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Abstract 
During the design of information systems it is important to 
know when a conceptual model of a database is complete. 
Completing the conceptual database model is a 
communication process between end users and designers. 
At the end of the process, both kinds of stakeholders agree 
that the model has reached a state where it can fulfill the 
purpose for which it is designed.  Natural language queries 
play an important role as test cases in this process. They 
are understandable by the end user and help to discuss the 
model. Hence, this paper focuses on natural language 
queries as one mean (among others) to test if a conceptual 
model (domain model) is complete..  
Keywords: domain models, controlled natural language 
queries, completensess, quality, end user participation 

1 Introduction  
In information systems and data centric applications 

it is necessary to check if all the necessary concepts are 
modeled. Therefore, such a domain model must be 
continuously checked in order to be complete. 
Completion is a communication process between end 
users and designers. At the end of the process, both kinds 
of stakeholders agree that the model has reached a state 
that fulfills its purpose. Speaking in terms of feasible 
completeness introduced by Lindland and Solvberg et al. 
(1994) they stop the completion process since “further 
modeling is less beneficial than applying the model in its 
current state” (Lindland and Solvberg et al. (1994), p. 
46). For instance, a class diagram or entity relationship 
diagram, which is used later on for a database can be seen 
as complete if 
• The relevant classes (entity types) attributes and 

associations (relationships) appear in the model. 
• Each attribute has the necessary data type  
• The multiplicities are specified on each association 
• The multiplicities of multi-valued attributes are 

specified 
• If necessary, a default value is specified for an 

attribute 
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• If necessary, it is specified if the value of an attribute 
is mandatory or optional 

• If necessary, attributes that have unique values are 
declared. 

• If necessary, it is specified if the value of an attribute 
follows a certain format (e.g., format of a string that 
must be a valid e-mail address). 

• There is no open question or open task related to a 
modeled attribute or class. 

Some of these listed items are interesting for both, the 
end user and conceptual modeler (i.e., classes, attributes, 
associations). Some are more interesting for conceptual 
modelers (e.g., the right data type, optional and mandatory 
attribute values). The modeler might be also interested in 
progress aspects (e.g., annotating open questions to model 
elements).  

Different presentation techniques can be used to find 
defects and incompleteness of models. In Kop (2009a) 
some of them are discussed. However, those techniques 
depend that some information in the model already exists. 
What about a complete new concept, which actually does 
not yet appear in the model. In other words, this paper 
focuses on the question: Are really all relevant concepts 
already collected? 

The purpose of the model must also be considered. 
Usually, a conceptual database model is developed to 
describe structural aspects. This structure also determines 
the possibilities of the retrieval of data. The earlier, this 
purpose can be tested the better it is. Therefore an 
additional focus is: Does the model structurally support 
retrieval of data? 

For these questions, an additional, purpose driven 
technique is needed. That means, a new concept is only 
added, if it supports the retrieval purpose.  

At least one researcher gave an interesting manual 
solution how this can be achieved. In one of the exercises 
given in his  book, Rumbaugh  (Rumbaugh 1991, p. 193) 
explicitly gives an object diagram for a sports scoring 
system and asks the reader to check manually if a couple 
of natural language queries can be applied on this object 
diagram. 

Also a practical experience underlined the necessity of 
such an approach. Requirements were collected in several 
workshops. In one of the workshops the end users were 
also asked to give examples for queries, which will be 
applied on the database under development. They were 
very engaged to produce such queries. 

Although the initial idea of manually comparing 
natural language queries with a domain model was found 
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in the OMT book (Rumbaugh 1991), no research was 
found so far, which describes in detail how such a 
computer supported approach can look like. Therefore, 
this paper addresses this research topic. 

Tagging and chunking will be used as the linguistic 
instruments and basis for natural language query analysis. 
Furthermore, it will be described, which additional 
information a meta-model must provide for this task.  

The paper is therefore structured as follows. Section 2 
gives an overview of work, which is related to this topic. 
In this section also an overview of the previous work will 
be given. Section 3 shows the aim of the approach by 
giving a motivating example. Section 4 describes how the 
meta-model must be extended, to be itself a support in this 
process.  Section 5 describes details on tagging and 
chunking for natural language queries. Section 6 focuses 
on the tests of the query analyzer and describes the tool. It 
also discusses tagging and chunking for analyzing natural 
language queries. Section 7 presents conclusions and 
future work. 

2 Related Work 

2.1 Manual Strategy  
In his book on Object Oriented Modeling, Rumbaugh et 
al. gave an exercise (see p. 193). He provides the reader 
with a partly completed object model in the sports domain. 
In addition, the exercise contains 12 queries (e.g., “Find 
all the members of a given team”, “Find the net score of a 
competitor for a given figure at a given meet” etc.). In this 
exercise, the reader is asked to explain how the object 
diagram can be used for each of the specified natural 
language queries. The exercise in the book is continued 
and the queries are even reused. The reader is asked to add 
methods to the object diagram to satisfy the queries 
(Rumbaugh 191, p. 294). This book gives a good hint for 
using queries as test cases at an early stage of modeling 
but the procedure must be done manually. No computer 
support is given, which tries to match the notions in the 
query with the concepts in the object diagram. 

2.2  Querying an Existing Database  
Much research has been done to query existing 

databases. In these approaches the final and stable 
database is implemented and filled with data. Techniques 
of natural language querying are described in many 
research works (Berger et al. 2003, Hofstede et al. 1996, 
Kardovácz 2005, Kapetainos et al. 2005, Kao et al. 1988, 
Owei and Navathe et al. 1996, Stratica et al. 2005, Meng 
and Siu, 2002, as well as Satori and Palmonari 2010). 
Some operate on a relational database, others on a 
conceptual model of the existing database. Some use 
additional information derived from linguistic lexicons or 
ontologies. For instance, such ontologies are needed to 
expand the notions found in queries to similar notions 
(synonyms etc.). This step is necessary in such 
approaches, since it cannot be assumed that a query notion 
matches with an identical concept of the database.  
Machine learning approaches for natural language query 
parsing were used by Mooney et al. (Tang 2001, Ge 2005,  
Kate 2006, Wong 2006) in the Geo Query Project.  

Panchenko et al. (2011) introduced an approach that 
uses controlled natural language queries for querying 
source code elements in a source code repository. 

Visual query tools, were described in the following 
works (Bloesch et al. 1996, Owei and Navathe 2001, 
Jaakola 2003, Järvelin et al 2000). These tools operate on 
the conceptual model and their main purpose is to produce 
SQL statements, In these tools, needed classes and 
attributes are graphically selected. Beside these, Embley 
(1989) introduced forms to generate queries. This strategy 
is also proposed by Terwillinger and Delcambre et al. 
(2007). 

The main objective of all techniques is to support 
either the generation of a SQL query that can be executed 
on the relational database or to directly retrieve data from 
the database. As mentioned before, this implies a database 
filled with data. It is thus not the task of these techniques 
to check if something in the model is missing.  

Opposite to that, the approach mentioned in this paper 
is applied during domain modeling as early as possible. 
Therefore, the focus is not the generation of SQL but to 
test if the model is complete. It is thought as a help, 
whenever it is necessary to check the model, before any 
prototype or user interface form is built. Opposite to the 
graphical query languages where the query is constructed 
by navigating through the model, the end user must not 
see the model during the creation of the queries. This has 
the advantage that the user is not influenced by the model 
but freely names the notions, which he needs for the 
query. The query then helps to check if the designed 
model can handle the notions used in the query. 

2.3 Test Driven Development  
Test driven Development, which is proposed by Beck 
(2004) is included in this related work section, since its 
paradigm can also be applied in this approach. In Test 
Driven Development, the developer is enforced to design 
and write test cases for small sized problems before he 
starts to design and implement parts of a system.  After he 
has generated these test cases, he writes the first 
implementation of the requirements, which he lets fail. 
Iteratively, he improves his implementation until it is 
successful for the written tests.  The paradigm behind this 
is pointed out by Kent Beck: “Failure is progress” (Beck 
2004, p. 5). 

Using natural language queries as test cases can be 
similar to this paradigm, since there is no need for a nearly 
complete conceptual model of the database, which has to 
be implemented. The process of improving the conceptual 
model can also start with a very lean initial model. During 
the “tests”, the model iteratively grows and gets improved. 
As a side effect, the stakeholders learn more and more 
about the model. 

2.4 Model Quality Approaches 
According to Lindland and Solvberg et al. (1994) three 
dimensions have to be considered for conceptual modeling 
quality, namely: syntax, semantics and pragmatics. If the 
model follows the rules and the grammar defined in its 
corresponding meta-model, then the model has a syntactic 
quality. Semantic quality is given; if the model only 
contains true statements of the domain and is complete (no 
important concepts or statements are missing). Lastly, 
pragmatic quality relates the model to the interpretation of 
the user. A pragmatic quality of a model is given, if it is 
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understandable to a human stakeholder or a system, which 
has to understand the model. Since quality of a model in 
general and in particular completeness of a model cannot 
be fully achieved, the authors have introduced the notions 
feasible validity, feasible completeness (semantic quality) 
and feasible comprehension (pragmatic quality). That 
means, that the model can be improved “until it reaches a 
state, where modeling is less beneficial than applying the 
model in its current state” (see: Lindland and Solvberg 
et.al, p. 46, (1994)). 

In order to improve the quality, Assenova and 
Johannesson (1996) propose to use well defined model 
transformations. Moody (1996) describes that 
comprehensibility of a conceptual model can be enhanced 
if icons and pictures are introduced instead of simple 
graphical primitives (rectangles, ellipses etc.). In an 
extensive literature study of the same author (Moodey 
2005) on the quality of model, it was concluded that 
conceptual modeling must shift from an art to an 
engineering discipline where quality plays an important 
role.  

Easterbrook et al. (2005) made an exploratory study 
and showed that view points are also an important 
technique to improve the model quality.  

The verbalization approaches described by Dalianis 
(1992) and Halpin et al. (2006) aim at getting a better 
understanding of the conceptual model by presenting users 
a natural language translation (verbalization) of the model. 

Batini, Ceri and Navathe (1992) used Dataflow 
diagrams to complement and complete the conceptual 
models. 

The approach described in this paper also aims to 
improve the completeness of a conceptual model. 
Therefore it can be seen as an additional support for 
checking the quality of a domain model.  

2.5 Previous Work  
In the own previous work (Kop 2009a) visualization 
techniques (graphical visualization, tabular representation 
and verbalization) were discussed. It was also described 
how some of them can help to detect incompleteness. For 
instance, a cell, which is empty in a tabular representation 
is a hint that something in the model is missing. Model 
elements can be annotated with explicit progress 
information (e.g., an open question for a certain model 
element). Such annotated elements give hints for model 
incompleteness. However, all these techniques present 
incompleteness on the basis of existing model elements. 
This supports the extension of the model elements but it 
does not guarantee that no important concept is forgotten. 
Therefore, in another previous work, (Kop 2009b) 
controlled natural language query pattern and a parsing 
approach is introduced. A Controlled Natural Language is 
a language that has a restricted grammar and dictionaries 
(Fuchs et al. 2005). Though, first results were promising, 
it turned out that different sentence patterns can contradict 
each other if the language grows.  

Whereas previous work focused visualization 
techniques, parsing and the communication process, this 
paper focuses on query analyzing based on tagging and 
chunking and a supportive meta-model. 

3 A Motivating Example and Aims 
The main aim is to check if each notion, which appears in 
a query is also represented in the model. Otherwise the 
model must be refined. Beside this, such an approach can 
support additional aims, which will be described in this 
section.  

To show how the approach works, it will be motivated 
by the example domain taken and adopted from the Geo 
Query Project. Whereas there, the database model was a 
basis for querying the database and a machine learning 
approach for natural language query parsing, here it is 
used as a motivating example that queries can also be 
applied on a work in progress model.  Therefore, it is 
supposed that designers and end users still work on the 
model presented in Figure 1. In this figure a first 
intermediate result is presented, which should describe 
some information about the states in the US.  

The model is not yet finished. The stakeholders now 
decide to use queries to see if something is missing.  

  Now it is supposed that the end users would like to 
use the query “Which mountains exist in the several 
states” in the final database, which is currently represented 
only by the intermediate work in progress model of Figure 
1. As it can be easily seen, there is already a concept 
“state” in the model but no concept “mountain” can be 
found. Such a query won’t work in the final database if the 
model is not refined and the concept “mountain” as well 
as all its related information (i.e., attributes and 
associations to other classes) is added to the model. This 
example demonstrates the first important aim of the 
approach.  

The queries support to find gaps in the model.  
This is also a step towards Kent Beck’s statement “Failure 
is Progress”, since the stakeholders know that something 
is missing and they must refine the model.  

However, the idea to apply queries on a model can 
have other advantages even if the model is (nearly) 
complete. Now it is supposed, that the following query is 
applied on the model:  “Which rivers flow through the 
US”.  The notion “rivers” is found in the model. 
Therefore, it can be said that there is at least minimal 
information provided by the model, which can help the 
query to become successful. 
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Figure 1: Example of a Domain Model 
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Of course, if the concept found in the model is a class 
(e.g., “river”), then the stakeholders must be aware, which 
kind of information (all information about rivers or only 
specific information – e.g., the river name) is needed. 
Another thing that has to be considered is the notion “US”. 
A query applied on a work in progress model can support 
the detection of more information than model concepts. If 
the model is build for all nations in the world and state is 
synonymously used, then “US” is an example of a state. 
Particularly, it might be the value of the “state name”.  
However, if the model only represents the information 
about US states as it is intended here, then “US” can be 
treated more like a view (i.e., “all states”). Such a view 
might become an external database view.  Once again 
“failure” (i.e., “US” is not found in the model the first 
time) can be a progress. After applying the query on the 
model, the stakeholders know that in some queries a view 
on all the states is required.  The notion “US” can now be 
collected and related to specific concepts in the model. 
The next time, a query contains the notion “US” the tool 
knows that “US” must be replaced by its related model 
concepts and such a future query will be successful. Of 
course it should be clear, that the model must be refined if 
neither “US” nor “state” appear somehow in the model. In 
such a case the stakeholder once again have the progress 
information that the current model needs completion.  

Even if a query is successful (i.e., nothing is missing) 
this can be an important progress information. The 
stakeholders know that the model is at least complete with 
respect to this query.  

All this shows further aims of the approach. With 
queries, the detection of synonyms (another, linguistic 
view on a concept), external database views and examples 
can be supported. All this information is very useful in 
further stages of information systems development (e.g., 
examples can be used for testing the system after it has 
been implemented).   

Finally, the queries itself can be reused later on. This is 
another big advantage and it can happen in two ways: 

• The queries are functional requirements of how 
the end user wants to retrieve the final database. 
Queries or methods (Rumbaugh 1991) can be 
developed manually from them.  

• In more advanced information systems (see 
Related Work Section), queries and the 
additional information (i.e., synonyms, external 
views) can be the basis for a natural language 
query engine, which automatically retrieves the 
data from the database. 

To summarize the aims: Something, which looks like a 
failure at the beginning, is a progress in a project. 

Particularly, the approach helps to find gaps (i.e., 
missing concepts and associations); detect synonyms, 
external views and examples; get functional requirements; 
and to get a basis for a natural language query engine. 

4 Metamodel, Process and Decisions 
If query notions, which are not directly used as model 
concepts are collected for future checks, then the meta-
model must be extended to give support. The next section 
explains the meta-model and the ideas behind it. 
Afterwards, the process is briefly described. Finally, the 

decisions, which must be made by the stakeholders are 
described. 

4.1 Meta-model 
Usually, each data model consists of classes, attributes, 
associations (relationships) and other notions. Figure 2 
shows the excerpt of the meta-model. It focuses on the 
classes, attributes and the surrounding notions, which are 
necessary to fulfill the aims of the approach. Each class 
and attribute, which appears in the conceptual data model, 
is generalized to the notion concept. Hence, one important 
goal of a notion found in a query is to match it with a 
concept in the conceptual data model. If this fails, this can 
be a hint to refine the model. However, the notion in the 
query can also be a circumscription of one concept or 
many concepts used in the data model.  In its simplest 
form, the extracted query notion is a synonym of the 
concept. To be able to handle this in further queries such 
terms are collected in “synonym” (see Figure 2 – meta-
model). For instance, city and town might be 
synonymously used in a certain domain. A notion in the 
query can also be a view on one concept. For instance, in 
the Geo Query Corpus, “US” is often mentioned in several 
queries. However, “US” is not an example of one of the 
data model concepts. Instead “US” means: “All states”. 
Hence, it is a specialized view, which is based on the main 
concept “state”. “US” is therefore collected in the concept 
view descriptor (see meta-model in Figure 2). It is related 
to the concept “state” via the has-main-concept 
relationship. Whenever “US” is mentioned in a new query, 
then it can be seen as a view on states. No refinement is 
necessary, since it can be shown, that the data model 
contains this notion. Other examples for concept view 
descriptors in a university domain are “good student” or 
“good mark” respectively. Let’s suppose the model for the 
university already contains the concepts “student”, 
“course” and “mark”. If “good student” is not found in the 
model itself but can be resolved by a phrase “A good 
student is a student, which has only marks A or B in 
courses”, then “good student” is stored as a concept view 
descriptor. Student itself is the main concept. The 
subordinated concepts are “mark” and “course”. A 
definition of a good student as given above is stored in the 
concept view definition.  

If a notion like “good mark” appears in the query and 
it can be described as “good mark is A or B” then mark is 
the main concept. No subordinated concepts exist here, 
since the main concept is an attribute, which is defined by 
its specific values. This strategy is also applied, if the 
concept view descriptor does not directly match with a 
concept in the model. Let’s suppose that the query has the 
notion “good grade”. If “grade” itself can be treated as a 
synonym of “mark”, then “good grade” is simply stored in 
the concept view descriptor. 

Finally, if a notion is mentioned, which covers more 
than one concept it is stored in the model view descriptor. 
A model view descriptor is a specialized view on several 
co-equal model concepts. An example would be, if the 
query asks for “List the shipments” and shipment is 
already realized as a relationship between “product” and 
“customer” in the existing model (i.e., products are 
shipped to customers). Another example in a university 
domain would be “List the academic staff”. If academic 
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staff must not be modeled as an own class in the domain 
model but is only a view on the union of already given 
model concepts “professor” and “assistant”, then it is 
stored in the model view descriptor. The definition of the 
view is stored in the definition property of the model view 
descriptor. The relationship has-involved-concepts (see 
meta-model in Figure 2) relates “academic staff” with 
“professor” and “assistant”. 

Another special kind of view is the aggregation view. 
Most often maximum or minimum values are needed (e.g., 
“the longest river”). In such a case, the notion “longest 
river” is stored as an aggregation view descriptor. In the 
definition this descriptor is replaced by a maximum- or 
minimum function and this function must be applied on an 
attribute (e.g., “max(river.length)”). If the aggregation 
view descriptor “longest river” is mentioned a second time 
in another query, then it can be resolved with the 
aggregation function of the attribute. 

If an instance or value is mentioned in the query, then 
this instance can be stored in examples and related to the 
concept to which it belongs. The next time the example is 
mentioned, it is correctly replaced by its concept. It is 
possible to store value descriptors (e.g., “large”, “old”) if 
these descriptors can be extracted from a query clause 
(e.g., “is old”, “must be old” etc.). 

Of course, in all cases, in which a concept in the model 
cannot be found, it must be checked if the model can be 
refined.  
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Figure 2: The Meta-model 

4.2 Process  
The communication and negotiation process starts with an 
initial model. This model is derived from requirements. 
Afterwards, the stakeholders (i.e., conceptual modelers 
and end users) have to identify and generate the queries, 
which will be applied on the work in progress model. In 

the optimal case, nobody of the stakeholders should see 
the initial model. They should use their own words. This 
shall also help to produce views of the concepts and the 
model. Remember, according to Kent Beck’s position 
“Failure is Progress”, progress information can be found. 
Afterwards, the queries are executed automatically on the 
current model. The tool and its linguistic instruments, 
which will be described in Section 5, are responsible for 
this task. 

Based on the reports the tool produces, the 
stakeholders must discuss the model. If failures are found 
then new domain model requirements can be derived from 
them. Decisions, which will be described in the next 
subsection, must be made. The decisions have an 
influence on the refinement and completion process of the 
model. This whole process is finished if all the 
stakeholders agree that no more new information can be 
found or are required. 

4.3 Decisions 
If notions extracted from the queries do not match, it is the 
task of the stakeholders to decide how these query notions 
can be related to the model. Particularly, the stakeholders 
have to decide the following: 
• Is it a missing concept of the model? In that case 

the model has to be refined and the missing concept 
must be integrated into the model. Integration 
means, that a class must be related to other classes 
with associations, an attribute must be related to the 
class to which it belongs.  

• Is it an example of a concept, which is missing? In 
that case the model has to be refined and the 
missing concept must be integrated into the model. 
Furthermore, the example must be collected and 
related to the integrated concept. 

• Is it a value descriptor but the concept (attribute) to 
which the descriptor belongs does not exist? In this 
case, the model has to be refined. At least the 
missing attribute (may be, also the class of the 
attribute) must be added. Then, the descriptor and 
the examples, which are subsumed by the 
descriptor, must be added. 

• Is it a view but the concepts, on which the view is 
based, do not currently exist? In this case, the 
missing concepts must be integrated. The view 
must then be collected for these concepts.   

• Is it an example of a concept, value descriptor or a 
view and all the necessary concepts already appear 
in the model? In this case, only the example, value 
descriptor or the view respectively have to be 
collected and related to corresponding concepts. 

5 Tool Architecture, Linguistic  Instruments 
and Query Interpretation 

According to the last section, in which the meta-model is 
explained, the most essential task that a tool must provide 
is the extraction of noun phrases. These noun phrases can 
then be matched against existing concepts in the model or 
related notions, which describe views or examples of 
model concepts. It is not only necessary to extract simple 
words (e.g., “person”). If there are compound nouns (e.g., 
“lake name”) or if there are nouns that are specialized by 
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adjectives (e.g., “highest elevation”) then these words 
must be treated as a single notion. Well known linguistic 
instruments for achieving this are tagging and chunking. 
Generally speaking, tagging is the basis that relates words 
to categories (e.g., lake = noun) but a word like “lake 
name” or “highest elevation” is still treated as a sequence 
of independent tagged (categorized) words. Chunking can 
be built upon tagging. It examines the tagged word 
sequence and summarizes certain sequences to a higher 
level element (e.g., a noun phrase).  In the succeeding 
subsections, firstly an overview of the tool architecture is 
given. Afterwards, the basic linguistic instruments, 
namely tagging and chunking in the context of natural 
language queries, will be described in more detail. 
Finally, it will be explained how the chunking output is 
used in the query interpreter and what the purpose of the 
matching module is. 

5.1 Architecture 
The query analyzer consists of a graphical user interface 
(GUI) for interaction with users. The query text, which is 
loaded from a file or entered in a text area field is 
forwarded to the query interpreter, which itself hand the 
text over to supporting modules (chunking and tagging). 
The most basic linguistic module is the tagging module. It 
analyzes the text and returns the output to the chunker. 
The chunker subsumes the results from the tagger and 
forwards it to the query interpreter. This module then 
extracts the necessary notions. The notions are forwarded 
to a matching module, which interacts with the stored 
work in progress domain model. The matching module 
tries to compare the extracted notions with notions 
already collected for the model (i.e., the model concepts 
itself as well as views and examples). Figure 3 shows the 
architecture. 
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Figure 3: Architecture of the Prototype 

5.2 Tagging 
For the initial step of linguistic analysis the Stanford 
Tagger is used (Toutanova et al. 2003). A tagger is a tool, 
which takes as input a text and returns a list of sentences 
with tagged words (i.e., words categorized as noun, verb, 
adjective etc.). The chosen tagger categorizes the words 
according to the Penn-Treebank TagSet. In this tagset the 
word categories together with some important linguistic 
features of a word are encoded. If a noun is in plural then 

the category NNS is chosen. If a proper noun is detected 
then NNP is used.  
For instance, for the query “which mountains exist in the 
several states”, the external Stanford tagger library 
produces the following output: “Which_WDT 
mountains_NNS exist_VBP in_IN the_DT 
several_JJ states_NNS“. At the end of each word 
token, the tagger adds the category (e.g., WDT = 
interrogative determiner/wh-determiner; NNS = plural 
noun, VBP = verb non 3rd person form; IN = preposition 
or subordinating conjunction; DT = determiner, JJ = 
adjective)  

The external tagger library is enapsulated in a tagger 
module. In this module the output is checked for 
inconsistent word categories. If a wrongly categorized 
word is found, it is changed to another category that better 
fits with the context in which it is embedded. The other 
task of this additional module is to prepare the tags for the 
chunker module. For the given example query, it is 
checked if JJ has a more specific meaning. Words like 
“several”, “many”, “much” are categorized as adjectives 
but they do not specify a characteristic of a concept. In 
fact, they tell something about the set of concepts. For 
such words, in the linguistic approach NTMS (naturalness 
theoretic morphosyntax) developed by Mayerthaler, Fliedl 
and Winkler (1998) the linguistic term quantifier was 
introduced. Here, the term quantifier was adopted. Thus, 
the category of the word “several” is changed from an 
adjective to a quantifier.  

5.3 Chunking 
Chunking is useful to group words to a chunk that can be 
seen as a phrase (e.g., a verb phrase or a noun phrase). 
Details of chunking are described e.g., in (Sang and 
Buchholz 2000). The implemented chunker, provides two 
steps.  

In the first step, it tries to find noun phrases and verb 
phrases. The chunker module clusters nouns (e.g., 
customer number) as well as word categories strongly 
related to nouns (e.g., articles, adjectives, quantifiers) to a 
noun phrase (e.g., the customer number). In general, the 
implemented rules follow the common rules of chunking 
(e.g., article + adjective + noun = noun phrase). It 
subsumes verbs and word categories, which are strongly 
related to them (e.g., adverb, verb particle) to a verb 
phrase. One exception exists. If the words “many” or 
“much” follow the word “how” (e.g., “how many 
persons”) then a word like “many” is not chunked with 
“person” to a noun phrase but it is grouped with “how”. 
Hence, instead of the output [how] [many persons] the 
query chunker generates the output [How many] 
[persons].  

In the example “Which mountains exist in the several 
states“, the chunker module generates the noun phrase 
chunks NP [mountains] and NP [the several states]. It also 
generates a verb phrase chunk, but this chunk only 
contains VP [exist]. Most of other tags are taken as they 
are. In the case of a preposition, the name P was chosen. 
Hence, an abstraction of the result of this step can be 
presented as WDT [Which] NP [mountains] VP [exist] P 
[in] NP [the several states]. 

In the second chunking step it clusters a list of noun 
phrases separated by prepositions to a more complex 
noun phrase (CNP).  This result is then forwarded to the 
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query interpretation module. An abstraction of the result 
can be presented as CNP [NP [mountains]] and CNP [NP 
[the several states]]. This step is intended for phrases like 
“… the several states of the US”. Here the abstracted 
result is: CNP [NP [the several states], PP [P[of] , NP [the 
US]]]. The reason is, that the phrase “… the several states 
of the US” is one noun phrase. 

5.4 Query Interpretation 
The last linguistic step is the interpretation of the chunker 
output. It is a combination of noun phrase extraction and 
more refined parsing of specific patterns.  

In a first step the query interpreter extracts all the noun 
phrases. This guarantees that at least query notions can be 
extracted even if a more specific pattern cannot be 
detected. The found query notions are used to check if 
they match against existing concepts, views or examples 
(see Subsection 5.5). In our example about the mountains 
and the several states, the query interpretation module 
examines each complex noun phrase (CNP). It iterates 
through all the noun phrases within a CNP and extracts the 
nouns. If an adjective modifies a noun, then both the 
adjective and noun is extracted. However, if a quantifier 
like several, many etc. modifies the noun, then only the 
noun is extracted. Determiners (e.g., “the”, “a”, “an”) are 
ignored for the extraction process. Also the first noun 
phrase is ignored if the first noun phrase only contains 
meta- information (e.g., “set”, “list” in phrases like “… the 
set of …”, “… the list of …”). 

More specific patterns are constraint sentences (e.g., 
“The height must be greater than 3000”). These sentences 
can be used within a query text to constrain the query 
itself (e.g., “Tell me the mountains in Colorado”). Such 
constraint sentences can also have adjectives at the end 
(e.g. “must be old”). If such adjectives are found, then 
these adjectives are collected as value descriptor 
candidates. Other, more specific patterns are values or 
numbers at the end of a noun or proper nouns following 
the verb “is”. 

5.5 Matching and Path Finding Module 
If all the notions are extracted the system tries to match 
the notions found in the query with the concepts, views 
and examples actually collected for the domain model. If 
all the notions in the queries are found in the model or in 
model related information (i.e., views, examples), then the 
query is successful.  To achieve this, the extracted notions 
are firstly compared with the concepts in the model (i.e., 
can the extracted notion, or its singular form be found in 
the model). If an exact match is not successful, then the 
modul tries to match the head of a noun phrase. For 
instance, if the module cannot find a match for an 
adjective+noun combination (e.g., “good student”) then it 
tries to find a match for the noun only. If this does not 
work then the extracted notion is searched in the views 
(synonym, concept view descriptor or model view 
descriptor). If this doesn’t work either, the examples are 
examined (i.e., is the query notion an example of a 
concept). Since the views as well as the examples are 
related to a model concept, this notion can be traced back. 
Therefore, in any of the above mentioned cases, the notion 
found in the query can be replaced by the concept in the 

model to accomplish the next step. If all the notions 
extracted from the query are found in the model, then the 
tool can determine a path between these model concepts.  

Path finding is done by checking if all the concepts, 
which are necessary for the query belong to the same 
connected component within the conceptual model graph. 
With this step it is possible to find missing associations. 

6 Tests and Prototype 

6.1 Tests 
Natural language queries, which were found in literature 
and own created queries were taken as test cases to test 
and improve the linguistic instruments. Among these test 
cases, the greatest set of natural language queries came 
from the Geo Query Project. In this project 880 query 
sentences are used. Theses sentences can be categorized in 
queries starting with “What”, “How”, “Which”, “Where” 
and other queries. These other queries do not start with an 
interrogative but start with a verb (e.g., “list”, “give me”, 
“name the”, etc.) or they neither start with a verb nor with 
an interrogative (e.g., only a noun phrase is used for the 
query). The majority of query sentences is provided for 
queries starting with “What” followed by “How” and 
“Which”.  

Especially in English, words often can be used as a 
noun and a verb. This can cause a wrong categorization, 
since the tagger assumes a noun although a verb is needed. 
For instance the word “border” can be at least categorized 
as a noun (e.g., “the border”) or a verb (e.g., “to border”). 
In an incomplete domain model you cannot rely that the 
model itself can disambiguate the word to a specific 
category (e.g., either verb or noun). Another example is 
“name the capital … “. The tagger treats name as a noun. 
However, in the context of the query “Name the …”, the 
sentence starts with a verb. Therefore, some cases would 
fail because the tagger wrongly categorizes a word in the 
sentence. With the additional consistency checking step 
within the tagging module, such problems can be 
considered.  This was done by introducing an additional 
context window (sequence of word categories), in which 
elements of that sequence are compared with their 
neighbors. Also some hard problem cases were detected, 
in which a solution could only be achieved by broadening 
the context window. Such a problem appeared for instance 
with “which” in the middle of a sentence. A query like 
“Which person offers which course” is only analyzable, if 
the whole query is treated as the context.  

In the Geo Query Corpus proper nouns were written in 
lower characters (e.g., “texas” instead of “Texas”). This 
happened, since the queries were extracted from a 
knowledge base where all words of a query must be 
written in lower case. In most of the cases this is not 
problematic, since the tagger categorizes such a proper 
noun as a common noun. This is not perfect, but at least it 
had the effect that they could be extracted as relevant 
query notions. In some specific cases however, tagging 
even did not classify such words as nouns. This problem 
can only be fixed if the writer is enforced to write proper 
nouns correctly with a capital letter at the beginning.   

To give the reader an impression what kind of 
syntactical structures of query sentences can be analyzed, 
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a further example of the Geo Query Project is given and 
some examples from other literature.  

One of the complex queries in the Geo Query Project 
is: “What are the major cities in the states through which 
the major river in Virginia runs.” The query interpreter 
extracts “major cities”, “states”, “major river”, “Virginia”. 
Afterwards this information is matched with the model 
and model related information (e.g., examples, views).  

The work of (Owei and Navathe 2001) gives the good 
query example “What courses is the student whose name 
is Marshall taking from associate professor 'Jones'.” The 
query interpreter extracts “courses”, “name”, “Marshall”, 
and “associate professor ‘Jones’”. Furthermore, it is 
extracted that “associate professor is restricted by “Jones” 
and “name is restricted by Marshall”. The extracted two 
constraints help to indicated that an attribute is needed if, 
for instance, “associate professor” is already modeled as a 
class. 

Other query sentences similar to the Geo Query 
sentences but related to the traveling domain were found 
in (Meng and Siu, 2002). One of these sentences is: “Give 
me the least expensive first class round trip ticket on US 
air from Cleveland to Miami.”.  Here the extracted query 
notions are “least expensive first class round trip ticket”, 
“US air”, “Cleveland” and “Miami”.  

Finally another query sentence, which Rumbaugh et al 
(1991) gave in the exercise within the OMT book is:  
“Find the set of all individuals who competed in all of the 
events held in a season.”. Here the notions “individuals”, 
“event” and “seasons” are extracted by the interpreter.  

It can be concluded, that tagging and chunking 
provides more flexibility for sentences than parsing can 
do. With tagging and chunking it is at least possible to 
extract important notions though the whole syntactic 
structure cannot be completely parsed. These extracted 
notions can then be matched with elements of the work in 
progress domain model. However, even with tagging and 
chunking it turned out, that too much syntactical freedom 
is not successful and regulations must be introduced. The 
examples given above should give an impression about 
possible syntactical variations of natural language queries. 
Since the queries here are treated as functional 
requirements, regulations can be introduced with the same 
purpose as in the field of requirements engineering (i.e., to 
avoid misinterpretations).  

6.2 Prototype 
The prototype is implemented in Java.  The query analyzer 
tool is an add-on to an existing tool, which graphically 
represents classes and attributes as nodes. Associations 
between classes appear as edges between two class nodes. 
An edge between an attribute and a class indicates that the 
attribute belongs to that class. The query tool itself has a 
text area input. It also accepts more than one sentence 
(e.g., “Name the river lengths in Colorado. The length 
must be greater than … “).  If the query is successfully 
applied on the model, the relevant nodes and edges are 
highlighted such that the user sees the path between these 
nodes. In the tool this is done by painting the relevant 
edges and nodes with red color. However, if a notion in 
the query is not found in the model (neither as a concept 
nor as a view or example) then an error is presented to the 
end user. The next four figures show two examples. In the 
first example the query “Name the capital that Texas has“ 

is  successful, since capital can be found in the model and 
Texas was already collected as an example of the model 
concept “state”. Therefore, in the editor view the path 
between the found concepts is provided to the end user. 
The query analyzer GUI prints no errors (see Figures 4 
and 5). In the second example (e.g., “Which mountains 
exist in the several states“) the notion “mountains” is not 
found in the model or in the related views and examples. 
Therefore, the query analyzer GUI returns an error 
message. Only the found concept “state” is highlighted in 
red in the graphical view (see Figures 6 and 7). 

 

 
Figure 4:  Report for the first query 

 

 
Figure 5: Graphical result for the first query 

 

 
Figure 6: Report for the second query 

 

CRPIT Volume 130 - Conceptual Modelling 2012

40



 
Figure 7: Graphical result for the second query 

7 Conclusion and Future Work 
It is clear that full completeness cannot be achieved. 

Instead, feasible completeness is the goal of a completion 
process. A mix of techniques, each supporting a certain 
aspect must be used. In this paper one possible approach 
within this technique mix was presented.  

Particularly, it was explained how natural language 
queries as test cases for a domain model can be supported 
by a meta-model and the linguistic instruments tagging 
and chunking. From the tests it can be concluded that 
tagging and chunking is helpful. However, regulations are 
still needed to avoid misinterpretation. Hence, it remains 
still a controlled natural language. Especially, this is 
necessary if much more information than only noun 
phrases must be extracted. For instance if a query should 
check if two concepts are directly related to each other or 
if multiplicities are specified, then a restrictive sentence 
pattern is necessary (e.g., Is X related/connected to Y, 
Does X own at least 1 Y). As it is exemplified in 
requirements engineering such regulation are not only 
restrictions but can also be seen as a support for the 
stakeholders to define clear and comprehensible query 
requirements. 

Future work will continue to collect further query test 
cases and to apply further tests on the query analyzer.  

More attention will also be given to the association 
names and their roles in the process of completing the 
model with natural language queries. 
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