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Abstract

We present a straighforward proof that the uniform orien-
tation Steiner tree problem, also known as the λ-geometry
Steiner tree problem, is NP-hard whenever the number of
orientations, λ, is a multiple of 3. We also briefly outline
how this result can be generalised to every λ > 2.

Keywords: Steiner tree problem, λ-geometry, computa-
tional complexity, NP-hard.

1 Introduction

Given a set of points N and set of λ ≥ 2 uniformly dis-
tributed (legal) orientations in the plane, we consider the
problem of constructing a minimum-length tree that inter-
connects N with the restriction that the tree is composed
of line segments using legal orientations only. The focus
of this paper is mainly on the case where λ is a multi-
ple of 3, however we will also discuss the problem for the
more general λ ≥ 2 case. This so-called uniform orienta-
tion (or λ-geometry) Steiner tree problem is equivalent to
computing a minimum Steiner tree for N under a metric
where the unit circle is a regular 2λ sided polygon. In the
Steiner problem the interconnection network may contain
nodes other than the points in N . Computing the optimal
locations of these nodes and the topology of the network
makes this a computationally challenging problem.

The uniform orientation Steiner tree problem has im-
portant applications in micro-chip design, where millions
of nets need to be routed on a (small) number of chip lay-
ers. On each routing layer, all wires generally use the same
orientation in order to make joint routing of multiple nets
feasible. In optimising the routing, the design of each net
is usually treated as a planar geometric optimisation prob-
lem in λ-geometry, where the cost of transition between
layers is treated as negligable. Today, most chip design
technologies use only two perpendicular routing orienta-
tions (the so-called Manhattan routing where λ = 2), but
the increasing number of available routing layers has made
the use of multiple orientations relevant in practice (Chen
et al. 2005, Teig 2002).

One of the great challenges in the design of integrated
circuits for micro-chips is the continuing increase in den-
sity of these circuits, where the number of transistors on
a chip tends to double approximately every two years (an
observation known as Moore’s law). This means that it
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is essential not only to devise optimisation algorithms that
allow the nets to be designed as compactly as possible, but
also to understand the computational complexity of such
algorithms, since the scaling of these problems is a major
issue. It is this question of computational complexity that
this paper addresses.

It is well-known that the λ-geometry Steiner tree prob-
lem is NP-hard for the rectilinear metric (λ = 2) (Garey &
Johnson 1977) and the Euclidean metric (λ → ∞) (Garey,
Graham & Johnson 1977). More recently, an NP-hardness
proof was given for the λ-geometry Steiner tree problem
for λ = 4 (Müller-Hannemann et al. 2007); this proof
adapts the proof for the Euclidean case to the λ = 4 case.

Rubinstein et al. (1997) have given an elegant proof of
the NP-hardness of a special case of the Euclidean Steiner
tree problem — where the terminals are restricted to lying
on two parallel lines. This approach was adapted by Brazil
et al. (1998) to show that the gradient constrained Steiner
tree problem is NP-hard, and the arguments have been
simplified and further generalised in a later paper (Brazil
et al. 2000).

Our Contribution.

We show that a method similar to that pioneered by Ru-
binstein et al. (1997) can be applied to the λ-geometry
Steiner tree problem, to show that the λ-geometry Steiner
tree problem is NP-hard whenever λ is a multiple of 3. We
also briefly outline the generalisation of this result to ev-
ery λ > 2. All of these NP-hardness results are new, apart
from the result for λ = 4 (the octilinear norm), and even
in that case the proof is significantly simpler than the very
technical proof given by Müller-Hannemann et al. (2007).

Organisation of the Paper.

In Section 2 we summarise a number of structural results
for Euclidean and λ-geometry Steiner trees that are rele-
vant for the NP-hardness proof. The main result follows in
Section 3, with a focus on the case where λ is a multiple of
3. We conclude with a brief discussion of generalisations
of these results.

2 Preliminaries

The well-known Euclidean Steiner tree problem is defined
(as a decision problem) as follows:

EUCLIDEAN STEINER TREE PROBLEM
Instance: A finite set of points N lying in the Euclidean
plane and a positive integer L.
Question: Is there a tree T interconnecting the set N
such that the length of T is at most L?

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

107



s1

s2

s3

Figure 1: Full Steiner tree for five terminals and λ = 4.
Black vertices are terminals and white vertices (s1, s2 and
s2) are Steiner points. The tree has six straight edges and
one bent edge (s1, s2). Edges are colored by their colors
in the corresponding direction set.

By the length of a tree T , we mean the sum of the
lengths of the edges of T . A tree T with length L satis-
fying the Euclidean Steiner tree problem, where L is as
small as possible for a given set N , is called a minimum
Steiner tree for N . The given points N are called the ter-
minals in T , and other vertices of T (of degree at least 3)
are called Steiner points.

Let λ ≥ 2 be a given positive integer. Given λ orien-
tations jω (j = 1, 2, ..., λ) in the Euclidean plane, where
ω = π/λ is a unit angle, we represent these orientations
by the angles with the x-axis of corresponding straight
lines. A line or line segment with one of these orienta-
tions is said to be in a legal direction. Objects composed
of line segments in legal directions are said to belong to a
λ-geometry.

For any given λ-geometry we define the following
Steiner tree problem:

λ-GEOMETRY STEINER TREE PROBLEM
Instance: A finite set of points N in the Euclidean plane
and a positive integer L.
Question: Is there a λ-geometry Steiner tree T with
terminal set N such that the length of T is at most L?

Again, a minimum length tree T satisfying this prob-
lem for a given set N is known as a λ-geometry minimum
Steiner tree for N .

The main part of the NP-hardness proof makes use
of some key properties of Euclidean Steiner tree prob-
lem (Gilbert & Pollak 1968) and λ-geometry Steiner tree
problem (Brazil et al. 2006, 2009). These properties are
summarised below.

2.1 Direction Sets in λ-Geometry

Consider a λ-Geometry minimum Steiner tree T for a
given set N . The Steiner points in T necessarily each
have degree 3 or 4. In our NP-hardness proof only Steiner
points that have degree 3 are relevant; degree 4 Steiner
points (which only exist in very restricted cases) cannot
occur as part of the minimum Steiner trees for the in-
stances we construct.

Edges in T consist of line segments that use either a
single legal orientation (straight edge) or two neighbour-
ing legal orientations (bent edge); in the latter case we may
assume that the edge consists of exactly two line segments
(separated by angle ω = π/λ and called half-edges) that
meet at a corner point (Figure 1).

Consider the set of legal orientations of the line seg-
ments of the edges that are adjacent to some Steiner point
s of degree 3 in T ; more precisely, consider each line seg-
ment as being oriented away from s, and let D be the cor-
responding set of directions. The set D is denoted a direc-

tion set if it is maximal under inclusion, i.e., there exists
no minimum Steiner tree with some Steiner point that has
a set of directions that is a superset of D. Local optimal-
ity conditions at Steiner point imply that direction sets can
be characterized precisely (Brazil et al. 2006, 2009) (see
Figure 2); when λ is a multiple of 3, the direction set has
6 directions and otherwise it has has 4 directions. The
first pair of directions forms the so-called red edge, and
the other directions are part of the remaining green and
blue edges. The red, green and blue edges are separated
by angles that are as close to 120◦ as possible (Figure 1).
The total number of possible direction sets is 2λ — one
for each pair of possible assignment of neighbouring red
directions.

λ Directions

3m
Red: 0, ω
Green: 2mω, (2m + 1)ω
Blue: 4mω, (4m + 1)ω

3m + 1
Red: 0, ω
Green: (2m + 1)ω
Blue: (4m + 2)ω

3m + 2
Red: 0, ω
Green: (2m + 2)ω
Blue: (4m + 3)ω

Figure 2: Feasible directions in a direction set (up to rota-
tion by a multiple of ω).

A minimum Steiner tree can be decomposed into com-
ponents in which every terminal is a leaf, known as full
components, or full minimum Steiner trees. This decom-
position is unique for a given minimum Steiner tree, but
is not unique for a given terminal set. A minimum Steiner
tree is said to be fulsome if it has the maximum possi-
ble number of full components for the given terminal set.
Hence, a minimum Steiner tree is full and fulsome if there
is no minimum Steiner tree on the same set of terminals
with two or more full components.

Our interest in direction sets stems from the fact that
all Steiner points in a full minimum Steiner tree use the
same direction set; more precisely, we have the follow-
ing theorem (Brazil et al. 2006) — a generalisation of this
theorem to general weighted fixed orientation metrics has
been given by Brazil et al. (2009):

Theorem 2.1 (Brazil et al. 2006) Given a fulsome full
minimum Steiner tree in λ-geometry, there exists a single
direction set that is used by every Steiner point in the tree
(where direction sets that can be obtained from each other
by reflecting all directions through the Steiner point are
considered to be equivalent).

2.2 Zero-Shifts in λ-Geometry

A consequence of Theorem 2.1 is that the edges in a full
minimum Steiner tree can be colored red, green and blue
in such a way that all edges with the same colour use the
same orientations (either a single orientation or two neigh-
bouring orientations). Let e be a straight edge or half-edge
in a full minimum Steiner tree T , oriented in direction jω.
Then e is said to be primary if (j − 1)ω is not a feasible
direction with the same colour as e. Similarly, e is said to
be secondary if (j + 1)ω is not a feasible direction with
the same colour as e. If λ ̸= 3m then it is possible for an
edge to be both primary and secondary. We say that e is
exclusively primary (or exclusively secondary) if it is pri-
mary, but not secondary (or, respectively, secondary, but
not primary).

A minimum Steiner tree T is usually not unique in λ-
geometry since the metric is not strictly convex. We define
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Figure 3: One of the two possible regions Rab for two
given points a and b. The other region is obtained by re-
flecting the diagram through the line through a and b.

a zero-shift as a perturbation of one or more Steiner points
in T such that the perturbation does not increase the length
of T . The identification of primary/secondary edges plays
an important role for zero-shifts:

Theorem 2.2 (Brazil et al. 2009) Let e1 and e2 be two
edges in a full and fulsome minimum Steiner tree T such
that e1 has an exclusively secondary component and e2
has an exclusively primary component. Then there exists
a zero-shift acting on the Steiner points on the path from e1
to e2 in T , such that the shift can continue to be performed
until either e1 has no exclusively secondary component or
e2 has no exclusively primary component. Furthermore,
this shift preserves the direction of all straight edges ex-
cept (possibly) e1 and e2.

A straightforward corollary of this theorem is that if,
for a given set of terminals N , there exists a full and ful-
some minimum Steiner tree, then there exists a minimum
Steiner tree for N that has at most one bent edge.

2.3 Empty Regions for Euclidean Minimum Steiner
Trees

Given two distinct points a and b in the Euclidean plane,
let eab be the third vertex of an equilateral triangle with
vertices a and b, let Cab be the open finite region bounded
by the circumcircle of △abeab, and let Rab be the union
of Cab and the open half plane defined by the line through
a and b and containing eab, as illustrated in Figure 3. Note
that Rab is not uniquely defined; there are two possibili-
ties for eab resulting in two possible choices for the region
Rab.

Proposition 2.3 Let a and b be terminals of a Euclidean
minimum Steiner tree T . If there exists a region Rab, as
defined above, containing no terminals of T then that re-
gion also contains no Steiner points of T .

Proof. This is a simple extension of the “wedge property”
introduced and proved by Gilbert & Pollak (1968). The
wedge property states that any open wedge-shaped region
having an angle of 2π/3 and containing no terminals of
T also contains no Steiner point of T . Region Rab is an
infinite union of such wedges, all with a and b on their
boundary.

3 NP-Hardness of the λ-Geometry Steiner Tree
Problem

In this section we prove that the λ-geometry minimum
Steiner tree problem is NP-complete for the cases where
λ = 3m. We establish this result, in Corollary 3.2 below,
by first proving a strictly stronger theorem, namely that the
following class of problems is NP-complete for λ = 3m.

PARALLEL LINES λ-GEOMETRY STEINER TREE PROB-
LEM

Instance: A finite set of points N lying on two parallel
lines in the Euclidean plane and a positive integer L.
Question: Is there a λ-geometry Steiner tree T with
terminal set N such that the length of T is at most L?

In order to avoid issues related to the theoretical com-
plexity of computing with exact real arithmetic, we in fact
consider a discretised version of the problem as described
later; in the construction below we initially ignore this
technical difficulty.

We will show that for any given integer λ which
is a multiple of 3 the PARALLEL LINES λ-GEOMETRY
STEINER TREE PROBLEM is NP-complete. The main idea
is to show that the problem can be used to polynomi-
ally encode an instance of the SUBSET SUM PROBLEM,
which is well-known to be NP-complete (Garey & John-
son 1979):

SUBSET SUM PROBLEM
Instance: A set S = {d1, . . . , dn} of integers and an
integer d.
Question: Is there a set J ⊆ {1, . . . , n} such that∑

i∈J di = d?

The main result is as follows. In the proof we
let d(a, b) represent the Euclidean distance between the
points or parallel lines a and b.

Theorem 3.1 The parallel lines λ-geometry Steiner tree
problem is NP-complete for any given λ = 3m (where m
is a positive integer).

Proof. Let S = {d1, . . . , dn} and d <
∑n

i=1 di := D be
a given instance of the SUBSET SUM PROBLEM. We first
show how to use this instance to construct (in polynomial
time) an instance of the PARALLEL LINES λ-GEOMETRY
STEINER TREE PROBLEM, and then show that the in-
stance for the SUBSET SUM PROBLEM is a “yes” instance
if and only if the corresponding instance for the PARAL-
LEL LINES λ-GEOMETRY STEINER TREE PROBLEM is a
“yes” instance. The statement of the theorem then follows.

The construction of the instance for the PARALLEL
LINES λ-GEOMETRY STEINER TREE PROBLEM is as fol-
lows. We describe the construction in four stages:

1: Let V1, V
′
1 , V ′

2 , V2 be four vertical lines ordered from
left to right such that

d(V1, V2) ≫ d(V1, V
′
1) = d(V ′

2 , V2) ≫ D. (1)

Let u0 be a fixed point on V2, and construct a zigzag
path P between u0 and a point on V1 (labelled v),
such that: P is composed of line segments with alter-
nating polar angles 2π/3 and π/3; P has 2n internal
vertices (where n is the cardinality of S); and these
internal vertices lie alternatively on V ′

1 and V ′
2 . See

Figure 4.

2: Now from each internal vertex of P on V ′
1 extend

a horizontal line segment to a point on V1. Label
these n points x1 to xn in ascending order. Similarly,
from each internal vertex of P on V ′

2 extend a hori-
zontal line segment to a point on V2, and label these
points u1 to un in ascending order. Again, this is il-
lustrated in Figure 4. This results in a λ-geometry
Steiner tree interconnecting u0, the ui’s, xi’s and v
(where in each case i runs from 1 to n). We call this
tree the base tree Tx.

3: The next stage of the construction is to replace each
point xi by three points on V1 labeled, from bottom to
top, ai, bi and ci, satisfying: |aibi| = di; |bici| = di;
and xi is the midpoint of aibi (Figure 5). We also
alter the Steiner tree constructed in Stage 2, so that
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Figure 4: Construction for the case λ = 3m. The initial
two stages of the construction result in the tree shown, the
base tree Tx.

it connects to ai, bi and ci, instead of xi. This is
done by shortening the horizontal edge by di/(2

√
3)

on the left and creating a Steiner point at that new
left endpoint with two new incident edges with polar
angles 2π/3 and π/3 and each with length di/

√
3

connecting to ai and bi. Finally we connect bi to ci
with a single (geodesic) edge in λ-geometry, which is
a vertical line segment (if m is even) or a bent edge
using the two legal directions closest to vertical (if m
is odd). This is illustrated in Figure 5(a), for the case
where m is odd. Let Nv be the set consisting of u0,
the ui’s, ai’s, bi’s, ci’s and v. We denote the above λ-
geometry Steiner tree (interconnecting the elements
of Nv) by Tv . We will refer to the topology of the
base tree Tx (from Stage 2) as the base topology of
Tv .

Before completing the construction, we establish the
following claim:
Claim 1. Tx and Tv are each the unique minimum Steiner
λ-tree for their respective terminal sets.
Proof of Claim 1. Given the differences in scale in In-
equality (1), consider the limiting case where d(V1, V

′
1) =

V1
V

′

1

ai

bi

ci

xidi

di

(a)

V1
V

′

1

ai

bi

ci

xidi

di

(b)

Figure 5: Stage 3 construction for the case λ = 3m. Di-
agram (a) shows how TV connects to each triple ai, bi, ci
for the case where m is odd. Diagram (b) is the alternative
connection possible in the tree T0, used in Claim 2.

d(V ′
2 , V2) = 0. In that case each of Tx and Tv

becomes a single zigzag path with polar angles 2π/3
and π/3 between terminals {x1, . . . , xn, v} on V1 and
{u0, u1, . . . un} on V2. The fact that this path is a Eu-
clidean minimum Steiner tree (and hence a minimum
Steiner λ-tree) on its vertices follows from Proposition 2.3
by constructing suitable regions: Ruiui+1 for each i ∈
{0, . . . , n − 1}; Rxixi+1 for each i ∈ {1, . . . , n − 1}; and
Rxnv . Taking the union of these regions, it is clear that
any Steiner points must coincide with terminals, hence the
minimum Steiner tree coincides with the minimum span-
ning tree. Furthermore, this minimum spanning tree is
easily seen to be unique.

The result now follows immediately by continuity, and
the fact that Tx and Tv (in the non-limiting case) are each
locally minimal at every Steiner point.

Note that it is straightforward to compute the total Eu-
clidean length of Tv (i.e., |Tv|) in terms of d(V ′

1 , V ′
2),

d(V1, V
′
1) and S. Let Lv := |Tv|. Also, we observe that

the main full component of Tv , containing all the Steiner
points, uses only three legal directions (and hence has no
bent edges). We describe such a tree as a 3-direction
Steiner tree.

The final stage of our initial construction is as follows.

4: Let v0 be the point on V1 below v such that |v0v| =
2d. Let N0 be the set Nv where v has been replaced
by v0. Let T0 be a minimum Steiner λ-tree for N0.
In other words, we can think of T0 as being the new
minimum Steiner tree obtained from Tv by moving
the terminal v vertically downwards by 2d.
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We next establish some properties of the tree T0.

Claim 2. The minimum Steiner λ-tree T0 has the same
base topology as Tv . Furthermore, for each triple, ai, bi
and ci, the main full component of T0 either connects di-
rectly to ai and bi only, as in Figure 5(a), or to bi and ci
only, as in Figure 5(b).

Proof of Claim 2. The first statement follows by the rela-
tive scale of the distances involved in Inequality (1), using
the same argument as in the proof of Claim 1. For the
second statement, it is an easy exercise to show that the
configurations shown in Figure 5(a) and (b) are the only
locally minimal ways of connecting the main full compo-
nent of T0 to ai, bi and ci.

Claim 3. The following three statements are equivalent;

1. The answer to the given instance of the SUBSET SUM
PROBLEM is “yes”.

2. There exists a 3-direction minimum Steiner λ-tree on
N0 with the same base topology as Tv .

3. There exists a Steiner λ-tree on N0 with length at
most Lv −

√
3d.

Proof of Claim 3. The equivalence of the three statements
is shown in four steps.

Step 1: (1) ⇒ (2). Let Tx be the minimum Steiner λ-
tree constructed in Stage 2 of the main construction. Sup-
pose we treat v and one of the terminals xi as ‘moveable’
points, able to move along V1. Then consider the follow-
ing question: If we move xi vertically upwards by a dis-
tance δ, how does the position of v on V1 change so that Tx
remains a 3-direction tree? As Figure 6 shows, each hor-
izontal edge incident with a terminal uj (for j such that
i ≤ j ≤ n) increases in length by 2δ/

√
3. In particular,

the horizontal edge incident with un increases in length by
2δ/

√
3 which implies that v moves downwards by 2δ.

We now apply a similar argument to Tv . Again, allow v
to be a ‘moveable’ point, and consider the effect of chang-
ing the connection of the tree at one of the triples ai, bi, ci
(from the original connection as shown in Figure 5(a) to
the alternative connection shown in Figure 5(b)) while
keeping the tree a 3-direction Steiner tree. By the sym-
metry of the two connection types this is equivalent in its
effect on v to moving xi upwards by di in Tx; that is, v
moves downwards by 2di. This effect is additive across all
of the triples, meaning that if we change to the alternative
connection scheme at each i ∈ J where J ⊆ {1, . . . , n} is
a set solving the given instance of the SUBSET SUM PROB-
LEM, then v moves downwards by 2d to v0, giving the
required 3-direction minimum Steiner λ-tree on N0.

Step 2: (2) ⇒ (1). The argument here is similar to that
in Step 1. This time we begin with a 3-direction minimum
Steiner λ-tree on N0 with the same base topology as Tv ,
and treat the terminal v0 as being a ‘moveable’ point on
V1. Since v0 ̸= v it follows that there must be at least
one i ∈ {1, . . . , n} such that the connection of the tree to
ai, bi, ci uses the alternative connection scheme shown in
Figure 5(b). Let J ′ ⊆ {1, . . . , n} be the set of all such
i where this alternative connection scheme is used. If for
any i ∈ J ′ we change to the original connection scheme
(as shown in Figure 5(a)) while keeping the tree as a 3-
direction tree then, by the same argument as in Step 1, v0
moves upwards by 2di. Now if for every i ∈ J ′ we change
to the original connection scheme while keeping the tree
as a 3-direction tree then it is clear that v0 now coincides
with v (since the position of v0 is uniquely determined by
the positions of the other terminals, the topology of the

v

xi+1

un

ui

xi

V1
V

′
1

V
′
2 V2

δ {

2δ {

2δ√
3

Figure 6: Construction for proof of Claim 3 (Step 1).

tree and the three directions). Since d(v0, v) = 2d it fol-
lows that

∑
i∈J′ di = d, and hence J ′ gives a ‘yes’ solu-

tion to the given instance of the SUBSET SUM PROBLEM.

Step 3: (2) ⇒ (3). We first analyse the change in
length to Tx under the movement of xi by δ described
in Step 1 and illustrated in Figure 6. For the horizontal
edges: the edge incident with xi decreases in length by
δ/
√

3; each edge incident with xj for i + 1 ≤ j ≤ n de-
creases in length by 2δ/

√
3; and each edge incident with

uj for i ≤ j ≤ n increases in length by 2δ/
√

3. Hence
the total length of the horizontal edges increases by δ/

√
3.

For the main zigzag path: its height decreases by 2δ and
hence its length decreases by 4δ/

√
3. Together, these re-

sult in an overall decrease in length of 3δ/
√

3 =
√

3δ for
the whole tree.

It follows for the tree Tv that if we treat v as a ‘move-
able’ point, and consider the effect of changing to the
alternative connection of the tree at one of the triples
ai, bi, ci, while keeping the tree a 3-direction Steiner tree,
the tree decreases in length by

√
3di. Hence, by additivity,

the 3-direction minimum Steiner λ-tree on N0 has length
Lv −

√
3d.

Step 4: ¬(2) ⇒ ¬(3). To prove this last statement, we
argue as follows: Suppose we have a Steiner tree T0 on
N0 with the same base topology as Tv , but which is not
a 3-direction tree. Colour all edges containing a horizon-
tal component red. As described in Section 2.1, we can
assume that there is only one bent edge; furthermore, the
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bent edge is the red edge connecting to the triple ai, bi, ci.
Now, suppose we replace this bent red edge by the orthog-
onal projection of this edge onto the line extending the
horizontal component of the edge. It is easy to see, by the
same argument as in Step 3, that the length of the resulting
(disconnected) 3-direction λ-network is again Lv −

√
3d.

The tree T0 has length strictly longer than this, giving the
required conclusion.

Discretisation and scaling. Above we have pre-
sented a transformation of any instance of the SUBSET
SUM PROBLEM to show that the parallel lines λ-geometry
Steiner tree problem is NP-hard if one ignores arithmetic
precision issues. Furthermore, by the straightforward con-
structive nature of this transformation it is clear that the
problem belongs to NP, and hence is NP-complete, up to
issues of artihmetic precision. Here we demonstrate that
the result remains true when applying a discretisation and
scaling that resolves the issues related to computing with
exact real arithmetic. A similar discretisation and scaling
step has been described in detail in a number of previ-
ous papers (Brazil et al. 2000, Garey, Graham & Johnson
1977, Rubinstein et al. 1997), and so will only be sketched
here.

In the discretisised problem Euclidean distances are
rounded up to the nearest integer. Also, it is assumed that
terminals and Steiner points can only have integer coordi-
nates. Thus for a given Steiner tree T , performing discreti-
sation increases or decreases the length of every edge by
at most 3. Since all trees considered have at most 7n + 1
edges, every tree is at most length 3 · (7n + 1) longer or
shorter than before the discretisation.

We need to be able to distinguish between ‘yes’ and
‘no’ instances in the discretisised problem. More pre-
cisely, as shown in the proof of Claim 3 above, we need
to be able to distinguish between 3-direction minimum
Steiner trees and non 3-direction minimum Steiner trees.
The last part of the proof of Claim 3 shows that non 3-
direction minimum Steiner trees have a length that is at
least ϵλ = (1 − cos ω)/(2 sinω) above Lv −

√
3d, the

length of 3-direction minimum Steiner trees.
The problem is now scaled by multiplying all terminal

coordinates by an integer K. One can distinguish between
‘yes’ and ‘no’ instances, if Kϵλ − 2 · 3 · (7n + 1) ≥ 1.
Choosing K ≥ (42n + 7)/ϵλ suffices, and results in a
polynomial scaling.

Finally, since every instance of the parallel lines λ-
geometry Steiner tree problem is also an instance of the
λ-geometry Steiner tree problem, we immediately get the
following corollary.

Corollary 3.2 The λ-geometry Steiner tree problem is
NP-complete for any given λ = 3m (where m is a pos-
itive integer).

4 Conclusion and Generalisations

The proof of Theorem 3.1 in the previous section relies, to
a large extent, on the properties of the base tree Tx con-
structed in the course of the proof. A key property of the
base tree is that if we perturb a single terminal xi up or
down along V1 the resulting minimum Steiner tree on the
new terminal set is strictly longer than Tx. If xi is per-
turbed downwards (away from v) then the only change to
the tree Tx is that the edge incident with xi becomes a bent
edge via the introduction of a new secondary direction; all
other edges in the tree are straight primary edges. On the
other hand, if xi is perturbed upwards (towards v) then the
edge incident with xi again becomes a bent edge but this
time via the introduction of a new primary direction; all
other edges in the tree are straight secondary edges. This
is possible due to the symmetry in the direction set for

λ = 3m, which means that in a 3-direction Steiner tree
such as Tx it is ambiguous as to whether the edges are all
primary or all secondary (see Figure 2).

The difficulty in generalising Theorem 3.1 to other val-
ues of λ lies in the fact that the direction sets no longer
exhibit this symmetry when λ ̸= 3m. If we construct a
base tree for one of these other values of λ (as in the proof
of Theorem 3.1) using primary directions (as in the table
in Figure 2) then it is no longer true that perturbing xi in
either direction along V1 always reduces the length of the
Steiner tree; for one of the two directions an edge other
than the edge incident with xi will become bent (i.e., the
colour labeling changes), and it can be shown that the new
minimum Steiner tree that results is shorter than the origi-
nal base tree.

This problem, however, can be successfully circum-
vented via a slight alteration to the construction. If in-
stead of choosing the lines V1, V

′
1 , V ′

2 , V2 to be vertical,
we choose them to have a polar slope of π/2 − π/(3λ),
then it is possible to show that any perturbation of xi along
V1 reduces the length of the corresponding base tree. The
details of this somewhat technical argument will appear in
a forthcoming paper (Brazil et al. 2012). The conclusion
is that the parallel lines λ-geometry Steiner tree problem
is NP-complete for all λ > 2.
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