
Cooperative Query Answering for Semistructured Data

Michael Barg Raymond K. Wong

School of Computer Science & Engineering
University of New South Wales
Sydney, NSW 2052, Australia

Email: {mbarg,wong}@cse.unsw.edu.au

Abstract

Semistructured data, in particular XML, has emerged as
one of the primary means for information exchange and
content management. The power of XML allows authors
to structure a document in a way which precisely captures
the semantics of the data. This, however, poses a sub-
stantial barrier to casual and non-expert users who wish to
query such data, as it is the structure of the data which
forms the basis of all XML query languages. Without
an accurate understanding of how the data is structured,
users are unable to issue meaningful queries. This prob-
lem is compounded when one realises that data adhering
to different schema are likely to be contained within the
same data warehouse or federated database. This paper
proposes a method which enables users to meaningfully
query semistructured data with no prior knowledge of its
structure. We describe a mechanism for returning approxi-
mate answers to a database query when the structure of the
underlying data is unknown. Our mechanism also returns
useful results to the user if a specific value in the query
cannot be matched. We discuss a number of novel query
processing and optimisation techniques which enable us
to perform our cooperative query answering in an efficient
and scalable manner.

Keywords: Cooperative query processing, semistructured
data, XML.

1 Introduction

The richness of the XML data format allows data to be
structured in a way which precisely captures the seman-
tics required by the author(s) [XML]. Such requirements
are naturally influenced by the purpose of the author(s), as
well as the context in which the document is being writ-
ten. Such purposes and contexts vary widely, resulting
in data with the same semantic content having vastly dif-
fering structure. This poses substantial barriers to casual
users and non-domain experts who wish to query the data,
as it is the structure of the data which forms the basis of
all XML query languages [ABI97, BUN97]. Without at
least some notion of the structure, a user cannot mean-
ingfully query the data. This problem is compounded
when one considers that heterogeneous data adhering to
different schema are likely to be included in the same data
warehouse, federated database or integrated data reposi-
tory [MF+01, QR+95].

Even if the structure is known to the user, an empty
result set is frequently returned to the user. Such an occur-
rence may be due to the user misconception about the data
structure or simply that a specific value was not matched.

Copyright c©2003, Australian Computer Society, Inc. This paper ap-
peared at Fourteenth Australasian Database Conference (ADC2003),
Adelaide, Australia. Conferences in Research and Practice in Informa-
tion Technology, Vol. 17. Xiaofang Zhou and Klaus-Dieter Schewe, Ed.
Reproduction for academic, not-for profit purposes permitted provided
this text is included.

This rigid answer does not provide any helpful informa-
tion to the users, except an indication that some portion of
their query could not be satisfied.

Suppose, for example, we are looking for trends in ”in-
surance claims” related to ”smoking” for ”women” over
”40”. The information we are after may be contained in in-
surance company records, court transcripts, or even news-
paper articles. Even if we decide we are only interested in
examining court transcripts, we do not know the structural
relationship between the terms of interest. We are left in
the predicament of knowing exactly what we are looking
for, but not knowing how to find it.

Consider another example, where we wish to find the
phone number of Bob, the new sales manager. Unfortu-
nately, his entry has not been created in the database yet.
Instead of informing the user that no such phone number
exists, it would be much more cooperative if the database
could relax the query and return the phone number of the
secretary and/or the reception of sales department instead.

The notion of cooperative query answering is well es-
tablished for relational databases. Databases may attempt
to return answers which ”approximately” answer the users
query, if no exact match can be found. Such approaches
typically assume the structure of a query is correct, and
employ a variety of techniques to approximate the value
of particular criteria [BW99, CY+96, GG+98].

XML data, however, poses its own, more complex set
of issues with regards to cooperative query answering. As
it is the structure of the data which poses the greatest bar-
rier to user queries, a more useful approach to coopera-
tive query answering for semistructured data is to return
an answer where the structure of the data approximately
matches the structure specified by the query. To be truly
useful, such a notion of ”approximate” matching should
incorporate some concept of semantic as well as struc-
tural similarity. Thus, two structures should be considered
”similar” if they are both close in the structural sense, and
convey semantically similar information.

For cooperative query processing, we consider the
XML database (such as a Lore database [MH+97]) as a
general graph, comprised of one or more individual data
sets. Whilst raw XML can always be represented as a tree,
the interpreted structure (ie. the structure obtained if links
are materialised as edges) can be an arbitrary graph. As
links generally indicate a ”relatedness” between elements,
we must consider this interpreted structure to maximise
the effectiveness of our cooperative query answering.

With semi structured data, it is frequently appropriate
to return approximate answers even if the data does con-
tain an exact match to a query. Suppose, for example,
we wish to find all ”restaurants” in ”Soho” which serve
”seafood”. Figure 1 shows one possible structure for XML
data which represents this information. Suppose we spec-
ified a structure in our query which exactly matched the
restaurant ”something fishy”. However, even in this
small data set, there are two other restaurants which are
semantically appropriate to return, even though they do
not structurally match the query. For this reason, it is fre-

quently appropriate to return approximate answers, in an
appropriate ranked order, even when there is data which
exactly matches the query.

As our approach seeks to determine the similarity
of subgraphs, where the overall graph (i.e. the entire
database) has many subgraphs, the process is potentially
very expensive. Given that the most likely use of cooper-
ative query answering is in real time interactive querying
sessions, the processing speed is especially crucial.

In this paper we present a mechanism for implement-
ing cooperative query processing for semistructured data
in near linear time. We present a method for efficiently
scoring topological similarity between graphical compo-
nents, which takes the semantics of the structure into con-
sideration. We extend the encoding schemes presented in
[BW01] to facilitate the efficient calculation of progres-
sive overall scores.

2 Basic Concepts

Each query, Q can be represented by a query tree,
QT , which indicates the required topological rela-
tionship between target nodes. For example, to find
the phone number of a restaurant in Soho, the query
/restaurant[.//Soho]/phone number (i.e.
restaurant has a child node phone number and a
descendant Soho) yields the query tree shown in figure 2.

soho phone_number

restaurant

Figure 2: Query Tree for:
/restaurant[.//Soho]/phone number

Let QT (a, b), represent an edge in the query tree QT .
Note that each edge specifies the required topological re-
lationship, Q(a, b), between two nodes. For example, the
edge QT (restaurant, Soho) indicates the query require-
ment Q(restaurant, Soho) , that restaurant nodes
must have a descendant Soho. Symmetrical definitions
apply for Q(Soho, restaurant).

A result term, ti, is a query term which corresponds
to a node explicitly required by the query. For instance,
in the above example, we are explicitly requesting all
phone number nodes whose location in the graph sat-
isfies certain criteria. Thus in this instance, the result term
is phone number. Note that it is possible for a given
query tree to contain a number of different result terms, or
the same result term repeated in different segments of the
query tree.

For a given edge, QT (a, b), we say that a is the head
of the edge iff len(a, ti) < len(b, ti), where len(a, b) is the
minimum number of edges between a and b, and len(a, ti)
≤ len(a, tj), and len(b, ti) ≤ len(b, tj) ∀tj . If len(a, ti) =
len(b, ti), head(QT (a, b)) = a, where a is closer to the root
of QT than b. Informally, the ”head” of an edge is the end
which is closer (ie. in terms of number of edges) to the
nearest result term. (If both ends of the edge are equidis-
tant, we choose the ”head” as the end which is closer to
the root of the query tree). Note that the ”head” of an edge
is only defined for edges of the query tree, not the actual
data. As expected, tail(QT (a, b)) = NOT(head(QT (a, b))).

3 Overview

Our overall approach is to return a set of results, ranked
by an overall score which indicates how well the sub-
graph containing the result satisfies the query criteria. If
a given result node exists in more than one potential sub-
graph (which is usually the case), we select the subgraph
which gives the lowest score.

The overall score is based on how closely the structure
of the subgraph conforms to the structure required by the
query tree. We progressively determine the score, using
a graph algorithm to determine how well each candidate
pair of nodes satisfy the criteria in a single edge of the
query tree.

Implementing such an approach with an arbirary disk
based graph would require at most V × n disk seeks, for
a graph with V vertices and a query itree with n edges.
Obviously such an approach is impractically slow!

Instead of directly examining the graph, we extend the
work done in [BW01] to encode the subgraph under con-
sideration. Individual nodes are encoded in a small space
(typically less than 20 bytes), and stored in a structural in-
dex. These are combined as required into larger encodings
which represent subgraphs containing these nodes. Graph
based algorithms are then performed utilising these encod-
ings, rather than considering the raw graph itself.

We extend the algorithms presented in [BW01] to
achieve constant time score calculation. Firthermore, as
the encodings are designed to remain as small as possi-
ble, calculations and comparisons occur in main memory.
As these comparisons and calculations heavily utilise bit-
wise comparisons and optimisations, such operations are
performed very quickly.

Due to the exponential number of possible subgraphs,
we employ a greedy algorithm to aggressively prune the
search tree. For each query tree edge, each node which
matches the head is ”labeled” with the progressive score.
This is comprised of a score which indicates the best
match for the given node to the criteria specified by the
query tree edge, and the previous progressive score for the
relevant node which matches the tail. In this way the final
score is progressively calculated with minimal additional
overhead.

4 Similarity Considerations

The notion of ”similarity” incorporates both topological
deviation and the semantics such deviation implies. For
example, consider the query/restaurant/Soho. Fig-
ure 3(a) shows the structure which exactly matches the
query. If this structure is to be approximated, the new
topology should be the closest structure in the semantic
sense. Informally, this can be defined as ”a different struc-
ture which means the same thing”.

Figure 3(b)-(f) shows alternative structures which do
not match the structural requirements of the query, but do
match the semantic requirements. As can be seen, if the
structure implied by the query requires that a be a child of
b, it is possible that anyother topological relationship be-
tween a and b may also satisfy the semantic requirements
of the query. Determining this computationally, however,
has a number of potential difficulties.

Whilst many mechanisms exist for determining if two
terms ”mean the same thing” (such as thesauri to lexical
databases (eg. word net) to ontologies), none of these
mechanisms take into considerations structural relation-
ships, (where the structure is defined arbitrarily). Fur-
thermore, some mechanism needs to be developed to ef-
ficiently determine the two similarities of two structures.

Proximity (in the structural sense) has been success-
fully used to indicate the ”relatedness” of two terms
[BW01, GS+98]. We extend this notion to define devi-
ation proximity, which gives a measure of how far one
structure ”deviates” from a topological criteria.

Category

"Restaurant" "Fast Food"

Food Guide Shopping Mall

"Soho"

BranchName

"Bonza Mall"

Shop

Type

"Restaurant"

Product

"Seafood"

City Guide

Soho

Places to eat

Restaurant

MenuAddress Name

"Soho""12 Brown St"

Street Mains MainsSuburb

"Seafood"

"Seafood"

"Neptunes"

"Something Fishy"

Figure 1: Potential XML Graph of Restaurant Information

Calculating the extent to which two structures deviate
in the structural sense is possible to achieve in near con-
stant time by modifying the method presented in [BW01].
Conceptually, this works by ”overlaying” the encoding
representing the node of interest on the existing graph, and
observing the point at which they deviate. In practice, this
”overlaying” is performed using bitwise comparisons, and
tends towards constant time in practice.

We further refine the deviation score, by applying a
suite of scoring functions which take into account the
likely semantic implications of the observed deviation.
Space precludes us from exploring these scoring func-
tions in detail. In general, however, these are based on
general observations about the semantic interperetation of
general semistructuired doicument construction, and their
relationship to other such components. Applying the scor-
ing functions allows us to ”fine tune” the final score, to
increase its overall semantic relevance.

5 Cooperative Query Processing

5.1 Converging Order

The order in which we consider edges from the query tree
plays an important part in the overall query processing.
Informally, we wish to consider paths through the query
tree which ”converge” on a result term (it is not important
which one). This allows us to progressively calculate the
minimum overall score for all query tree edges considered
so far.

This order ensures that the head of one edge will be-
come the tail of a future edge wherever possible. By stor-
ing the minimum score at this node, therefore, we always
have access to the appropriate previous score (which we
combine with the minimum score for the current edge)
without requiring any additional lookups.

Furthermore, if the last edge we consider in the query
tree contains a result term, we can then directly insert this
in the final result set, without needing any additional pro-
cessing to retrieve the result nodes from the graph or any
interim data structure. This ensures that the overall algo-
rithm is O(n), where a given query tree has n edges.

We refer to this order of considering edges from the
query tree as converging order. Figure 4, shows a query
tree, with one possible converging order (Note that for
any given query tree, converging order is not necessarily
unique). Nodes labeled r indicate result terms, and edge
labels correspond to the order in which edges are consid-
ered.

If a leaf in the query tree has no matches in the data set,
then this is ignored. Note that any CDATA value (such as
"Bob" in name = "Bob") is guaranteed to correspond
to such a leaf node. As such, we enable the system to
return useful answers in cases where specific data values
do not exist.

We can now begin to see how converging order assists
in co-operative query processing. Consider the query tree
and ordering shown in figure 4. The first edge we consider
in the query tree is QT (e, h), which specifies the query
requirement that nodes which match h must be a child of
nodes which match e.

restaurant

soho

address

soho

restaurant

soho

restaurant

eating_places

restaurant

soho

(a) (b) (c) (d)

soho restaurant

shopping_centre shopping_centre

suburb shop

soho restaurant

(e) (f)

Figure 3: Semantically Similar Topologies

r

a

b c dr

1 2

3 6

5

74 8

9

10

11

12 13

fe g

h i j k l

Figure 4: Sample Query Tree

The first pass of the algorithm presented in section 5.2
finds the minimum score of all nodes which match e to the
nearest node which matches h. This score is then stored
at each e node within the encoding. Note that the actual
e and h nodes may have any topological relationship. It
is for this reason that traditional tree matching approaches
are unsuited to co-operative query processing.

The second pass of the algorithm in section 5.2 (which
considers QT (e, i)) calculates the minimum deviation
score of all nodes which match i to the nearest node which
matches e. This deviation score calculation requires us to
examine the relevant e node in the encoding. At the same
time, we obtain the progressive deviation score. This is
then combined with the new deviation score for i, and the
new progressive score is stored at the relevant e node in
the encoding.

In this way, we can always obtain the most recent, rel-
evant, progressive score with no additional lookups.

5.2 Main Query Processing

We can now look at the main algorithm for co-operative
query processing. The overall approach has already been
suggested in section 5.1. Converging order is used to en-
able progressive calculation of the overall deviation. Fig-
ure 5 shows the algorithm used to process queries, which
describes this process in detail.

The remainder of this discussion assumes that H and
T are the set of nodes which match the head and tail of a
given query tree edge respectively.

The algorithm works by considering edges in converg-
ing order (step [1]). For each query tree edge, we first
consider the tail (steps [2] through [4]), and then the head
(steps [5] through [14]). Considering the tail merely in-
volves ensuring that the tail is represented in the progres-
sive encoding. For each node which matches the head, we
calculate the score for that node (step [7]) score Steps [7]
and [9] are discussed in more details in sections 5.2.1 and
5.2.2 respectively.

Conceptually, this approach progressively ”builds” as
much of the graph as is required to represent all nodes
which match the various query terms (the progressive en-
coding from steps [4] and [11]). The ”graph” that is actu-
ally ”built” is the subgraph encoding discussed in section

3. In practice, building the encoding heavily utilises bit-
wise operations and optimisations, giving very fast perfor-
mance.

A modified graph based algorithm is then used to ex-
amine the encoded graph to determine the score s, for each
node. As discussed in section 4, is based on ”proximity
deviation”. Fundamentally, this is the degree to which the
path (n, m) satisfies the query edge criteria, where n is the
node which matches the head, and m is the node matching
the tail which best satsfies the query tree edge. This means
that for a given query tree edge, the best score is chosen
for each node matching the head, considering all nodes
which match the tail. Obviously, this definition potentially
potentially leads to serious performance degredation. This
issue is discussed in detail in section 5.2.1. Looking ahead
a little, however, we see that we can exploit various fea-
tures of our encoding schemes to perform this step in near
constant time.

In practice, each iteration tends toward O(|H | + |T |)
if the tail encodings must be retrieved and included (steps
[3] and [4]), or O(|H |) otherwise. Thus, for a query with n
query terms (and thus n − 1 query tree edges), the worst
case performance is O((|H | + |T |)×n). As we consider
edges in an order which minimises the number of times
step [2] is required, performance frequently tends toward
O(|H | × n) in practice.

5.2.1 Individual Node Score Calculation

As mentioned in section 5.2 above, determining the score,
s, for a single node is potentially very expensive. This is
chosen as the minimum score for each head node, based
on all the tail nodes in the graph. This might suggest the
need to compare each head node with all tail nodes to.
This approach is O(|T | × |H |), where T and H are the
set of nodes which match the tail and head respectively.
Obviously such an approach is untenable.

Furthermore, even if we somehow know the location of
the relevant tail node, the score is based on the topological
relationship between two nodes. This might suggest the
need to fully locate both nodes in the graph. This effec-
tively corresponds to additional redundant graph traver-
sals, even if the graph is encoded and traversals are ac-
complished using bitwise operations.

As mentioned in section 3, we use a modification of the
algorithm presented in [BW01]. This method presented a
means of finding the distance from all nodes in one set to
the closest node in a second set, in O(|T |+|H |). The main
approach was to build an encoding which represented the
first set of nodes (all nodes which match the tail in our
case. Generating the encoding is O(|T |)). Next, encod-
ings were obtained for each element from the second set
of nodes (the head, in our case, in step [5] in figure 5).
Each of these was compared with the encoding to obtain
the distance to the nearest element (O(|H |).

We are able to obtain minimum scores using the same
approach. Importantly, this method guarantees that after
we have generated the encoding of all tail nodes, we can
find the best deviation score for each head node in near
constant time.

Algorithm: Cooperative Query Processing
Input: Query Q, which is represented by the query tree, QT .
Output: Set of ranked tuples, <result, score >

[1] For each edge of the query tree, QT

i
(a, b), chosen in converging order

[2] If tail(QT (a, b)) has not been represented in the progressive encoding
[3] Obtain the encodings which represent the set of all nodes which match tail(QT (a, b)).
[4] Include these in the progressive encoding, which represents all nodes examined so far.
[5] Obtain the encodings which represent the set of all nodes which match head(QT (a, b)).
[6] For each of these encodings
[7] Calculate the score, s, which indicates the degree to which the node satisfies the criteria specified by QT (a, b).
[8] Combine the encoding into the progressive encoding from step [4]
[9] Calculate the minimum total progressive score, S, for this node
[10] If this is not the final edge in the query tree
[11] Include S at this ”node” in the progressive encoding from step [4]
[12] Else
[14] Insert <node, S> into result set

Figure 5: Cooperative Query Processing Algorithm

This method additionally avoided redundant graph
traversal by storing additional distance information at spe-
cific nodes in the encoding. Each encoding of the latter set
(H) was conceptually ”overlaid” on the encoded subgraph
only until the encoded node and the encoded subgraph di-
verge. This allowed the exact distance between two nodes
to be calculated, without the need of actually ”visiting”
each of these nodes. This ”overlaying” and distance cal-
culation was implemented using a number of bitwise op-
erations and optimisations, and was shown to be near con-
stant time in practice.

As we have discussed, the algorithm from [BW01] al-
lows us to perform a single iteration of the loop in figure 5
in O(|H |+|T |), where H and T are the set of nodes which
match the head and tail respectively. Thus, for a query
with n terms (yielding a query tree with n − 1 edges), the
query processing is O(n × (|H | + |T |)).

5.2.2 Progressive Score Combination

As mentioned earlier, considering edges in converging or-
der sometimes requires that progressive scores be com-
bined. This typically occurs at nodes in the query tree
with multiple children, or where edges ”converge” on re-
sult terms from different directions (for example, both top
down and bottom up). In such situations, the same node in
the query tree is the head of multiple edges, and so is con-
sidered separately in different iterations of the algorithm
in figure 5.

In such situations, the final progressive score for a
given node in the result tree can only be calculated after
all edges which contain that node as the head have been
considered. For example, in figure 4, the scores for edges
QT (e, h) and QT (e, i) must both be considered before the
final progressive score for e can be determined.

Converging order means that the different converging
edges will contain independent progressive scores, which
must eventually be combined into a single score. This re-
quires us to store these progressive scores independantly
for each node where these scores will eventually be com-
bined.

When the last independent progressive score is calcu-
lated, all such scores are combined into a single score. The
actual operators used for any two progressive scores de-
pend on the operators used in the original query. For ex-
ample, if a branch in the query tree indicates a boolean
AND, progressive scores are added, whereas if a branch
indicates a boolean OR, minimum progressive score is
used. Progressive scores are combined in the order de-
termined by the normal query parse tree.

6 Results

Figure 6 shows the types of answers obtained for queries
posed over heterogeneous XML data.

Queries 1, 2 and 3 were formulated on the basis
of ”reasonable” or ”logical” assumptions regarding the
”likely” structure of the data, not on the basis of prior
knowledge of the structure of the .

Query 4 was formulated with prior knowledge of the
underlying structure of the data. This is representative of
the situation where the structure of the data is known, but
the required value does not exist. Note that even though
the desired information did not exist in the database, the
results returned were useful, as they offered a likely means
of obtaining the required information, utilising a mecha-
nism external to the database itself (phoning the appropri-
ate department, for example). Similarly, if the user de-
cided it was not overly important to have the phone num-
ber of Bob Smith, a list of alternative contacts was pro-
vided.

As can be seen, for all queries, low ranked results tend
to contain information which is semantically appropriate
to the information desired by the user.

Systems which only consider proximity between 2
terms [BW01, GS+98] are also capable of providing re-
sults for a query such as query 1. This is the simplest case
of cooperative answering, as only 2 terms are involved.
Even in this case, however, such mechanisms make no ref-
erence at all to any desired structure specified by the user.
Both approaches essentially accept 2 keywords, and rank
nodes based on the proximity between them, irrespective
of the topology. Thus, even in this case the results are
likely to less precise (in the semantic sense).

Such approaches are unable to provide any results for
more complex queries. Such approaches return a ranked
set of results for the 2 specified keywords, but offer no
mechanism for combining such sets. Furthermore, even
if such an approach was suggested, the topology of both
the query and result are completely ignored by these ap-
proaches, substantially reducing the quality of any such
results in the semantic sense.

7 Related Work

To the authors’ knowledge, no other work has been done
attempting to implement cooperative queries for semi-
structured data.

To address some of the issues in unknown data struc-
ture, however, effort from database researchers has been
recently paid to provide more flexible and efficient co-
operative search on semistructured data. For example, a
major problem faced by the existing Web search engines
is that they return only physical pages containing query
terms. Frequently, however, a web document for a topic

Cooperative Query Results
Desired Info Find all restaurants in Soho
Actual Query //restaurant/Soho
Results Restaurants with a child named ”Soho”, followed by restaurants with an address in Soho,

followed by restaurants contained in a ”Soho” tourist guide document.
Desired Info Find all phone numbers of restaurants in Soho
Actual Query //restaurant[./Soho]//phone number
Results Phone numbers with an ancestor ”Restaurant” who had a child named ”Soho”, followed

by the phone numbers of restaurants with an address in Soho, followed by a 1800 number
to an ”eating out” guide which included restaurants in Soho.

Desired Info Find all hotels in Sydney with rooms less that $100/night
Actual Query //hotel[.//Sydney][.//price < 100]
Results Hotels with a descendant of ”Sydney” and a descendant of ”Price” whose value was less

than $100, followed by hotels in a ”Sydney” tourism guide with price less than $100
followed by hotels in Sydney in the ”budget” category (where budget was defined as
<$100 in that document).

Desired Info Find the telephone number of the sales manager, ”Bob Smith” of company ”Fishy Enterprises”
(NB: Suppose there is no such person at this company)

Actual Query //sales manager[./company/name=”Fishy Enterprises” and ./name=”Bob Smith”]/phone number
Results Telephone numbers for the sales managers at ”Fishy Enterprises”, followed by the phone

number of the sales department, followed by the phone number of the secretaries to the sales
managers.

Figure 6: Cooperative Query Results

may span multiple pages and be authored in many differ-
ent ways. Li and Wu [LW99] have introduced the con-
cept of information unit, which can be viewed as a logical
Web document consisting of multiple physical pages as
one atomic retrieval unit. A framework of query relax-
ation by structure is proposed, whereby a set of connected
physical pages, contain, as a whole, all query terms which
can be retrieved. The work by Tajima et al. [TH+99]
extends the concept of information units by considering
keyword occurrence frequency and distribution. Such an
approach, however, does not allow consideration of the
structure within a single document.

Another approach has been to rank nodes based on
their proximity to one another in the structural sense
[BW01, GS+98]. Such a method can produce good re-
sults when the user wishes to find one element which is
near another. Whilst such approaches yields good results
for searches involving 2 terms, no mechanism is presented
for performing searches involving more terms. Further-
more, such an approach does not consider the topology of
either the original query or the returned results. For both
these reasons, such an approach is inappropriate for ap-
proximating queries on semi-structured data.

8 Conclusions

In this paper we have presented a method for implement-
ing a fast, efficient cooperative query processing mech-
anism for semi structured data. Our mechanism returns
results where the structure of the data approximates the
structure specified in the query. Our notion of approxima-
tion incorporates both structural and semantic similarity.
Our mechanism also returns helpful results in instances
where specific data values specified in the query cannot
be found. We have described a framework for calculat-
ing similarity scores, which incorporate both structural
and semantic similarity, in an efficient manner. We extend
the mechanism for encoding graphs presented in [BW01],
to allow us to efficiently calculate progressive similarity
scores, by considering only the encoding held in mem-
ory. Our cooperative query processing algorithm exploits
these extensions to provide near linear time performance.
This is especially impressive when one considers that our
similarity is based on structural similarity between all po-
tential target subgraphs. We have further shown that our
mechanism produces useful answers for queries where the

underlying data structure is unknown.

References

[ABI97] S. Abiteboul. Querying semi-structured data.
In Proceedings of the International Conference on
Database Theory (ICDT). Springer Verlag, 1997.

[BW99] M. Barg and R. Wong. Building User Pro-
files for Cooperative Query Answering. AAAI Fall
symposium on Question Answering Systems, Mas-
sachusetts, November, 1999

[BW01] M. Barg and R. Wong Structural Proximity
Searching for Large Collections of Semi-Structured
Data In ACM Conference on Information and
Knowledge Management, November, 2001.

[XML] T. Bray, J. Paoli, and C.M. Sperberg-
McQueen. Extensible markup language (XML)
1.0. In W3C Recommendation, World Wide
Web Consortium, 1998; available online at
http://www.w3.org/TR/1998/REC-xml-19980210.

[BUN97] P. Buneman. Tutorial: Semistructured data. In
International Conference on PODS, 1997.

[CY+96] W.W. Chu, H. Yang, K. Chang, M. Minock, G
Chow, C Larson. CoBase: A Scalable and Extensi-
ble Cooperative Information System. Journal of in-
telligent information systems, 6(2/3): 223-259, May
1996

[GG+98] T. Gaasterland, P. Godfrey and J. Minker. An
Overview of Cooperative Answering, Journal of In-
telligent Information Systems, 1, 123-157, 1992

[GS+98] R. Goldman, N. Shivakumar, S. Venkatasubra-
manian, and H. Garcia-Molina. Proximity Search in
Databases. In International Conference on VLDB,
26–37, 1998.

[LW99] W.-S. Li and Y.-L. Wu. ” Query Relaxation
By Structure for Document Retrieval on the Web.
In Proceedings of 1998 Advanced Database Sympo-
sium, Shinjuku, Japan, December, 1999.

[MH+97] J. McHugh et al. Lore: A database man-
agement system for semistructured data. SIGMOD
Record, 26(3):54–66, September 1997.

[MF+01] I. Manolescu, D. Florescu, and D. Kossmann.
Answering XML queries on heterogeneous data
sources. International Conference on VLDB, to ap-
pear, 2001.

[QR+95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman,
and J. Widom. Querying semistructured heteroge-
neous information. In Proceedings of Deductive and
Object Oriented Databases, 1995.

[TH+99] K. Tajima, K. Hatano, T. Matsukura, R. Sano
and K. Tanaka. Discovery and Retrieval of Logi-
cal Information Units in Web. In Proceedings of the
1999 ACM Digital Libraries Workshop on Organiz-
ing Web Space, Berkeley, CA, USA, August, 1999.

[SODA] The SODA Research Group. SODA2: The
Semistructured Object Database System, Version 2,
2000. http://dba.cse.unsw.edu.au

