
Conflictive animations as engaging learning tools

Andrés Moreno Erkki Sutinen Roman Bednarik Niko Myller

Department of Computer Science and Statistics
University of Joensuu,

PO Box 111, FI-80101 Joensuu, Finland
FirstName.LastName@cs.joensuu.fi

Abstract

In this paper we introduce the concept of conflictive
animations and discuss its applicability in program-
ming and algorithm design courses. Conflictive an-
imations are animations that deviate from the ex-
pected behaviour of the program or algorithm they
are supposed to present. With respect to the engage-
ment taxonomy, we propose several ways of learning
with conflictive animations. We also initiate a dis-
cussion about their possible benefits and drawbacks.

Keywords: Conflictive Animation, Algorithm Anima-
tion, Program Visualization, Engagement Taxonomy

1 Introduction

Many teachers have seen how inadvertently or in-
tentionally being wrong in their lectures has sparked
students’ attention. In fact, some students will pro-
vide feedback only when they can correct the teacher.
Moreover, when the teacher introduces errors inten-
tionally, she can assess students’ applied knowledge,
i.e, whether the students can relate previous informa-
tion to what is being explained.

Students in a classroom setting may be sufficiently
distracted to not absorb what the teacher is saying.
This would make it harder for them to later detect
teacher’s slips when they happen. Algorithm anima-
tion tools require the student to be more engaged, and
allow for repetition of animations at different speeds
according to students’ abilities.

Asking programming students to find errors is not
new. Rudder et al. (2007) created an online program-
ming course whose materials included a spot the error
task. Students were asked to identify the logical and
syntactical errors in fragments of code, the goal be-
ing to evaluate students’ comprehension of the basic
programming rules.

A different approach is taken in MatrixPro (Kar-
avirta et al. 2004) that addresses the dynamic process
of algorithms. MatrixPro is an algorithm simulation
tool that contains, amongst others, a faulty exercise.
In this exercise the student is asked to reproduce the
steps that will result in a “inconsistent search tree”
according to an incorrect algorithm.

As far as we know, MatrixPro is the only algorithm
animation tools that makes use of intentional errors,
an incorrect algorithm. However, the possibilities of

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Seventh Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2007), Koli National
Park, Finland, November 15-18, 2007. Conferences in Research
and Practice in Information Technology, Vol. 88. Raymond
Lister and Simon, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

intentional errors are not fully developed nor consid-
ered. MatrixPro designers regard the faulty exercise
as a completely open question in their taxonomy for
algorithm simulation exercices (Korhonen & Malmi
2004).

In this paper we first briefly explain algorithm ani-
mation, so as to later explain the concept of conflictive
animation, and discuss its possible educational bene-
fits. Section 4 suggests possible experimental studies
to evaluate the appropriateness of conflictive anima-
tions in CS education. We finish the paper with a set
of questions that we think are worth considering and
the feedback from a survey.

2 Algorithm Animation

Algorithm animation tools visualize the execution of
computer algorithms using graphical means. Usually
in a step by step manner, animations show how al-
gorithms modify and process given data. Data used
in animations consist of characters, numbers, or more
complicated data structures such as binary trees or
queues.

Teachers and students have used animation tools
to teach and study algorithms and programming. For
example, sorting algorithms have been taught ex-
tensively using animations since Baecker (1981) pro-
duced the Sorting Out Sorting movie. Visualizations
have represented data structures (Karavirta et al.
2004) and virtual machines (Moreno et al. 2004) using
a set of graphical primitives: boxes hold values, bars
indicate the weight of values, arrows serve as pointers,
and graphs represent trees or queues.

Hundhausen et al. (2002) summarized the results
of several studies on the effectiveness of algorithm
visualization. Their meta-study revealed that algo-
rithm animation is educationally effective to a cer-
tain extent, in part because of increased student mo-
tivation and the time spent with the animations.
They emphasized the importance of the way stu-
dents engage with animations, suggesting that stu-
dents should regularly work with the animations,
rather than just having animations as a uncommon
aid.

2.1 Engagement Levels

Recent research (Naps et al. 2002) emphasizes the im-
portance of engagement during interaction with algo-
rithm animation. Naps et al. (2002) explicated several
categories of engagement that animation tool creators
should consider when designing algorithm animation
tools. Their taxonomy lists six levels of engagement,
as shown in Table 1.

This taxonomy can be used to help tool designers
to add interactive elements to their designs as well
as to test hypotheses about the effectiveness of a vi-
sualization tool. A way to engage a student with



Level Well-behaved Animation Conflictive Animation
No viewing Tools make no use of animation. Tools make no use of animation.
Viewing Students can visualize animations, either

step by step or continuously.
Students should be aware of the possibility
of viewing an incorrect animation.

Responding Students are asked to respond to questions
related to an animation and the concepts
presented in it.

Students have to detect the errors in the
animation.

Changing Students change the animation to explain
a different concept that the animation was
meant for.

Students change and correct a conflictive
animation.

Constructing Students use the animation tools to create
an animation that explains an algorithm or
a simpler concept.

Students purposely create a conflictive an-
imation.

Presenting Students verbally present an animation to
an audience.

Students present the conflictive animation
and try to confuse peers.

Table 1: Engagement levels and conflictive animations

a visualization is to ask the student to respond to
the question ‘what happens next in the animation?’
(i.e., the program/algorithm execution) (Naps 2005,
Myller 2007), or to construct an algorithm visualiza-
tion using graphical primitives (Karavirta et al. 2004,
Rößling & Freisleben 2002).

A complementary way to encourage students to
respond to questions during animation would be to
ask them to spot errors in it. In this way the question
is asked before the animation and they need to pay
attention to the animation, a) to understand it and
b) to know when an error occurs.

3 Conflictive Animation

Constructivism tenets claim that a student creates
knowledge by combining previous knowledge with re-
cent experiences. The resulting mental model may
hold misconceptions and not be viable. Learning,
then, will only happen when students’ mental mod-
els adapt to the new information and make students
reject misconceptions (Smith et al. 1993-1994). The
teacher’s task is to make students’ misconceptions ex-
plicit and to guide students towards a viable mental
model. Algorithm animations present an opportunity
to help teachers and students to identify misconcep-
tions. Conflictive animations are designed to be a
tool used by students to reflect on their own mental
models. Students should view animations critically,
looking for possible errors in them.

We define conflictive animations as those that de-
liberatedly do not reproduce what the animated code
or algorithm is programmed to perform. An anima-
tion would advance normally until it starts showing
an alternative and potentially wrong execution path.
The animation may eventually come back to normal-
ity, e.g, showing the correct output. Students should
identify when the animation goes wrong, stop it, and
reflect on the detected error. The possible errors can
affect several levels of the animation, from a simple
comparison gone wrong, e.g., evaluating 3 > 4 as true,
to higher-level algorithmic concepts, e.g., skipping a
balancing step in a red-black tree. An extreme case
would be to show an animation of a quicksort algo-
rithm when explaining heapsort.

The idea behind conflictive animations is to add
a new dimension to the engagement taxonomy. Con-
flictive animations could be part of every level in the
taxonomy, as shown in Table 1, complementing the
educational value of working just with well-behaved
animations. Students usually have a mental model
of how a specific program works before they actu-
ally visualize it. Thus, visualizing it should act as
a mere proof-check of their beliefs. However, stu-
dents’ knowledge is frequently fragile (Oliver & Dal-

bey 1994), meaning it is incomplete, not recalled,
or maybe just wrong. Thus, this would mean that
students should benefit from the correct animations:
they are complete and correct.

Conflictive animations are graphically described in
the Venn diagram shown in Fig. 1. Circle A rep-
resents steps in the conflictive animation for an al-
gorithm, and circle B represents steps in which the
student spots an error. The intersection of the cir-
cles represents the situation in which the student cor-
rectly spots the error, a true positive. The rest of
circle B represents false positives, in which the stu-
dent mistakenly detects an error while the animation
is behaving well, and the rest of circle A represents
false negatives, in which the student fails to detect an
erroneous step.

Conflictive animations should try to reveal one
or two possible misconceptions that students might
have. But students should not only check for the cor-
rectness of the visualization. Meaningful conflictive
animations should require students to question their
own mental models while the animation is running.
Students’ false positives could reveal further miscon-
ceptions beyond those being examined by the anima-
tion.

Unfortunately, students commonly use the visual-
ization as just another way to have an algorithm or
program executed, focusing only on the final result
(Moreno & Joy 2007). This eliminates the potential
of animation tools to help students create a viable
mental model of the algorithm execution. Applica-
tions try to overcome this by increasing the students’
engagement level. Some tools ask students to predict
the next step in an algorithm, or even to create an
animation for themselves.

At times, the answers to the questions posed by
the tools can be guessed from cues taken from the
last image shown, or from the algorithm pseudo-code.
Thus they do not always engage the students in a
meaningful learning activity. Furthermore, asking
students to produce a new animation may require
advanced skills (Rößling & Freisleben 2002) that stu-
dents would struggle to acquire.

Figure 1: Venn Diagram for Animations



Conflictive animations would require students to
follow them carefully step by step. Students should
match the graphical representation with the code or
concept it actually represents. To be able to spot
errors in the animation, students would first have to
understand the conventions of the animation, i.e., the
meaning of the graphical metaphor it uses to rep-
resent the execution. Thus we believe that finding
where animations have gone wrong would not only
improve students’ learning on a particular concept,
but give them a better basis for understanding sub-
sequent animations.

3.1 Scenarios

Students should be acquainted with the concepts be-
fore testing their knowledge and comprehension with
conflictive animations. Their teacher should have al-
ready explained the concepts, probably with the use
of animations. Then students could view the con-
flictive animations, knowing that they are conflictive,
and try to spot the errors.

Three major roles can be identified in the common
scenarios: students, teachers, and peer students. Stu-
dents could use the conflictive animations to evaluate
themselves, or teachers could use them to formally
assess students. Peer students could build conflictive
animations to challenge other students.

In the first case, the tools should give students
instant feedback once they believe they have found
the error in the animation. Feedback should at least
indicate the correctness of their answer, and a brief
explanation of what went wrong in the animation.

The second case could involve written assignments
in which students would describe in detail what went
wrong in the animation and when. Teachers would
be able to detect the common misunderstandings and
give personalized feedback to the students.

Finally, conflictive animations could be the basis
for a gaming environment. Some students could de-
sign and build a conflictive animation, and the other
students would try to find the errors in the anima-
tion their peers have designed. While building any
animation is a complex task, the competitiveness of
the assignment may provide additional motivation to
students.

3.2 Animations as a story

Interest in CS has seen a drop and student intakes
across different CS departments have sharply reduced
(Vegso 2005). Alice (Moskal et al. 2004) is an anima-
tion tool meant for programming movies and games
in an accessible way. Moskal et al. (2004) have shown
that Alice appeals to a wide audience and its use in-
creases students’ performance and their interest in
computer science. Alice’s best asset is the ease with
which people can use it to implement a movie or a
game. But another important asset is the playful en-
vironment it provides. Students can add a variety of
everyday characters and objects and program them
to act according to the students’ own ideas.

We suggest that algorithm animation tools should
add animated characters to animations in order to
retain students’ interest in the topic, and to attract
new students to major in CS. Characters could guide,
or misguide, the animation blocks, and describe the
animation behaviour. This way, animations will not
only consist of boxes, lines and dots moving around,
as in Sorting Out Sorting (Baecker 1981), but they
will represent a story that can attract a diverse audi-
ence.

We envisage an animation story in which two char-
acters collaborate to implement an algorithm. If it

is a sorting algorithm, they could move boxes that
contain the data to be sorted. However, one charac-
ter knows the correct steps of the algorithm and the
other is wrong. They will discuss and reason about
the changes made, e.g., why an array element was se-
lected to be the pivot element. Each will try to con-
vince the other about how to perform the next step.
Eventually, the conflictive character will manage to
convince the smart character. This should prompt
a reaction in the viewer, who wants the algorithm
animation to finish correctly. A set of animations fol-
lowing this idea could be realized to create a multi-
episode show to be used in CS lessons at high schools.

3.3 Implementation

Algorithm animation tools such as ANIMAL (Rößling
& Freisleben 2002) provide the tools for visualizers to
create animations of algorithms. We propose that vi-
sualizers consider the possibility of creating conflictive
animations and uploading them to online reposito-
ries1. These conflictive animations should be clearly
labeled as such to avoid misunderstandings. A start
could be made by modifying the scripts of existing
animations to introduce errors in them.

JHAVÉ (Naps 2005) could also be extended to
support this new way of interaction. Students should
be able to push a button to signal that the animation
has gone wrong. JHAVÉ would then ask the student
at what point the animation went wrong, perhaps us-
ing a graphical multiple-choice question that includes
snapshots of the animation.

Teachers like using their own examples in their
lectures, but they often complain about the time-
consuming task of creating animations (Naps et al.
2003). Thus automatic generation of conflictive ani-
mations is also important. Teachers could use exam-
ples they are comfortable with, and students could
test their knowledge with their own programs.

To cater to teachers’ needs, generation tools should
let the teacher modify certain parameters, e.g., the
algorithm to animate, the initial data, the concept
to assess, or the level of divergence from correct be-
haviour. JHAVÉ, for example, already implements
the first two parameters. With this information, tools
should be able to create an animation plan. Incorrect
behaviour can be implemented in the inner algorithms
that drive the animations. For example, two different
visual routines for animating the balancing of a tree
could be implemented, one representing the correct
behaviour and the other the conflictive one. The lat-
ter would be triggered when the right conditions are
met, e.g., a left insertion that prompts a rotation.

Completely automated generation of conflictive
programming animations might show to be more dif-
ficult to accomplish, as programs created by the stu-
dents follow a non-deterministic execution behaviour.
Algorithms should produce meaningful conflictive an-
imations from students’ programs. They should also
infer what concept should be conflictive, and when to
animate it. A solution for this issue is adaptation, i.e.,
keeping a user model and a user goal map. Adapta-
tion could keep track of users’ current knowledge and
learning goals, which vary as the course progresses.

4 Suggested Evaluation

Implementing the concept of conflictive animations
is not a trivial task. Existing tools have to be re-
designed, both the GUI and the animations they pro-
duce. In addition, the new learning task of spotting
the errors in animations could confuse the students.

1http://www.animal.ahrgr.de/animations.php3



Students should know what the task consists of – de-
tecting an error – and they must be able to solve that
task with the tool using the new GUI and animations.
Therefore usability evaluation should be carried out
from the very beginning in the design phase. Once the
task is well defined and the tool is usable, it is time
to evaluate the usefulness of conflictive animations.

We propose two main hypotheses to test the pos-
sible benefits of conflictive animations:

H1 : We hypothesize that students using conflic-
tive animations will understand the concepts ex-
plained better than students using a tool at the
responding level in the engagement taxonomy,
e.g., JHAVÉ. By revealing possible misconcep-
tions, students’ knowledge, once fragile, will crys-
tallize. Students will check their assumptions
with the animation and discard those that do
not correspond to the correct animation.

H2 : Students’ motivation to view visualizations and
animations will increase when they know there
are potential mistakes in them.

5 Discussion

We have presented in this paper the concept of conflic-
tive animations, which should reinforce correct men-
tal models in students. The educative effect of inten-
tional errors in instruction is not well researched, and
could produce an adverse result. According to our
beliefs, conflictive animations should at least increase
the attention students devote to animations and their
critical thinking.

From our point of view, conflictive animations can
at least raise few interesting questions apart from the
hypotheses mentioned above:

• Not everybody enjoys being deceived, but does
everyone benefit from the deception?

• How can trust in a learning tool be maintained
when it is constantly going wrong?

Based on the small-scale survey we carried out at
the Koli Calling 2008 conference, CS educators have
used some form of conflictive animations or examples
and they would be willing to use a tool that pro-
vides conflictive animations. We also asked educators
to order different scenarios based on their perceived
effectivity on learning. We had also classified those
scenarios based on the engagement taxonomy clas-
sification and interestingly the order of the conflic-
tive animations perceived effectivity does not match
the proposed order of the well-behaved animations
(Naps et al. 2002). Based on the educators answers,
the order of the engagement levels for conflictive ani-
mations based on their educational effectiveness from
the most effective to the least effective is as follows:
changing/correcting, responding/detecting, viewing,
constructing, no viewing, and presenting.

References

Baecker, R. (1981), ‘Sorting out sorting, color/sound
film’.

Hundhausen, C. D., Douglas, S. A. & Stasko, J. T.
(2002), ‘A meta-study of algorithm visualization ef-
fectiveness’, Journal of Visual Languages and Com-
puting 13(3), 259–290.

Karavirta, V., Korhonen, A., Malmi, L. & Stalnacke,
K. (2004), MatrixPro - a tool for demonstrating
data structures and algorithms ex tempore, in ‘Pro-
ceedings of ICALT 2004’, pp. 892–893.

Korhonen, A. & Malmi, L. (2004), Taxonomy of vi-
sual algorithm simulation exercises, in ‘Proceed-
ings of the Third Program Visualization Work-
shop’, The University of Warwick, UK, pp. 118–
125.

Moreno, A. & Joy, M. (2007), ‘Jeliot 3 in a demanding
educational setting’, Electronic Notes Theoretical
Computer Science 178, 51–59.

Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M.
(2004), Visualizing program with Jeliot 3, in ‘Pro-
ceedings of the International Working Conference
on Advanced Visual Interfaces, AVI 2004’, Gallipoli
(Lecce), Italy, pp. 373–380.

Moskal, B., Lurie, D. & Cooper, S. (2004), Evaluating
the effectiveness of a new instructional approach,
in ‘SIGCSE ’04: Proceedings of the 35th SIGCSE
technical symposium on Computer science educa-
tion’, ACM Press, New York, NY, USA, pp. 75–79.

Myller, N. (2007), ‘Automatic generation of pre-
diction questions during program visualization’,
Electronic Notes Theoretical Computer Science
178, 43–49.

Naps, T., Cooper, S., Koldehofe, B., Leska, C.,
Rößling, G., Dann, W., Korhonen, A., Malmi, L.,
Rantakokko, J., Ross, R. J., Anderson, J., Fleis-
cher, R., Kuittinen, M. & McNally, M. (2003),
Evaluating the educational impact of visualization,
in ‘ITiCSE-WGR ’03: Working group reports from
ITiCSE on Innovation and technology in computer
science education’, ACM Press, New York, NY,
USA, pp. 124–136.

Naps, T. L. (2005), ‘JHAVÉ – addressing the need
to support algorithm visualization with tools for
active engagement’, IEEE Computer Graphics and
Applications 25(5), 49–55.

Naps, T. L., Rößling, G., Almstrum, V., Dann,
W., Fleischer, R., Hundhausen, C., Korhonen, A.,
Malmi, L., McNally, M., Rodger, S. & Velázquez-
Iturbide, J. Á. (2002), Exploring the role of visu-
alization and engagement in computer science ed-
ucation, in ‘ITiCSE-WGR ’02: Working group re-
ports from ITiCSE on Innovation and technology
in computer science education’, ACM Press, New
York, NY, USA, pp. 131–152.

Oliver, S. R. & Dalbey, J. (1994), ‘A software develop-
ment process laboratory for CS1 and CS2’, SIGCSE
Bull. 26(1), 169–173.

Rößling, G. & Freisleben, B. (2002), ‘ANIMAL: A
system for supporting multiple roles in algorithm
animation’, Journal of Visual Languages and Com-
puting 13(3), 341–354.

Rudder, A., Bernard, M. & Mohammed, S. (2007),
Teaching programming using visualization, in ‘Pro-
ceedings of the Web Based Education 2007 Confer-
ece (WBE)’, ACTA Press.

Smith, J. P., III, diSessa, A. A. & Roschelle, J.
(1993-1994), ‘Misconceptions reconceived: A con-
structivist analysis of knowledge in transition’, The
Journal of the Learning Sciences 3(2), 115–163.

Vegso, J. (2005), ‘Interest in CS as a major drops
among incoming freshmen’, Computing Research
News 17(3).


