
Checking Feasible Completeness of Domain Models with Natural
Language Queries

Christian Kop
Applied Informatics

Alpen-Adria Universitaet Klagenfurt
Universitaetsstrasse 65-67, 9202 Klagenfurt, Austria

christian.kop@aau.at

Abstract
During the design of information systems it is important to
know when a conceptual model of a database is complete.
Completing the conceptual database model is a
communication process between end users and designers.
At the end of the process, both kinds of stakeholders agree
that the model has reached a state where it can fulfill the
purpose for which it is designed. Natural language queries
play an important role as test cases in this process. They
are understandable by the end user and help to discuss the
model. Hence, this paper focuses on natural language
queries as one mean (among others) to test if a conceptual
model (domain model) is complete..
Keywords: domain models, controlled natural language
queries, completensess, quality, end user participation

1 Introduction
In information systems and data centric applications

it is necessary to check if all the necessary concepts are
modeled. Therefore, such a domain model must be
continuously checked in order to be complete.
Completion is a communication process between end
users and designers. At the end of the process, both kinds
of stakeholders agree that the model has reached a state
that fulfills its purpose. Speaking in terms of feasible
completeness introduced by Lindland and Solvberg et al.
(1994) they stop the completion process since “further
modeling is less beneficial than applying the model in its
current state” (Lindland and Solvberg et al. (1994), p.
46). For instance, a class diagram or entity relationship
diagram, which is used later on for a database can be seen
as complete if
• The relevant classes (entity types) attributes and

associations (relationships) appear in the model.
• Each attribute has the necessary data type
• The multiplicities are specified on each association
• The multiplicities of multi-valued attributes are

specified
• If necessary, a default value is specified for an

attribute

Copyright © 2012, Australian Computer Society, Inc. This
paper appeared at the 8th Asia-Pacific Conference on
Conceptual Modelling (APCCM 2012), Melbourne, Australia,
January-February 2012. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 130. A. K. Ghose and
F. Ferrarotti, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

• If necessary, it is specified if the value of an attribute
is mandatory or optional

• If necessary, attributes that have unique values are
declared.

• If necessary, it is specified if the value of an attribute
follows a certain format (e.g., format of a string that
must be a valid e-mail address).

• There is no open question or open task related to a
modeled attribute or class.

Some of these listed items are interesting for both, the
end user and conceptual modeler (i.e., classes, attributes,
associations). Some are more interesting for conceptual
modelers (e.g., the right data type, optional and mandatory
attribute values). The modeler might be also interested in
progress aspects (e.g., annotating open questions to model
elements).

Different presentation techniques can be used to find
defects and incompleteness of models. In Kop (2009a)
some of them are discussed. However, those techniques
depend that some information in the model already exists.
What about a complete new concept, which actually does
not yet appear in the model. In other words, this paper
focuses on the question: Are really all relevant concepts
already collected?

The purpose of the model must also be considered.
Usually, a conceptual database model is developed to
describe structural aspects. This structure also determines
the possibilities of the retrieval of data. The earlier, this
purpose can be tested the better it is. Therefore an
additional focus is: Does the model structurally support
retrieval of data?

For these questions, an additional, purpose driven
technique is needed. That means, a new concept is only
added, if it supports the retrieval purpose.

At least one researcher gave an interesting manual
solution how this can be achieved. In one of the exercises
given in his book, Rumbaugh (Rumbaugh 1991, p. 193)
explicitly gives an object diagram for a sports scoring
system and asks the reader to check manually if a couple
of natural language queries can be applied on this object
diagram.

Also a practical experience underlined the necessity of
such an approach. Requirements were collected in several
workshops. In one of the workshops the end users were
also asked to give examples for queries, which will be
applied on the database under development. They were
very engaged to produce such queries.

Although the initial idea of manually comparing
natural language queries with a domain model was found

Proceedings of the Eighth Asia-Pacific Conference on Conceptual Modelling (APCCM 2012), Melbourne, Australia

33

in the OMT book (Rumbaugh 1991), no research was
found so far, which describes in detail how such a
computer supported approach can look like. Therefore,
this paper addresses this research topic.

Tagging and chunking will be used as the linguistic
instruments and basis for natural language query analysis.
Furthermore, it will be described, which additional
information a meta-model must provide for this task.

The paper is therefore structured as follows. Section 2
gives an overview of work, which is related to this topic.
In this section also an overview of the previous work will
be given. Section 3 shows the aim of the approach by
giving a motivating example. Section 4 describes how the
meta-model must be extended, to be itself a support in this
process. Section 5 describes details on tagging and
chunking for natural language queries. Section 6 focuses
on the tests of the query analyzer and describes the tool. It
also discusses tagging and chunking for analyzing natural
language queries. Section 7 presents conclusions and
future work.

2 Related Work

2.1 Manual Strategy
In his book on Object Oriented Modeling, Rumbaugh et
al. gave an exercise (see p. 193). He provides the reader
with a partly completed object model in the sports domain.
In addition, the exercise contains 12 queries (e.g., “Find
all the members of a given team”, “Find the net score of a
competitor for a given figure at a given meet” etc.). In this
exercise, the reader is asked to explain how the object
diagram can be used for each of the specified natural
language queries. The exercise in the book is continued
and the queries are even reused. The reader is asked to add
methods to the object diagram to satisfy the queries
(Rumbaugh 191, p. 294). This book gives a good hint for
using queries as test cases at an early stage of modeling
but the procedure must be done manually. No computer
support is given, which tries to match the notions in the
query with the concepts in the object diagram.

2.2 Querying an Existing Database
Much research has been done to query existing

databases. In these approaches the final and stable
database is implemented and filled with data. Techniques
of natural language querying are described in many
research works (Berger et al. 2003, Hofstede et al. 1996,
Kardovácz 2005, Kapetainos et al. 2005, Kao et al. 1988,
Owei and Navathe et al. 1996, Stratica et al. 2005, Meng
and Siu, 2002, as well as Satori and Palmonari 2010).
Some operate on a relational database, others on a
conceptual model of the existing database. Some use
additional information derived from linguistic lexicons or
ontologies. For instance, such ontologies are needed to
expand the notions found in queries to similar notions
(synonyms etc.). This step is necessary in such
approaches, since it cannot be assumed that a query notion
matches with an identical concept of the database.
Machine learning approaches for natural language query
parsing were used by Mooney et al. (Tang 2001, Ge 2005,
Kate 2006, Wong 2006) in the Geo Query Project.

Panchenko et al. (2011) introduced an approach that
uses controlled natural language queries for querying
source code elements in a source code repository.

Visual query tools, were described in the following
works (Bloesch et al. 1996, Owei and Navathe 2001,
Jaakola 2003, Järvelin et al 2000). These tools operate on
the conceptual model and their main purpose is to produce
SQL statements, In these tools, needed classes and
attributes are graphically selected. Beside these, Embley
(1989) introduced forms to generate queries. This strategy
is also proposed by Terwillinger and Delcambre et al.
(2007).

The main objective of all techniques is to support
either the generation of a SQL query that can be executed
on the relational database or to directly retrieve data from
the database. As mentioned before, this implies a database
filled with data. It is thus not the task of these techniques
to check if something in the model is missing.

Opposite to that, the approach mentioned in this paper
is applied during domain modeling as early as possible.
Therefore, the focus is not the generation of SQL but to
test if the model is complete. It is thought as a help,
whenever it is necessary to check the model, before any
prototype or user interface form is built. Opposite to the
graphical query languages where the query is constructed
by navigating through the model, the end user must not
see the model during the creation of the queries. This has
the advantage that the user is not influenced by the model
but freely names the notions, which he needs for the
query. The query then helps to check if the designed
model can handle the notions used in the query.

2.3 Test Driven Development
Test driven Development, which is proposed by Beck
(2004) is included in this related work section, since its
paradigm can also be applied in this approach. In Test
Driven Development, the developer is enforced to design
and write test cases for small sized problems before he
starts to design and implement parts of a system. After he
has generated these test cases, he writes the first
implementation of the requirements, which he lets fail.
Iteratively, he improves his implementation until it is
successful for the written tests. The paradigm behind this
is pointed out by Kent Beck: “Failure is progress” (Beck
2004, p. 5).

Using natural language queries as test cases can be
similar to this paradigm, since there is no need for a nearly
complete conceptual model of the database, which has to
be implemented. The process of improving the conceptual
model can also start with a very lean initial model. During
the “tests”, the model iteratively grows and gets improved.
As a side effect, the stakeholders learn more and more
about the model.

2.4 Model Quality Approaches
According to Lindland and Solvberg et al. (1994) three
dimensions have to be considered for conceptual modeling
quality, namely: syntax, semantics and pragmatics. If the
model follows the rules and the grammar defined in its
corresponding meta-model, then the model has a syntactic
quality. Semantic quality is given; if the model only
contains true statements of the domain and is complete (no
important concepts or statements are missing). Lastly,
pragmatic quality relates the model to the interpretation of
the user. A pragmatic quality of a model is given, if it is

CRPIT Volume 130 - Conceptual Modelling 2012

34

understandable to a human stakeholder or a system, which
has to understand the model. Since quality of a model in
general and in particular completeness of a model cannot
be fully achieved, the authors have introduced the notions
feasible validity, feasible completeness (semantic quality)
and feasible comprehension (pragmatic quality). That
means, that the model can be improved “until it reaches a
state, where modeling is less beneficial than applying the
model in its current state” (see: Lindland and Solvberg
et.al, p. 46, (1994)).

In order to improve the quality, Assenova and
Johannesson (1996) propose to use well defined model
transformations. Moody (1996) describes that
comprehensibility of a conceptual model can be enhanced
if icons and pictures are introduced instead of simple
graphical primitives (rectangles, ellipses etc.). In an
extensive literature study of the same author (Moodey
2005) on the quality of model, it was concluded that
conceptual modeling must shift from an art to an
engineering discipline where quality plays an important
role.

Easterbrook et al. (2005) made an exploratory study
and showed that view points are also an important
technique to improve the model quality.

The verbalization approaches described by Dalianis
(1992) and Halpin et al. (2006) aim at getting a better
understanding of the conceptual model by presenting users
a natural language translation (verbalization) of the model.

Batini, Ceri and Navathe (1992) used Dataflow
diagrams to complement and complete the conceptual
models.

The approach described in this paper also aims to
improve the completeness of a conceptual model.
Therefore it can be seen as an additional support for
checking the quality of a domain model.

2.5 Previous Work
In the own previous work (Kop 2009a) visualization
techniques (graphical visualization, tabular representation
and verbalization) were discussed. It was also described
how some of them can help to detect incompleteness. For
instance, a cell, which is empty in a tabular representation
is a hint that something in the model is missing. Model
elements can be annotated with explicit progress
information (e.g., an open question for a certain model
element). Such annotated elements give hints for model
incompleteness. However, all these techniques present
incompleteness on the basis of existing model elements.
This supports the extension of the model elements but it
does not guarantee that no important concept is forgotten.
Therefore, in another previous work, (Kop 2009b)
controlled natural language query pattern and a parsing
approach is introduced. A Controlled Natural Language is
a language that has a restricted grammar and dictionaries
(Fuchs et al. 2005). Though, first results were promising,
it turned out that different sentence patterns can contradict
each other if the language grows.

Whereas previous work focused visualization
techniques, parsing and the communication process, this
paper focuses on query analyzing based on tagging and
chunking and a supportive meta-model.

3 A Motivating Example and Aims
The main aim is to check if each notion, which appears in
a query is also represented in the model. Otherwise the
model must be refined. Beside this, such an approach can
support additional aims, which will be described in this
section.

To show how the approach works, it will be motivated
by the example domain taken and adopted from the Geo
Query Project. Whereas there, the database model was a
basis for querying the database and a machine learning
approach for natural language query parsing, here it is
used as a motivating example that queries can also be
applied on a work in progress model. Therefore, it is
supposed that designers and end users still work on the
model presented in Figure 1. In this figure a first
intermediate result is presented, which should describe
some information about the states in the US.

The model is not yet finished. The stakeholders now
decide to use queries to see if something is missing.

 Now it is supposed that the end users would like to
use the query “Which mountains exist in the several
states” in the final database, which is currently represented
only by the intermediate work in progress model of Figure
1. As it can be easily seen, there is already a concept
“state” in the model but no concept “mountain” can be
found. Such a query won’t work in the final database if the
model is not refined and the concept “mountain” as well
as all its related information (i.e., attributes and
associations to other classes) is added to the model. This
example demonstrates the first important aim of the
approach.

The queries support to find gaps in the model.
This is also a step towards Kent Beck’s statement “Failure
is Progress”, since the stakeholders know that something
is missing and they must refine the model.

However, the idea to apply queries on a model can
have other advantages even if the model is (nearly)
complete. Now it is supposed, that the following query is
applied on the model: “Which rivers flow through the
US”. The notion “rivers” is found in the model.
Therefore, it can be said that there is at least minimal
information provided by the model, which can help the
query to become successful.

State
state name
abbreviation
population
area
highest point
lowest point
highest elevation
lowest elevation

River

river name
length

City

city name
city population
isCapital

Lake

lake area
lake name

Road

road number

borders
** *

1..*

1..* *

**

*

1

State
state name
abbreviation
population
area
highest point
lowest point
highest elevation
lowest elevation

State
state name
abbreviation
population
area
highest point
lowest point
highest elevation
lowest elevation

River

river name
length

River

river name
length

City

city name
city population
isCapital

City

city name
city population
isCapital

Lake

lake area
lake name

Lake

lake area
lake name

Road

road number

Road

road number

borders
** *

1..*

1..* *

**

*

1

Figure 1: Example of a Domain Model

Proceedings of the Eighth Asia-Pacific Conference on Conceptual Modelling (APCCM 2012), Melbourne, Australia

35

Of course, if the concept found in the model is a class
(e.g., “river”), then the stakeholders must be aware, which
kind of information (all information about rivers or only
specific information – e.g., the river name) is needed.
Another thing that has to be considered is the notion “US”.
A query applied on a work in progress model can support
the detection of more information than model concepts. If
the model is build for all nations in the world and state is
synonymously used, then “US” is an example of a state.
Particularly, it might be the value of the “state name”.
However, if the model only represents the information
about US states as it is intended here, then “US” can be
treated more like a view (i.e., “all states”). Such a view
might become an external database view. Once again
“failure” (i.e., “US” is not found in the model the first
time) can be a progress. After applying the query on the
model, the stakeholders know that in some queries a view
on all the states is required. The notion “US” can now be
collected and related to specific concepts in the model.
The next time, a query contains the notion “US” the tool
knows that “US” must be replaced by its related model
concepts and such a future query will be successful. Of
course it should be clear, that the model must be refined if
neither “US” nor “state” appear somehow in the model. In
such a case the stakeholder once again have the progress
information that the current model needs completion.

Even if a query is successful (i.e., nothing is missing)
this can be an important progress information. The
stakeholders know that the model is at least complete with
respect to this query.

All this shows further aims of the approach. With
queries, the detection of synonyms (another, linguistic
view on a concept), external database views and examples
can be supported. All this information is very useful in
further stages of information systems development (e.g.,
examples can be used for testing the system after it has
been implemented).

Finally, the queries itself can be reused later on. This is
another big advantage and it can happen in two ways:

• The queries are functional requirements of how
the end user wants to retrieve the final database.
Queries or methods (Rumbaugh 1991) can be
developed manually from them.

• In more advanced information systems (see
Related Work Section), queries and the
additional information (i.e., synonyms, external
views) can be the basis for a natural language
query engine, which automatically retrieves the
data from the database.

To summarize the aims: Something, which looks like a
failure at the beginning, is a progress in a project.

Particularly, the approach helps to find gaps (i.e.,
missing concepts and associations); detect synonyms,
external views and examples; get functional requirements;
and to get a basis for a natural language query engine.

4 Metamodel, Process and Decisions
If query notions, which are not directly used as model
concepts are collected for future checks, then the meta-
model must be extended to give support. The next section
explains the meta-model and the ideas behind it.
Afterwards, the process is briefly described. Finally, the

decisions, which must be made by the stakeholders are
described.

4.1 Meta-model
Usually, each data model consists of classes, attributes,
associations (relationships) and other notions. Figure 2
shows the excerpt of the meta-model. It focuses on the
classes, attributes and the surrounding notions, which are
necessary to fulfill the aims of the approach. Each class
and attribute, which appears in the conceptual data model,
is generalized to the notion concept. Hence, one important
goal of a notion found in a query is to match it with a
concept in the conceptual data model. If this fails, this can
be a hint to refine the model. However, the notion in the
query can also be a circumscription of one concept or
many concepts used in the data model. In its simplest
form, the extracted query notion is a synonym of the
concept. To be able to handle this in further queries such
terms are collected in “synonym” (see Figure 2 – meta-
model). For instance, city and town might be
synonymously used in a certain domain. A notion in the
query can also be a view on one concept. For instance, in
the Geo Query Corpus, “US” is often mentioned in several
queries. However, “US” is not an example of one of the
data model concepts. Instead “US” means: “All states”.
Hence, it is a specialized view, which is based on the main
concept “state”. “US” is therefore collected in the concept
view descriptor (see meta-model in Figure 2). It is related
to the concept “state” via the has-main-concept
relationship. Whenever “US” is mentioned in a new query,
then it can be seen as a view on states. No refinement is
necessary, since it can be shown, that the data model
contains this notion. Other examples for concept view
descriptors in a university domain are “good student” or
“good mark” respectively. Let’s suppose the model for the
university already contains the concepts “student”,
“course” and “mark”. If “good student” is not found in the
model itself but can be resolved by a phrase “A good
student is a student, which has only marks A or B in
courses”, then “good student” is stored as a concept view
descriptor. Student itself is the main concept. The
subordinated concepts are “mark” and “course”. A
definition of a good student as given above is stored in the
concept view definition.

If a notion like “good mark” appears in the query and
it can be described as “good mark is A or B” then mark is
the main concept. No subordinated concepts exist here,
since the main concept is an attribute, which is defined by
its specific values. This strategy is also applied, if the
concept view descriptor does not directly match with a
concept in the model. Let’s suppose that the query has the
notion “good grade”. If “grade” itself can be treated as a
synonym of “mark”, then “good grade” is simply stored in
the concept view descriptor.

Finally, if a notion is mentioned, which covers more
than one concept it is stored in the model view descriptor.
A model view descriptor is a specialized view on several
co-equal model concepts. An example would be, if the
query asks for “List the shipments” and shipment is
already realized as a relationship between “product” and
“customer” in the existing model (i.e., products are
shipped to customers). Another example in a university
domain would be “List the academic staff”. If academic

CRPIT Volume 130 - Conceptual Modelling 2012

36

staff must not be modeled as an own class in the domain
model but is only a view on the union of already given
model concepts “professor” and “assistant”, then it is
stored in the model view descriptor. The definition of the
view is stored in the definition property of the model view
descriptor. The relationship has-involved-concepts (see
meta-model in Figure 2) relates “academic staff” with
“professor” and “assistant”.

Another special kind of view is the aggregation view.
Most often maximum or minimum values are needed (e.g.,
“the longest river”). In such a case, the notion “longest
river” is stored as an aggregation view descriptor. In the
definition this descriptor is replaced by a maximum- or
minimum function and this function must be applied on an
attribute (e.g., “max(river.length)”). If the aggregation
view descriptor “longest river” is mentioned a second time
in another query, then it can be resolved with the
aggregation function of the attribute.

If an instance or value is mentioned in the query, then
this instance can be stored in examples and related to the
concept to which it belongs. The next time the example is
mentioned, it is correctly replaced by its concept. It is
possible to store value descriptors (e.g., “large”, “old”) if
these descriptors can be extracted from a query clause
(e.g., “is old”, “must be old” etc.).

Of course, in all cases, in which a concept in the model
cannot be found, it must be checked if the model can be
refined.

Concept

Class Attribute

Value

View

Synonym Concept
View

Descriptor

Model
View

Descriptor

Value
Descriptor

*

*

*

1

1
1

*

**

*

1

1 *

1

has main
concept

*

*

has
subordinated
concept

has involved
concepts

restricts

is synonym of

belongs to
has has

is-a

is-a

is-a

Aggregation
View

Descriptor

0..1

1

Example *
1

given
by

has involved
attribute

Atomic Type

name
definition

name
definition

name name
definition

name
definition

name

name

type name

Concept

Class Attribute

Value

View

Synonym Concept
View

Descriptor

Model
View

Descriptor

Value
Descriptor

*

*

*

1

1
1

*

**

*

1

1 *

1

has main
concept

*

*

has
subordinated
concept

has involved
concepts

restricts

is synonym of

belongs to
has has

is-a

is-a

is-a

Aggregation
View

Descriptor

0..1

1

Example *
1

given
by

has involved
attribute

Atomic Type

name
definition

name
definition

name name
definition

name
definition

name

name

type name

Figure 2: The Meta-model

4.2 Process
The communication and negotiation process starts with an
initial model. This model is derived from requirements.
Afterwards, the stakeholders (i.e., conceptual modelers
and end users) have to identify and generate the queries,
which will be applied on the work in progress model. In

the optimal case, nobody of the stakeholders should see
the initial model. They should use their own words. This
shall also help to produce views of the concepts and the
model. Remember, according to Kent Beck’s position
“Failure is Progress”, progress information can be found.
Afterwards, the queries are executed automatically on the
current model. The tool and its linguistic instruments,
which will be described in Section 5, are responsible for
this task.

Based on the reports the tool produces, the
stakeholders must discuss the model. If failures are found
then new domain model requirements can be derived from
them. Decisions, which will be described in the next
subsection, must be made. The decisions have an
influence on the refinement and completion process of the
model. This whole process is finished if all the
stakeholders agree that no more new information can be
found or are required.

4.3 Decisions
If notions extracted from the queries do not match, it is the
task of the stakeholders to decide how these query notions
can be related to the model. Particularly, the stakeholders
have to decide the following:
• Is it a missing concept of the model? In that case

the model has to be refined and the missing concept
must be integrated into the model. Integration
means, that a class must be related to other classes
with associations, an attribute must be related to the
class to which it belongs.

• Is it an example of a concept, which is missing? In
that case the model has to be refined and the
missing concept must be integrated into the model.
Furthermore, the example must be collected and
related to the integrated concept.

• Is it a value descriptor but the concept (attribute) to
which the descriptor belongs does not exist? In this
case, the model has to be refined. At least the
missing attribute (may be, also the class of the
attribute) must be added. Then, the descriptor and
the examples, which are subsumed by the
descriptor, must be added.

• Is it a view but the concepts, on which the view is
based, do not currently exist? In this case, the
missing concepts must be integrated. The view
must then be collected for these concepts.

• Is it an example of a concept, value descriptor or a
view and all the necessary concepts already appear
in the model? In this case, only the example, value
descriptor or the view respectively have to be
collected and related to corresponding concepts.

5 Tool Architecture, Linguistic Instruments
and Query Interpretation

According to the last section, in which the meta-model is
explained, the most essential task that a tool must provide
is the extraction of noun phrases. These noun phrases can
then be matched against existing concepts in the model or
related notions, which describe views or examples of
model concepts. It is not only necessary to extract simple
words (e.g., “person”). If there are compound nouns (e.g.,
“lake name”) or if there are nouns that are specialized by

Proceedings of the Eighth Asia-Pacific Conference on Conceptual Modelling (APCCM 2012), Melbourne, Australia

37

adjectives (e.g., “highest elevation”) then these words
must be treated as a single notion. Well known linguistic
instruments for achieving this are tagging and chunking.
Generally speaking, tagging is the basis that relates words
to categories (e.g., lake = noun) but a word like “lake
name” or “highest elevation” is still treated as a sequence
of independent tagged (categorized) words. Chunking can
be built upon tagging. It examines the tagged word
sequence and summarizes certain sequences to a higher
level element (e.g., a noun phrase). In the succeeding
subsections, firstly an overview of the tool architecture is
given. Afterwards, the basic linguistic instruments,
namely tagging and chunking in the context of natural
language queries, will be described in more detail.
Finally, it will be explained how the chunking output is
used in the query interpreter and what the purpose of the
matching module is.

5.1 Architecture
The query analyzer consists of a graphical user interface
(GUI) for interaction with users. The query text, which is
loaded from a file or entered in a text area field is
forwarded to the query interpreter, which itself hand the
text over to supporting modules (chunking and tagging).
The most basic linguistic module is the tagging module. It
analyzes the text and returns the output to the chunker.
The chunker subsumes the results from the tagger and
forwards it to the query interpreter. This module then
extracts the necessary notions. The notions are forwarded
to a matching module, which interacts with the stored
work in progress domain model. The matching module
tries to compare the extracted notions with notions
already collected for the model (i.e., the model concepts
itself as well as views and examples). Figure 3 shows the
architecture.

Query Analyzer GUI

Query Interpreter

Chunking

Tagging
external
Tagger library

Matching Module

Query text

Query text

Query text Tagged
sentences

Chunked
sentences

Extracted
information

Match extracted information
with model information

Result

Model information:
concepts, views,
examples, example
descriptors

Query Analyzer GUI

Query Interpreter

Chunking

Tagging
external
Tagger library

Matching Module

Query text

Query text

Query text Tagged
sentences

Chunked
sentences

Extracted
information

Match extracted information
with model information

Result

Model information:
concepts, views,
examples, example
descriptors

Figure 3: Architecture of the Prototype

5.2 Tagging
For the initial step of linguistic analysis the Stanford
Tagger is used (Toutanova et al. 2003). A tagger is a tool,
which takes as input a text and returns a list of sentences
with tagged words (i.e., words categorized as noun, verb,
adjective etc.). The chosen tagger categorizes the words
according to the Penn-Treebank TagSet. In this tagset the
word categories together with some important linguistic
features of a word are encoded. If a noun is in plural then

the category NNS is chosen. If a proper noun is detected
then NNP is used.
For instance, for the query “which mountains exist in the
several states”, the external Stanford tagger library
produces the following output: “Which_WDT
mountains_NNS exist_VBP in_IN the_DT
several_JJ states_NNS“. At the end of each word
token, the tagger adds the category (e.g., WDT =
interrogative determiner/wh-determiner; NNS = plural
noun, VBP = verb non 3rd person form; IN = preposition
or subordinating conjunction; DT = determiner, JJ =
adjective)

The external tagger library is enapsulated in a tagger
module. In this module the output is checked for
inconsistent word categories. If a wrongly categorized
word is found, it is changed to another category that better
fits with the context in which it is embedded. The other
task of this additional module is to prepare the tags for the
chunker module. For the given example query, it is
checked if JJ has a more specific meaning. Words like
“several”, “many”, “much” are categorized as adjectives
but they do not specify a characteristic of a concept. In
fact, they tell something about the set of concepts. For
such words, in the linguistic approach NTMS (naturalness
theoretic morphosyntax) developed by Mayerthaler, Fliedl
and Winkler (1998) the linguistic term quantifier was
introduced. Here, the term quantifier was adopted. Thus,
the category of the word “several” is changed from an
adjective to a quantifier.

5.3 Chunking
Chunking is useful to group words to a chunk that can be
seen as a phrase (e.g., a verb phrase or a noun phrase).
Details of chunking are described e.g., in (Sang and
Buchholz 2000). The implemented chunker, provides two
steps.

In the first step, it tries to find noun phrases and verb
phrases. The chunker module clusters nouns (e.g.,
customer number) as well as word categories strongly
related to nouns (e.g., articles, adjectives, quantifiers) to a
noun phrase (e.g., the customer number). In general, the
implemented rules follow the common rules of chunking
(e.g., article + adjective + noun = noun phrase). It
subsumes verbs and word categories, which are strongly
related to them (e.g., adverb, verb particle) to a verb
phrase. One exception exists. If the words “many” or
“much” follow the word “how” (e.g., “how many
persons”) then a word like “many” is not chunked with
“person” to a noun phrase but it is grouped with “how”.
Hence, instead of the output [how] [many persons] the
query chunker generates the output [How many]
[persons].

In the example “Which mountains exist in the several
states“, the chunker module generates the noun phrase
chunks NP [mountains] and NP [the several states]. It also
generates a verb phrase chunk, but this chunk only
contains VP [exist]. Most of other tags are taken as they
are. In the case of a preposition, the name P was chosen.
Hence, an abstraction of the result of this step can be
presented as WDT [Which] NP [mountains] VP [exist] P
[in] NP [the several states].

In the second chunking step it clusters a list of noun
phrases separated by prepositions to a more complex
noun phrase (CNP). This result is then forwarded to the

CRPIT Volume 130 - Conceptual Modelling 2012

38

query interpretation module. An abstraction of the result
can be presented as CNP [NP [mountains]] and CNP [NP
[the several states]]. This step is intended for phrases like
“… the several states of the US”. Here the abstracted
result is: CNP [NP [the several states], PP [P[of] , NP [the
US]]]. The reason is, that the phrase “… the several states
of the US” is one noun phrase.

5.4 Query Interpretation
The last linguistic step is the interpretation of the chunker
output. It is a combination of noun phrase extraction and
more refined parsing of specific patterns.

In a first step the query interpreter extracts all the noun
phrases. This guarantees that at least query notions can be
extracted even if a more specific pattern cannot be
detected. The found query notions are used to check if
they match against existing concepts, views or examples
(see Subsection 5.5). In our example about the mountains
and the several states, the query interpretation module
examines each complex noun phrase (CNP). It iterates
through all the noun phrases within a CNP and extracts the
nouns. If an adjective modifies a noun, then both the
adjective and noun is extracted. However, if a quantifier
like several, many etc. modifies the noun, then only the
noun is extracted. Determiners (e.g., “the”, “a”, “an”) are
ignored for the extraction process. Also the first noun
phrase is ignored if the first noun phrase only contains
meta- information (e.g., “set”, “list” in phrases like “… the
set of …”, “… the list of …”).

More specific patterns are constraint sentences (e.g.,
“The height must be greater than 3000”). These sentences
can be used within a query text to constrain the query
itself (e.g., “Tell me the mountains in Colorado”). Such
constraint sentences can also have adjectives at the end
(e.g. “must be old”). If such adjectives are found, then
these adjectives are collected as value descriptor
candidates. Other, more specific patterns are values or
numbers at the end of a noun or proper nouns following
the verb “is”.

5.5 Matching and Path Finding Module
If all the notions are extracted the system tries to match
the notions found in the query with the concepts, views
and examples actually collected for the domain model. If
all the notions in the queries are found in the model or in
model related information (i.e., views, examples), then the
query is successful. To achieve this, the extracted notions
are firstly compared with the concepts in the model (i.e.,
can the extracted notion, or its singular form be found in
the model). If an exact match is not successful, then the
modul tries to match the head of a noun phrase. For
instance, if the module cannot find a match for an
adjective+noun combination (e.g., “good student”) then it
tries to find a match for the noun only. If this does not
work then the extracted notion is searched in the views
(synonym, concept view descriptor or model view
descriptor). If this doesn’t work either, the examples are
examined (i.e., is the query notion an example of a
concept). Since the views as well as the examples are
related to a model concept, this notion can be traced back.
Therefore, in any of the above mentioned cases, the notion
found in the query can be replaced by the concept in the

model to accomplish the next step. If all the notions
extracted from the query are found in the model, then the
tool can determine a path between these model concepts.

Path finding is done by checking if all the concepts,
which are necessary for the query belong to the same
connected component within the conceptual model graph.
With this step it is possible to find missing associations.

6 Tests and Prototype

6.1 Tests
Natural language queries, which were found in literature
and own created queries were taken as test cases to test
and improve the linguistic instruments. Among these test
cases, the greatest set of natural language queries came
from the Geo Query Project. In this project 880 query
sentences are used. Theses sentences can be categorized in
queries starting with “What”, “How”, “Which”, “Where”
and other queries. These other queries do not start with an
interrogative but start with a verb (e.g., “list”, “give me”,
“name the”, etc.) or they neither start with a verb nor with
an interrogative (e.g., only a noun phrase is used for the
query). The majority of query sentences is provided for
queries starting with “What” followed by “How” and
“Which”.

Especially in English, words often can be used as a
noun and a verb. This can cause a wrong categorization,
since the tagger assumes a noun although a verb is needed.
For instance the word “border” can be at least categorized
as a noun (e.g., “the border”) or a verb (e.g., “to border”).
In an incomplete domain model you cannot rely that the
model itself can disambiguate the word to a specific
category (e.g., either verb or noun). Another example is
“name the capital … “. The tagger treats name as a noun.
However, in the context of the query “Name the …”, the
sentence starts with a verb. Therefore, some cases would
fail because the tagger wrongly categorizes a word in the
sentence. With the additional consistency checking step
within the tagging module, such problems can be
considered. This was done by introducing an additional
context window (sequence of word categories), in which
elements of that sequence are compared with their
neighbors. Also some hard problem cases were detected,
in which a solution could only be achieved by broadening
the context window. Such a problem appeared for instance
with “which” in the middle of a sentence. A query like
“Which person offers which course” is only analyzable, if
the whole query is treated as the context.

In the Geo Query Corpus proper nouns were written in
lower characters (e.g., “texas” instead of “Texas”). This
happened, since the queries were extracted from a
knowledge base where all words of a query must be
written in lower case. In most of the cases this is not
problematic, since the tagger categorizes such a proper
noun as a common noun. This is not perfect, but at least it
had the effect that they could be extracted as relevant
query notions. In some specific cases however, tagging
even did not classify such words as nouns. This problem
can only be fixed if the writer is enforced to write proper
nouns correctly with a capital letter at the beginning.

To give the reader an impression what kind of
syntactical structures of query sentences can be analyzed,

Proceedings of the Eighth Asia-Pacific Conference on Conceptual Modelling (APCCM 2012), Melbourne, Australia

39

a further example of the Geo Query Project is given and
some examples from other literature.

One of the complex queries in the Geo Query Project
is: “What are the major cities in the states through which
the major river in Virginia runs.” The query interpreter
extracts “major cities”, “states”, “major river”, “Virginia”.
Afterwards this information is matched with the model
and model related information (e.g., examples, views).

The work of (Owei and Navathe 2001) gives the good
query example “What courses is the student whose name
is Marshall taking from associate professor 'Jones'.” The
query interpreter extracts “courses”, “name”, “Marshall”,
and “associate professor ‘Jones’”. Furthermore, it is
extracted that “associate professor is restricted by “Jones”
and “name is restricted by Marshall”. The extracted two
constraints help to indicated that an attribute is needed if,
for instance, “associate professor” is already modeled as a
class.

Other query sentences similar to the Geo Query
sentences but related to the traveling domain were found
in (Meng and Siu, 2002). One of these sentences is: “Give
me the least expensive first class round trip ticket on US
air from Cleveland to Miami.”. Here the extracted query
notions are “least expensive first class round trip ticket”,
“US air”, “Cleveland” and “Miami”.

Finally another query sentence, which Rumbaugh et al
(1991) gave in the exercise within the OMT book is:
“Find the set of all individuals who competed in all of the
events held in a season.”. Here the notions “individuals”,
“event” and “seasons” are extracted by the interpreter.

It can be concluded, that tagging and chunking
provides more flexibility for sentences than parsing can
do. With tagging and chunking it is at least possible to
extract important notions though the whole syntactic
structure cannot be completely parsed. These extracted
notions can then be matched with elements of the work in
progress domain model. However, even with tagging and
chunking it turned out, that too much syntactical freedom
is not successful and regulations must be introduced. The
examples given above should give an impression about
possible syntactical variations of natural language queries.
Since the queries here are treated as functional
requirements, regulations can be introduced with the same
purpose as in the field of requirements engineering (i.e., to
avoid misinterpretations).

6.2 Prototype
The prototype is implemented in Java. The query analyzer
tool is an add-on to an existing tool, which graphically
represents classes and attributes as nodes. Associations
between classes appear as edges between two class nodes.
An edge between an attribute and a class indicates that the
attribute belongs to that class. The query tool itself has a
text area input. It also accepts more than one sentence
(e.g., “Name the river lengths in Colorado. The length
must be greater than … “). If the query is successfully
applied on the model, the relevant nodes and edges are
highlighted such that the user sees the path between these
nodes. In the tool this is done by painting the relevant
edges and nodes with red color. However, if a notion in
the query is not found in the model (neither as a concept
nor as a view or example) then an error is presented to the
end user. The next four figures show two examples. In the
first example the query “Name the capital that Texas has“

is successful, since capital can be found in the model and
Texas was already collected as an example of the model
concept “state”. Therefore, in the editor view the path
between the found concepts is provided to the end user.
The query analyzer GUI prints no errors (see Figures 4
and 5). In the second example (e.g., “Which mountains
exist in the several states“) the notion “mountains” is not
found in the model or in the related views and examples.
Therefore, the query analyzer GUI returns an error
message. Only the found concept “state” is highlighted in
red in the graphical view (see Figures 6 and 7).

Figure 4: Report for the first query

Figure 5: Graphical result for the first query

Figure 6: Report for the second query

CRPIT Volume 130 - Conceptual Modelling 2012

40

Figure 7: Graphical result for the second query

7 Conclusion and Future Work
It is clear that full completeness cannot be achieved.

Instead, feasible completeness is the goal of a completion
process. A mix of techniques, each supporting a certain
aspect must be used. In this paper one possible approach
within this technique mix was presented.

Particularly, it was explained how natural language
queries as test cases for a domain model can be supported
by a meta-model and the linguistic instruments tagging
and chunking. From the tests it can be concluded that
tagging and chunking is helpful. However, regulations are
still needed to avoid misinterpretation. Hence, it remains
still a controlled natural language. Especially, this is
necessary if much more information than only noun
phrases must be extracted. For instance if a query should
check if two concepts are directly related to each other or
if multiplicities are specified, then a restrictive sentence
pattern is necessary (e.g., Is X related/connected to Y,
Does X own at least 1 Y). As it is exemplified in
requirements engineering such regulation are not only
restrictions but can also be seen as a support for the
stakeholders to define clear and comprehensible query
requirements.

Future work will continue to collect further query test
cases and to apply further tests on the query analyzer.

More attention will also be given to the association
names and their roles in the process of completing the
model with natural language queries.

Acknowledgement: I thank the persons, who were

involved in the review process of this paper. Their hints
and suggestions were very helpful for the improvement of
the paper.

8 References
Assenova P. and Johannesson P. (1996): Improving the

Quality in Conceputal Modelling by the Use of
Schema Transformations. Proceedings of the 15th
International Conference on Conceptual Modeling,
Cottbus, Germany, LNCS 1157, 277 – 291, Springer
Verlag.

Batini, C. Ceri, S., and Navathe, S. (1992): Conceptual
Database Design – An Entity Relationship Approach.
The Benjamin Cummings Publishing Company.

Beck, K. (2004): Test Driven Development by Example.
Addison Wesley Publishing Company, 5th Printing.

Berger, H., Dittenbach, M., and Merkl, D. (2003):
Querying Tourism Information Systems in Natural
Language. Information Systems Technology and its
Applications – Proceedings of the 2nd Conference
ISTA 2003, GI Lecture Notes in Informatics, 30, 153
– 165, Koellen Verlag, Bonn.

Bloesch, A.C. and Halpin, T.A. (1996): ConQuer: A
Conceptual Query Language. Proceedings of the
15th International Conference on Conceptual
Modeling, Cottbus, Germany, LNCS 1157, 121 –
133, Springer Verlag.

Controlled Natural Language:
http://sites.google.com/site/controllednaturallanguag
e/. Accessed 13. Oct. 2011.

Dalianis, H. (1992): A method for validating a conceptual
model by natural language discourse generation.
Proceedings of the Fourth International Conference
CAiSE’92 on Advanced Information Systems
Engineering, Lecture Notes in Computer Sciences
LNCS 594, 425 – 444, Springer Verlag.

Embley, D.W. (1989): NFQL: The Natural Forms Query
Language. ACM Transactions on Database Systems,
14(2), 168 – 211.

Easterbrook, St., Yu, E., Aranda, J., Fan, Y., Horkoff, J.,
Leica, M., and Quadir, R.A. (2005): Do Viewpoints
Lead to Better Conceptual Models? An Exporatory
Case Study. Proceedings of the 13th IEEE
Conferences n Requirements Engineering (RE’05).
199 – 208, IEEE Press.

Fuchs, N.E., Höfler, S., Kaljurand, K., Rinaldi, F., and
Schneider, G. (2005): Attempto Controlled English:
A Knowledge Representation Languagem Readable
by Humans and Machines. First International
Summer School 2005, Lecture Notes in Computer
Science LNCS. 3564, 213 – 250, Springer Verlag,

Ge, R. and Mooney, R.J. (2005): A Statistical Semantic
Parser that Integrates Syntax and Semantics.
Proceedings of the Ninth Conference on
Computational Natural Language Learning, Ann
Arbor, MI, 9 - 16.

Geo Query Project
http://www.cs.utexas.edu/users/ml/geo.html.
Accessed 13. Oct. 2011.

Halpin T. and Curland, M. (2006): Automated
Verbalization for ORM 2. Proceedings of OTM 2006
Workshop -On the Move to Meaningful Internet
Systems 2006, LNCS 4278, 1181 – 1190, Springer
Verlag.

ter Hofstede, A.H.M., Proper, H.A., and van der Weide,
Th. P. 1996: Exploring Fact Verbalizations for
Conceptual Query Formulation. Proceedings of the
Second International Workshop on Applications of
Natural Language to Information Systems, 40 – 51,
IOS Press

Proceedings of the Eighth Asia-Pacific Conference on Conceptual Modelling (APCCM 2012), Melbourne, Australia

41

Jaakkola, H. and Thalheim, B. (2003): Visual SQL –
High Quality ER Based Query Treatment.
Proceedings of Conceptual Modeling for Novel
Application Domains, LNCS 2814, 129 – 139,
Springer Verlag.

Järvelin, K., Niemi, T., and Salminen, A. (2000): The
visual query language CQL for transitive and
relational computation. Data & Knowledge
Engineering 35, 39 – 51.

Kardovácz, Z.T. (2005), On the Transformation of
Sentences with Genetive Relations to SQL Queries.
Proceedings of the 10th International Conference on
Applications of Natural Language to Information
Systems (NLDB 2005), LNCS 3531, 10 – 20,
Springer Verlag.

Kapetainos, E., Baer, D., and Groenewoud, P. (2005):
Simplifying syntactic and semantic parsing of NL-
based queries in adavanced application domains,
Data & Knowledge Engineeing Journal , 55, 38 –
58.

Kao, M., Cercone, N., and Luk, W.-S. (1988): Providing
quality responses with natural language interfaces:
the null value problem. IEEE Transactions on
Software Engineering, 14 (7), 959 – 984, IEEE
Press.

Kate, R.J. and Mooney, R.J. (2006): Using String-Kernels
for Learning Semantic Parsers. COLING/ACL
Proceedings, Sydney, 2006, 913-920.

Kop Ch: (2009a): Visualizing Conceptual Schemas with
their Sources and Progress. International Journal on
Advances in Software, International Academy,
Research and Industry Association (IARIA), 2 (2 u.
3), pp. 245-258.

Kop, Ch. (2009b): Continuous conceptual schema quality
checking. Proceedings of the 4th International
Conference on Software and Data Technologies,
186 – 193, INSTICC Press.

Lindland, O., Sindre, G., and Solvberg, A. (1994):
Understanding Quality in Conceptual Modeling,
IEEE Software March 1994, 29 – 42, IEEE Press.

Mayerthaler, W., Fiedl, G., Winkler, Ch. (1998): Lexikon
der Natürlichskeitstheoretischen Morphosyntax,
Stauffenburg Verlag, Tübingen.

Meng, H.M. and Siu, K-Ch. (2002): Semiautomatic
Acquistion of Semantic Structures for Understanding
Domain-Specific Natural Language Queries. IEEE
Transactions on Knowledge and Data Engineering,
14 (1), 172 – 181, IEEE Press.

Moody, D. (1996): Graphical Entity Relationship Models:
Towards a More User Understandable
Representation of Data. Proceedings of the 15th
International Conference on Conceptual Modeling,
Cottbus, Germany, Lecture Notes in Computer
Science (LNCS), 1157, 227 – 245, Springer Verlag.

Moody, D. (2005): Theoretical and practical issues in
evaluating quality of conceptual models: current state
and future directions. Data & Knowledge
Engineering, 55, 243 - 276.

Owei, V., Rhee, H-S., and Navathe, S. (1997): Natural
Language Query Filtration in the Conceptual Query
Language. Proceedings of the 30th Hawaii
International Conference on System Science, 3. 539
– 550, IEEE Press.

Owei, V., Navathe, S. (2001): Enriching the conceptual
basis for query formulation through relationship
semantics in databases. Journal of Information
Systems Vol 26, 445 – 475, Elsevier Publ. Company.

Panchenko, O., Müller, St., Plattner, H., Zeier, A., (2011):
Querying Source Code Using a Controlled Natural
Language. Proceedings of the Sixth International
Conference on Software Engineering Advances
(ICSEA), pp. 369 – 373.

Penn-Treebank TagSet:
http://www.cis.upenn.edu/~treebank/. Accessed 13.
Oct. 2011.

Rumbaugh, J., Blaha, M., Premelani, W., Eddy, F., and
Lorensen, W. (1991): Object-Oriented Modeling and
Design. Prentice Hall International Inc. Publ.
Company.

Sang, E.F.T.K. and Buchholz, S. (2000) Introduction to
the CoNLL-2000 Shared Task: Chunking.
Proceedings of CoNLL-200 and LLL-2000, 127-132.

Sartori F. and Palmonari M. (2010): Query Expansion
for the legal domain – a case study from the JUMAS
project. Proceedings of the 4th International
Workshop Ontology, Conceptualization and
Epistomology for Information Systems, Software
Engineering and Service Sience (ONTOSE 2010),
Lecture Notes in Business Information Processing
(LNBIP), 62, 107 – 122, Springer Verlag.

Stratica, N., Kosseim, L., and Desai, B.C. (2005): Using
semantic templates for a natural language interface to
the CINDI virtual library. Data & Knowledge
Engineering, 55, 4 – 19.

Tang, L.R. and Mooney, R.J. (2001): Using Multiple
Clause Constructors in Inductive Logic Programming
for Semantic Parsing. Proceedings of the 12th
European Conference on Machine Learning (ECML-
2001), 466-477.

Terwillinger, J.F., Delcambre, L.M., and Logan, J
(2007).: Querying through a user interface. Data &
Knowledge Engineering, 63, 774 – 794.

Toutanova, K., Klein D., Manning, C.D., and Singer, Y.
(2003) : Feature rich part-of speech tagging with a
cyclic denpendency network. Proceedings of HLT-
NAACL, 252 – 259.

Wong, Y.W. and Mooney, R.J. (2006): Learning for
Semantic Parsing with Statistical Machine
Translation. Proceedings of the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics (HLT/NAACL-2006), New York, 439-
446

CRPIT Volume 130 - Conceptual Modelling 2012

42

