row
and hide “parent”
rows

Verified this
value with vendor

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Delete

Delete

Gather

GatherExploreExplore

Maker Model Brightness Contrast Nits Size Response Refresh Vert. Freq.

Acme AV2020 280 600 280 20 8ms 75 75
Acme AV2220 280 700 260 22 6ms 75 75
Acme AP2130 300 800 300 21 5ms 75 75
Acme AP2230 300 800 300 22 5ms 75 75
Acme 20-inch 260 600 280 20 8ms 75 75
Acme 22-inch 290 700 290 22 6ms 75 75
HAL H2000 280 600 280 20 8ms 75 75
HAL H4000 300 800 300 22 5ms 85 85

¨
Merge

þ

þ

Merge

Integrate

Delete

¨
¨
¨

¨
¨

ExploreExplore

Maker Model Brightness Contrast Nits Size Response Refresh Vert. Freq.

Acme AV2020 280 600 280 20 8ms 75 75
Acme AV2220 280 700 260 22 6ms 75 75
Acme AP2130 300 800 300 21 5ms 75 75
Acme AP2230 300 800 300 22 5ms 75 75
Acme 20-inch 260 600 280 20 8ms 75 75
Acme 22-inch 290 700 290 22 6ms 75 75
HAL H2000 280 600 280 20 8ms 75 75
HAL H4000 300 800 300 22 5ms 85 85

¨
þ

þ

Merge

Integrate

¨
¨
¨

¨
¨

1. Select first row
2. Select second row

Differing attribute
values highlighted

Candidate new row
shown here

Acme AV2220 280? 700 260? 22 6ms 75 75

Confirm

Acme AV2220 290 700 260? 22 6ms 75 75
Abandon

3. Select preferred
attribute values, or
accept values from
first row

4. Enter reason for
choices (optional),
then “Confirm”
to create new row
and hide “parent”
rows

Verified this
value with vendor

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

Delete

Delete

Gather

Gather

Fig. 4. Merging Rows in CHIME

[8] Miller, R., Hernandez, M., Haas, L., Yan, L., Ho, C.,

Fagin, R., Popa, L. (2001): The Clio Project:
Managing Heterogeneity. SIGMOD Record, 30(1):78-
- 83.

[9] Murthy, S., Maier, D., Delcambre, L., Bowers, S.

(2004): Putting Integrated Information in Context:
Superimposing Conceptual Models with SPARCE. In
Proceedings of the First Asia-Pacific Conference on
Conceptual Modeling. Dunedin, New Zealand. pp. 71-
80.

 [11] Sayyadian, M., Shakery, A., Doan, A., Zhai, C.

(2004): Toward Entity Retrieval over Structured and
Text Data. In Proceedings of the first Workshop on the
Integration of Information Retrieval and Databases.
Sheffield, UK.

[12] Tallis, M. Semantic Word Processing for Content

Authors. (2003): In Proceedings of the Knowledge
Markup & Semantic Annotation Workshop. Florida,
USA.

[13] Venugopalan, S., Tamma, K. Applicability of

Universal Relation to Data Integration.
http://www.cs.wisc.edu/~vshree/cs764/Windik.pdf.
Accessed March, 2007.

