
Certified Software Factory:
Open Software Toolsuites, Safe Methodologies and

System Architectures
J. U. Gärtner

Esterel Technologies GmbH
Otto-Hahn-Str. 13b

85521 Ottobrunn-Riemerling
Germany

Abstract
This paper discusses model-based design in the context
of the Safety Critical Application Development Envi-
ronment (SCADE), developed by Esterel Technolo-
gies.1

1. Introduction

The last few decades have seen the concept of model-
based design develop to the point where it is now the
state-of-the art for most embedded applications. A
large number of parallel approaches exist here. Those
tools have evolved from pure specification and docu-
mentation tools to tool suites allowing design of execu-
table specifications that, in some cases, allow the
automatic generation of application code.

These tools can be grouped into several classes, includ-
ing

• UML-based tools
• Simulation-centric proprietary tools
• Formal tools and methods
• Domain-specific software tools

Two contradictory trends can be observed. Some tool
providers follow the path to open standards (such as
UML2) or open interfaces and formats (such as Eclipse
and XML) ,and thus enable the user to build his own
environment tailored to his needs. Other tool providers
hope to be heavy-weighted enough to build their own
community based on a proprietary format (for example
Simulink, Statemate).

In safety-related systems design, the usage of software
design tools is highly recommended. However, the
industry trend to automatic code generation is facing
some difficulties in this domain, because of the follow-
ing:

• process integration;
• safety requirements: code generation only

pays off if the code generator is trusted by cer-
tification bodies; and

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 11th Australian Workshop on Safety
Related Programmable Systems (SCS'06), Melbourne. Confe-
rences in Research and Practice in Information Technology,
Vol. 69. Tony Cant, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

• domain-specific solutions lack openness and
momentum because they are only deployed in
niche areas

There is an obvious need for a solution that combines
certified automatic code generation with truly open tool
architecture and interface.

We will discuss these topics in the context of SCADE,
the Safety Critical Application Development Environ-
ment, developed by Esterel Technologies.

SCADE provides a modelling environment from which
code can automatically be generated, while its open
and documented interfaces provide full and seamless
integration capabilities into existing development flows
and processes.

2. Layered Architecture

The prerequisite for seamless integration in existing or
new software design processes is an open, scaleable
tool architecture.

When discussing the interface architecture of a core
tool, which is intended to be able to provide a hub-like
functionality in the flows inside a tool workbench,
some requirements soon become obvious:

• Abstraction: the system needs to be layered in
a way that on each level provides abstract and
encapsulated information;

• Openness: all relevant information must be
readily accessible; and

• Standardization: the interfaces must be based
on commonly accepted industry standards

This is achieved by implementing a layered tool archi-
tecture. An open architecture outside layer provides
abstract access to all the information, which is con-
tained in the core.

The core and interface layer together provide the basis
for the Certified Software Factory.

IMAGE 1. Layered architecture of the certified soft-

ware factory

2.1. Interfaces based on open software architec-
ture concept

Open software architecture interfaces rely on several
concepts:

• Standard, openly documented file formats,
equally readable by humans and machines
• SCADE relies on standards such as

XMI2, XML and ASAM-MCD2
• Standard, openly documented APIs (applica-

tion programming interfaces)
• SCADE provides TCL and C-based inter-

faces as well as an Eclipse-Plug-in.
• Models are stored as Meta-models so that they

can be transformed to and from any other
model format
• SCADE stores the information in an

UML-Metamodel

2.1.1. Example: SysML interface

When transforming models, one must take care to do
meaningful translations conforming to the semantic
properties of the underlying modelling languages.

Building such an interface requires analysis of the data
formats as well as the semantics.

SysML SCADE

• Overview
• Semi-formal
• Asynchronous
• Object-oriented

• Good for struc-

tural description

• Main construct

• Classifier & Be-
haviour

• Dynamic (Instance/
link creation)

• Explicit & implicit
flows (connectors or
object references

• Overview
• Formal
• Synchronous
• Functional with

state
• Good for be-

havioural de-
scription

• Main construct
• Node (close to

UML behaviour)
• Static (everything

pre- instantiated)
• Explicit flows only

IMAGE 2. SysML and SCADE semantic comparison

Deeper analysis shows that the SCADE and SysML
notations are very complementary. The ideal pivot
point for model transformations is the class/ node inter-
face. When concentrating on this construct, the user
gains a hybrid view on the overall model: a dynamic,
object-oriented view of the model architecture linked
with a static, instantiated and synchronous view on
behaviour.

If such a model translator is additionally based on OSA
(open software architecture) concepts and commonly
accepted standards such as XMI2 and a meta-model
approach, it can easily be built in a very generic way,
allowing adaptations for all kinds of UML2/SysML
dialects and specific profiles.

The SCADE Gateway to Rhapsody® is an instance of
such an implementation.

2.1.2. Example Requirements management inter-

face

Requirements are usually formulated in textual form
and stored either in a database or in text processing
tools.

Requirements may be further refined and result in
software or system design, CAD drawings or other
format.

An open development platform must therefore provide
a means to link requirements specifications (in what-
ever format) with designs and models, test cases or
source code (in whatever format).

The SCADE requirements management gateway en-
ables the user to link all his tools and data together and
have instant and global understanding of the interde-
pendencies and relationships.

IMAGE 3. Requirements management gateway pro-

viding traceability throughout the entire life-
cycle

2.2. The core of the certified software factory

At the centre of the software factory, there is a reposi-
tory containing the information that describes the be-
haviour of the software.

On the one hand, this model complies with the notion
of an UML-Metamodel, meaning that the contained
information can readily be accessed through a stan-
dardized interface (script language or Eclipse).

On the other hand, the model must obey very strict
requirements in order to comply with the requirements
imposed by the standards that drive safety-related sys-
tems development: DO-178B, IEC61508-1 and –3,
EN50128.

High integrity levels imply formal models and unambi-
guous semantics that allow representing the typical
features of embedded software systems: reactive sys-
tems with data flow, discrete states and concurrency,
coupled with hard real-time constraints.

The SCADE modelling language has evolved from
LUSTRE, a formal, synchronous model description
language.

The user interface provides the developer with a very
intuitive view, based on block diagrams and state
charts, tightly integrated. Powerful constructs for vec-
torization of flows and operators tackle even the most
complex problems.

IMAGE 4. SCADE model representing a fully func-

tional automotive cruise control application

This model is immediately executable for verification
and validation purposes.

The development environment includes a powerful
software- in- the- loop simulator with model- level
debugging features.

Thanks to the formal nature of the model, it can also be
examined by formal/mathematical analysis and proof
engines, such as the integral SAT-solver Design Veri-
fier, which provides a formal proof of functional safety
properties.

The open software architecture makes this model fully
accessible through the customer’s specific tool suite
and provides transformation engines to and from this
environment.

It is also the basis for automatic generation of SDD
documents (software design descriptions) and, more
importantly, serves as direct input for certified code
generation.

IMAGE 5. Formal model as the hub of the SW design

process

Certified code generation ensures, that

• The code complies 100% with the model in
the sense that the code fully and deterministi-
cally represents the behaviour described in the
model

• The generated code complies with each and
every objective and requirement imposed by
the standards to which it has been qualified
(DO-178B up to Level A) and certified
(IEC61508, up to SIL 4)

For example, the generated C code does not contain
operations on pointers, no global variables, no indefi-
nite loops, no dynamic memory allocation etc.

At the same time, it fulfils very stringent requirements
related to memory usage and execution time.

It is absolutely comparable with highly optimized
hand- written code.

Moreover, it is totally target-agnostic and therefore
easily to be integrated on all platforms, from bare ma-
chine to complex distributed systems.

Certified code generation is a key to a completely de-
fined process that covers all steps from requirements
capture down to integration on target.

High quality of generated code and restriction to a very
small subset of C allow also to verify correct compila-
tion through compilation and automated verification of
a representative model containing the complete gener-
able subset of C in all its possible combinations and
nested operators, resulting in a combined testing proc-
ess which ensures and guarantees that each requirement
is correctly designed, modelled, coded, and the inte-
grated on the target hardware.

IMAGE 6. The combined testing process

3. Safe Systems Architectures

The tool suite and process outlined above ensure that
no systematic errors can be introduced into the soft-
ware design when transforming the system require-
ments relevant for software into an application.

Safe system architecture needs to also ensure that haz-
ards or spontaneous, non-systematic errors on the
hardware, sensors or from the environment will not
affect safe operation of the system.

Various approaches exist to this problem, some of
which include redundancy, dissimilarity and built- in
tests.

All of them go beyond the scope of this paper, but
share the same principle: A layered systems design that

clearly separates the application from the hardware and
usually incorporates a safe and certified operating sys-
tem.

An open software development environment must
directly support automatic integration of the generated
code onto such safe HW/SW platforms.

SCADE provides such interface to several certified/
qualifiable operating systems such as GHS Integrity,
Sysgo PikeOS or MicroC.

