
DEWE: A Framework for Distributed Elastic Scientific Workflow
Execution

Luke M. Leslie1 Chiaki Sato2 Young Choon Lee2 Qingye Jiang2

Albert Y. Zomaya2

1 Department of Computer Science,
University of Illinois at Urbana-Champaign,

Champaign, IL 61801, USA.
Email: lmlesli2@illinois.edu

2 Centre for Distributed and High Performance Computing,
School of Information Technologies,

University of Sydney,
NSW 2006, Australia.

Emails: csat9577@uni.sydney.edu.au, qjiang@ieee.org {young.lee, albert.zomaya}@sydney.edu.au

Abstract

As cloud computing is increasingly adopted, the open,
on-demand nature of public clouds makes explicit
consideration of the underlying environment highly
advantageous in terms of decreasing cost and increas-
ing elasticity. In this paper, we address the exploita-
tion of such cloud capabilities and present DEWE,
a framework for the distributed, elastic execution of
scientific workflows. DEWE is designed to be easily
extensible and customizable, and to provide a sim-
ple interface to automate deployment and elasticity
in public clouds. Using Montage, an astronomical
image mosaic engine, as a case study, and Amazon
Web Services (AWS) as the cloud environment, we
demonstrate the benefits DEWE can provide to sci-
entists seeking to design job scheduling, data manage-
ment, and resource allocation strategies with poten-
tially unlimited on-demand resources at hand. Fur-
ther, DEWE’s visualization tool much leverages the
analysis and evaluation of those strategies.

Keywords: resource management; cloud computing;
scientific workflows; resource efficiency; scheduling

1 Introduction

Cloud computing offers users access to near-infinite
computational resources in an on-demand, open man-
ner. Scientific workflows (such as Montage (1; 2),
CyberShake (3; 4), LIGO (5; 6), Epigenomics (7) and
SIPHT (8)) in particular can take great advantage
of abundant resources as they are mostly resource-
intensive and they scale well with the number of re-
sources (resource capacity). However, the efficient
use of such resource abundance for scientific work-
flows often requires specialist skills and tools (e.g.,
(9; 10; 11; 12)) due to the structural complexity and
data dependency of these workflows (Figure 1).

Frameworks and management systems for dis-
tributed scientific workflow execution, such as Pega-
sus (10), have historically focused on providing in-
dependence from the underlying execution environ-
Copyright c©2015, Australian Computer Society, Inc. This pa-
per appeared at the 13th Australasian Symposium on Paral-
lel and Distributed Computing (AusPDC 2015), Sydney, Aus-
tralia, January 2015. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 163, Bahman Javadi
and Saurabh Kumar Garg, Ed. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

ment, with many systems instead relying on middle-
ware such as Apache Mesos to shape the underlying
environment and share resources among applications.
However, IaaS (Infrastructure as a Service) cloud
providers such as AWS provide users with the tools to
not only assemble large compute clusters on the fly,
and with pay-as-you-go rates, but also to shape and
resize these clusters during execution through calls
to various provider-specific APIs and SDKs. While
providing independence is useful in handling the di-
versity of private systems, the new, open computing
paradigm offered by the cloud, coupled with the in-
creasingly large data sizes and corresponding required
computing resources of modern scientific applications,
provides an appealing alternative. Allowing the user
to design algorithms that modify the underlying ex-
ecution environment to fit usage requirements is a
powerful strategy in terms of both performance and
cost-efficiency.

Another problem inherent in current research on
scientific workflow execution revolves around the ab-
sence of a single, easy-to-deploy framework on which
to design, deploy, debug, and test experimental algo-
rithms (e.g., for job scheduling). Testing new strate-
gies on heavyweight systems and with different work-
flow applications can be a time-consuming process.
As data sets grow in size and complexity, scientists
without the resources to maintain these systems must
instead seek out alternatives.

In this paper, we present DEWE1, a framework
designed for the distributed, elastic execution of sci-
entific workflows. DEWE abstracts away under-
lying networking functionality, asynchronously dis-
perses jobs across a dynamic pool of workers, and
provides a simple interface to automate elasticity
when deployed in Amazon EC2. DEWE is de-
signed with extensibility, customizability, and ease-
of-deployment in mind, and to enable research in
workflow scheduling algorithms that are able to shape
and expand their environment during runtime. In
comparison with existing workflow execution systems,
such as Pegasus, Kepler (11), and Apache Airavata
(https://airavata.apache.org/), DEWE:
• Is lightweight and highly extensible, allowing

scientists to quickly modify and test compo-
nents, such as the implementation of experimen-
tal job-scheduling, data management, and fault-
tolerance strategies.

1DEWE including its source code and visualization web service
is available from https://bitbucket.org/lleslie/dwf/wiki/Home.

Proceedings of the 13th Australasian Symposium on Parallel and Distributed Computing
(AusPDC 2015), Sydney, Australia, 27 - 30 January 2015

3

Figure 1: An example Montage (an astronomical image mosaic engine) workflow. Job names and their execution
times, and precedence constraints (dictated by data dependencies) are shown in vertices and along edges,
respectively.

• Aims to expose and shape the underlying execu-
tion environment. With a simple function call,
DEWE can lease an EC2 instance that will au-
tomatically add itself to the worker pool.

• Has an asynchronous design that provides high
scalability, greatly increasing the feasibility of re-
source addition and removal during execution,
and the speed and efficiency of file-dependency
transfers.

• Provides a visualization tool as a post-processing
aid. It facilitates analysis of workflow execution,
including resource utilization and performance
bottleneck, and evaluation of resource/data man-
agement and job scheduling strategies.

Our evaluation of DEWE uses the data-intensive
scientific workflow application Montage (1), an astro-
nomical image mosaic engine, as a case study. We
override the default (random) job-scheduling algo-
rithm with algorithms designed to incorporate avail-
able data and abstractions, such as file locality and
the various workloads on each node. Using a 6.0 de-
gree Montage workflow2 on clusters in Amazon EC2
comprised of up to 15 m1.xlarge instances, we demon-
strate the ability to quickly and efficiently develop,
test, and compare experimental algorithms.

The remainder of this paper is organized as fol-
lows. Section 2 describes scientific workflows and
discusses related work. Section 3 provides a system
overview of DEWE, including descriptions of nodes,
components, abstractions, and methods to shape the
underlying environment. We present our results using
DEWE in Section 4, and our conclusions are drawn
in Section 5.

2A 6.0-degree Montage workflow creates a 6-by-6 degree square
mosaic centered at a particular region of the sky (e.g., M16). The
number of jobs in each workflow increases with the number of de-
grees.

2 Background and Related Work

In this section, we describe scientific workflows and
provide a brief review of related work on workflow
scheduling and execution frameworks.

2.1 Scientific Workflows

Applications in science and engineering are becoming
increasingly large-scale and complex. These applica-
tions are often amalgamated in the form of workflows
(such as Montage (1), CyberShake (3; 4), LIGO (5; 6),
Epigenomics (7) and SIPHT (8)) with a large num-
ber of composite software modules and services, often
numbering in the hundreds or thousands.

More formally, a scientific workflow consists of a
set of precedence-constrained jobs represented by a
directed acyclic graph (DAG), G = 〈V,E〉 compris-
ing a set V of vertices, V = {v0, v1, ..., vn}, and
a set E of edges, each of which connects two jobs.
The graph in Figure 1 depicts a Montage workflow
with vertices for jobs and edges for data dependences
or precedence constraints. Sibling vertices/jobs are
most likely to run in parallel and get assigned onto
different resources, i.e., they are executed in a dis-
tributed manner. A job is regarded as ready to run
(or simply as a ‘ready job’). The readiness of job vi
is determined by its predecessors (parent jobs), more
specifically the one that completes the communica-
tion at the latest time.

The completion time of a workflow application is
denoted as makespan, which is defined as the finish
time of the exit job (or the left node in the DAG).

The longest path of a graph is the critical path
(CP, shown with jobs connected through red edges in
Figure 1). For a given DAG, the critical path deter-
mines the theoretical min makespan and the critical
path length (CPL) is defined as the summation of
computation costs of jobs in CP.

CRPIT Volume 163 - Parallel and Distributed Computing 2015

4

(a) Component interaction during execution in EC2. (b) Network communication on a private cloud.

Figure 2: Inter/intra-node interaction during execution.

2.2 Workflow Scheduling

The execution of scientific workflows is typically
planned and coordinated by schedulers/resource man-
agers (e.g., (9; 13)) particularly with distributed re-
sources. At the core of these schedulers are scheduling
algorithms/policies.

Traditionally, workflow scheduling focuses on the
minimization of makespan (i.e., high performance)
within tightly coupled computer systems like com-
pute clusters with an exception of grids. Various
scheduling approaches including list scheduling and
clustering are exploited, e.g., (14; 15). Critical-path
base scheduling is one particularly popular approach
to makespan minimization (16; 17). Clustering-based
scheduling is another approach getting much atten-
tion in the recent past with the emergence of many
data-intensive workflows, such as Montage (15).

More recently with the adoption and prevalence of
cloud computing, the trade-off between costs and per-
formance has been extensively studied (18; 19; 20).
Most works on workflow scheduling in clouds study
the elasticity of cloud resources, i.e., dynamic re-
source provisioning for cost minimization in particu-
lar. However, such dynamic provisioning still remains
mostly in the initial workflow deployment; that is,
the full elasticity capability of public clouds includ-
ing that during the execution of workflows is not well
explotied with scientific workflows.

2.3 Workflow Execution Frameworks

As scientific workflows are becoming increasingly
large-scale and complex, their distributed execution
across multiple resources is far beyond an average
task involving workflow composition, resource pro-
visioning/reservation, job scheduling, fault tolerance
and data staging. Coinciding with this increase in
scale and complexity have been efforts on develop-
ing workflow execution frameworks including Con-
dor (DAGMan in particular) (9), Kepler (11), Pe-
gasus (10), Taverna (21), Trident (22), and more re-
cently Apache Tez (http://tez.incubator.apache.org/)
and Apache Airavata. These frameworks tend to be
heavyweight and inaccessible to scientists who lack
dedicated hardware and support staff, e.g., Condor
and Pegasus. Moreover, many of these frameworks,
such as Kepler, Taverna and Trident have focused on
providing independence from the underlying execu-

tion environment. DEWE on the other hand is de-
signed specifically to take full advantage of elasticity
of cloud with the capability of dynamically expand-
ing and shrinking the resource pool (or the pool of
workers).

An interesting approach pursued recently is
a hybrid workflow system (23). B. Plale et
al. in (23) weave multiple workflow execution
frameworks—including Trident, Kepler and Apache
ODE (http://ode.apache.org/)—to support a wider
range of workflows.

3 System Overview

In this section, we present a system overview of
DEWE, listing and describing each component and
node, and their roles. We also describe the methods
used to expose the environment to the user and allow
for the design of algorithms that shape this environ-
ment during runtime.

3.1 Components

Nodes in DEWE are divided into two categories:
Workers, responsible for job execution and data
sharing/replication, and Coordinators, responsible
for workflow creation, job scheduling, and data as-
signment, as well as job execution. Each DEWE ap-
plication contains only a single Coordinator and po-
tentially many Workers.

Individual job execution takes place through a slot
model. Each slot represents an isolated portion of the
available system resources; by default, this resource
is identified as the number of (virtual) CPUs. The
Coordinator Node contains components for DAG cre-
ation (DAG Manager), job scheduling and assign-
ment (Job Scheduler), slot management and job
execution (Slot Manager), file management (File
Manager), and Worker node management (Worker
Manager) (see Figure 2a). The main functionality of
each component can be overridden or extended by the
user as desired. Worker nodes contain the Slot Man-
ager and File Manager modules, as well as a com-
ponent for interactions with the Coordinator node
(Coordinator Manager). An overview of network
communications on a private cloud is given in Figure
2b.

Proceedings of the 13th Australasian Symposium on Parallel and Distributed Computing
(AusPDC 2015), Sydney, Australia, 27 - 30 January 2015

5

Figure 3: High-level system overview of DEWE.

The Coordinator node’s Worker Manager exposes
the queued and executing jobs of Worker nodes for use
in job scheduling strategies, etc. Similarly, the Slot
Manager exposes the queued and executing jobs of the
local node. The Worker Manager also keeps track of
heartbeats sent periodically by Worker nodes (every
5 seconds by default), and performs an overridable
action when a Worker node misses some number of
consecutive heartbeats. The Coordinator node’s File
Manager provides up-to-date file information, such as
size and the nodes on which the file is available for
retrieval. The main functionality of the Job Sched-
uler involves, upon receipt of a newly completed job
assignment, the determination of which (if any) of
the job’s children now have all dependencies satis-
fied. Any jobs newly satisfying this criteria may be
assigned to a specific node-slot for execution, and
the assignment of file dependency locations are de-
termined through communication with the File Man-
ager, which also assumes the role of a file server.

3.2 Abstractions

DEWE provides abstractions during the workflow
process for job assignment and data dependencies. As
mentioned in the preceding section, a scientific work-
flow can be represented by a DAG, G = 〈V,E〉, where
V represents the set of jobs. When jobs are assigned
to a particular slot on a chosen node, a Job Assign-
ment, a = 〈v, n, s, r〉 is constructed, where v ∈ V is
the job, n ∈ N is the chosen node, s ∈ Sn is the slot
chosen from those in the specified node, and r is the
resulting runtime of the job in the chosen assignment
(initially 0).

The Coordinator node also maintains abstractions
of each Worker node, called a Worker Rep, in the
Worker Manager module. These abstractions include
up-to-date representations of the slots on the worker,
called a Slot Rep. Each worker is represented as
w = 〈I, S, F 〉, where I is a set of identifying in-
formation (e.g., IP address, EC2 instance ID, etc.),
S = {s1, . . . , sk} is the set of all slot representations
for the worker, and F = {f1, . . . , fm} is the set of files
locally available on the worker. Each slot is repre-
sented by s = 〈FQ,EQ〉, where FQ is a FIFO queue
of job assignments waiting to have input files fetched
from other nodes, and EQ is a FIFO queue of assign-
ments ready for execution respectively.

3.3 Workflow Execution

The overall process of initialization, workflow execu-
tion, finalization is illustrated in Figure 3 and pro-
ceeds as follows. At the start of each workflow, the

Coordinator retrieves and extracts the initial input
files from the location specified by the user (e.g., on
the local disk, or from Amazon S3 if DEWE is de-
ployed on EC2). The Coordinator then creates the
DAG representing the workflow from these initial in-
put files. At startup, Worker nodes connect to the
Coordinator node. For both Coordinator and Worker
nodes, n slots are considered for job execution, where
n equals the number of CPUs in the node. The Co-
ordinator synchronizes with any initial workers if re-
quested by the user, and then begins asynchronously
assigning jobs with all dependencies satisfied to slots
on available nodes. After creation, the assignment
is sent to the specified node and placed into a slot-
specific queue (FQ) for input file retrieval. Input files
are retrieved from assigned nodes (if not local); this
assignment is designed to be extended, and currently
randomly selects a node from those containing the
file. After all input files are local, the assignment is
popped from FQ and placed into another slot-specific
queue (EQ) for execution on the assigned slot. Af-
ter successful completion of the assignment, the Co-
ordinator is notified and loops through the children
of the completed assignment, assigning those which
now have all dependencies satisfied. The process is
repeated until the workflow is finished. Upon com-
pletion, an XML file (results.xml) describing job
assignments (e.g., the assigned node, etc.), execution
times, and file sizes is generated, and log file from
each Worker are retrieved by the Coordinator.

3.4 Post-processing: Visualizing Workflow
Execution

DEWE’s visualization tool as a post-processing anal-
ysis facility takes the XML execution log file and pro-
vides two visual aids, i.e., detailed workflow execution
visualization (Figure 4) and resource usage pattern
visualization. The online web service for this visual-
ization is available from the project web site.

For a large-scale workflow with thousands of jobs,
scientists can only calculate the overall resource uti-
lization such as the total or percentage amount of time
being used for computation and data staging, but the
details about the scheduling and execution are often
overwhelmed by the size of the output. DEWE’s visu-
alization facility much leverages the analysis and eval-
uation on the resource utilization status of all worker
nodes during the whole workspan. Such visualization
enabled by DEWE provides insights into the idling
time slots in the computing environment, which will
help researchers design better workflow scheduling al-
gorithms or resource allocation strategies.

CRPIT Volume 163 - Parallel and Distributed Computing 2015

6

Figure 4: A visualization of Montage workflow execution on six m1.xlarge Amazon EC2 instances (each with
4 vCPUs; hence 4 slots) with 6.0 degree data set. Data are initially in the coordinator node, the third node in
the figure; and thus, no data staging is required for early jobs. Due to the time scale of the figure, some jobs
with their execution times less than 1 second are not clearly visible.

3.5 Exposing the Environment

One of DEWE’s main contributions lies in methods
designed to expose the underlying execution environ-
ment to users, allowing the design of algorithms that
modify this environment during runtime. To this end,
when deployed in EC2, users may deploy a variant of
the Coordinator node that extends the Worker Man-
ager and File Manager modules, providing an inter-
face for Worker addition and removal (by leasing and
terminating instances), and for downloads of input
files and uploads of output files to S3.

Elasticity with EC2: Today, scientific workflows
can contain thousands of jobs and data files, often
following fluctuating concurrency patterns defined by
dependencies. These patterns can potentially lead to
low resource efficiency in fixed clusters, as many re-
sources may be idle while waiting for a small num-
ber of job dependencies to complete (Figure 4). The
elasticity supplied by IaaS cloud providers such as
Amazon EC2 provides a means to obtain all the ben-
efits of using a large cluster of resources, without in-
curring the associated costs and inefficiencies of idle
resources. Moreover, the on-demand, pay-as-you-go
nature of the cloud provides an efficient means to fa-
cilitate this elasticity.

For example, Montage workflows typically follow
a regular structure (see Figure 1), with opportuni-
ties for concurrency fluctuating around certain bottle-
necks (such as mConcatFit and mImgTbl). For large
workflows, where the number of jobs in the first two
levels can number in the thousands, a strategy involv-
ing dynamically shrinking and expanding the Worker
pool around these bottlenecks can significantly de-
crease cost with minimal effect on makespan.3

To allow this resizing of the Worker node pool,
DEWE provides an easy interface for elasticity. The
process for Worker addition by DEWE when deployed

3Acquisition times for EC2’s On-Demand Linux instances are
around 100 seconds on average (24). Thus, preemptive requisition-
ing of Worker nodes (e.g., via runtime knowledge) may be necessary
for smaller workflows.

on Amazon EC2 is as follows. During execution, a
user-defined component makes a call to the Worker
Manager module with a specific instance type and
availability zone for provisioning. The Worker Man-
ager module makes a call to Amazon’s SDK, dy-
namically generating a shell script to be passed as
user-data for execution by the cloud-init package
at instance startup. The shell script starts a Worker
node on the provisioned instance with parameters in-
cluding the Coordinator’s networking info. (e.g., IP
address, port), workflow ID, S3 bucket info., etc.

Once the Worker node has initialized, it sends
a registration message to the Coordinator node, in-
cluding node-specific information such as the num-
ber of available slots. The Worker Manager adds the
new Worker node to the list of available instances so
that jobs may be dispatched to the Worker during
the next iteration of the Job Scheduler’s assignment
phase. Once the Worker node is no longer required,
e.g., during a bottleneck and after all file dependen-
cies for future jobs have been replicated elsewhere,
the Worker node may be terminated via another call
to the Worker Manager module. The Worker Man-
ager instructs the Worker node to upload log files to
Amazon S3. After the upload completes, the Worker
Manager terminates the instance through another call
to Amazon’s SDK.

File management and provenance with S3:
When deployed in Amazon EC2, DEWE can utilize
S3 for input and output file storage. At the start of
each workflow, users can specify (e.g., via the com-
mand line or web application) an S3 bucket and as-
sociated file containing the input files. DEWE will
automatically retrieve and extract this file at startup.
The workflow output files (e.g., the image mosaic in
the case of Montage), log files, and generated XML
file are uploaded to the same S3 bucket after work-
flow completion or node termination. Files uploaded
to S3 are accessible via public URLs, providing a fur-
ther means to ease testing and debugging for the user;
these URLs are listed in the web application, or can
be navigated to directly within the user’s S3 bucket.

Proceedings of the 13th Australasian Symposium on Parallel and Distributed Computing
(AusPDC 2015), Sydney, Australia, 27 - 30 January 2015

7

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 0 2 4 6 8 10 12 14 16

M
ak

es
pa

n
/ C

PL

Number of Nodes

RND
MST(t=infinity)

MST(t=5)
MDLMST(t=5)

Figure 5: Ratio of makespan to CPL for different clus-
ter sizes and scheduling algorithms.

4 Evaluation

In this section, we describe our evaluation of DEWE
in Amazon EC2, and provide a comparison of the re-
sults. To this end, we have developed two job schedul-
ing algorithms incorporating DEWE’s elastic resource
(worker) provisioning feature.

4.1 Job Scheduling Algorithms

In addition to the default (random or RND) job
scheduling algorithm, the following two algorithms
were developed and tested to measure the evaluation
capabilities of DEWE.

4.1.1 Minimum Slot Threshold (MST)

Jobs are assigned to the node-slot with the minimum
number of assignments currently executing or await-
ing execution, provided the number of assignments is
less than some threshold value, t. Let N be the set of
all nodes (Workers and Coordinator). The algorithm
thus determines the slot s∗, where:

s∗ = arg min
s∈

⋃
n∈N

Sn

||EQs||+ ||FQs||. (1)

If ||EQs∗ || + ||FQs∗ || ≥ t, the job is placed into a
FIFO queue to await an opening. This algorithm
helps ensure that existing slots are rarely idle, and
newly added slots (such as from worker addition) are
immediately utilized, rather than potentially waiting
for the completion of an entire level before new jobs
are available for assignment.

Since the Coordinator holds up-to-date represen-
tations of each Worker and its associated slots (via
the Worker Rep and Slot Rep abstractions), the user
is guaranteed that the EQs and FQs queues closely
represent the current internal state of the node.

4.1.2 Maximum Data Locality + MST
(MDLMST)

Jobs are assigned to the node with the maximum in-
put file locality, and to the slot on that node deter-
mined by MST. As mentioned in Section 3.2, each

Figure 6: Evaluation of jobs on the critical path for
MST(t=5) and MDLMST(t=5), using 15 nodes.

Worker Rep maintains a set of files locally available
on the node, Fn. In addition, the file manager main-
tains the size (in bytes) of each file, size(f) for f ∈ F .
Thus, for a job, v, with input files Fv, the algorithm
locates the node n∗ such that:

n∗ = arg max
n∈N

 ∑
f∈Fn∩Fv

size(f)

 , (2)

and we then determine s∗ as in MST, but with N =
{n∗}.

In comparison to the default random scheduling
algorithm and the MST algorithm by itself, this algo-
rithm seeks to significantly reduce the communication
overhead associated with each job, and thus minimize
the delay between job assignment and execution. Uti-
lizing a low queue threshold also helps minimize the
potential for jobs waiting on other slots to retrieve
common input files and become more suitable candi-
dates, without explicitly considering those jobs during
assignment.

4.2 Experimental Setup

In our experiments, Montage workflows are used as a
case study.4 As mentioned in Section 1, Montage is
an astronomical image mosaic engine that assembles
individual images of the sky into a mosaic (1). Mon-
tage includes modules to auto-generate the DAX file,
an XML-based DAG (mDAG), and retrieve the input
files from corresponding URLs in the cache.list file
(mArchiveExec). Montage workflows typically follow
a regular structure (Figure 1), with each stage of the
workflow often taking place in discrete levels sepa-
rated by bottlenecks, further described in Section 3.5.
Montage workflows are I/O bound, and total data
footprints can range up to hundreds or thousands of
gigabytes.

Specifically, experiments were performed with a
6.0 degree Montage workflow, using clusters com-
posed of up to 15 m1.xlarge instances/nodes, each
with 4 CPUs and 15GB of memory. The 6.0 degree

4Note that the DEWE’s DAG Manager can be extended to han-
dle any workflow, as long as job, file, and precedence constraint info
is available.

CRPIT Volume 163 - Parallel and Distributed Computing 2015

8

Montage workflow contains 8,586 jobs, 1,444 input
data files, 22,850 intermediate files, and has a total
data footprint of 38GB. Performance was measured
in comparison to the CPL. All Worker nodes were
automatically provisioned by the Coordinator after
initialization.

4.3 Results

We first show makespans normalized by the CPL and
resource usage reductions.

4.3.1 Workflow Execution Times

The results for our experiments are illustrated in Fig-
ures 5 and 6. As demonstrated in Figure 5, the
makespan approaches the CPL as the number of
nodes increases, and begins to plateau at just above
the CPL due to processing and communication costs.
For 1 and 2 nodes, MDLMST is slightly less efficient
than other algorithms due to the additional process-
ing time required for file locality examination. How-
ever, as communication costs increase in larger clus-
ters, MDLMST achieves the best results by a sig-
nificant margin (generally more than 10% vs. the
next best, MST). Furthermore, algorithms without
thresholds – RND and MST(t = ∞) – tend to ex-
hibit lower performance than MST(t=5) due to a
tendency to fill slots with long-running jobs, rather
than the implicit consideration of EQ progress when
t=5. All algorithms achieved between 53.9% (RND)
to 60.5% (MDLMST) decreases in execution time
with 14 Workers. In addition, RND and MST con-
verge as the number of instances increases due to
the abundance of available resources, while the ra-
tio of makespan to CPL continues to decrease for
MDLMST.

Figure 6 provides a comparison of the execution
schedule of jobs on the critical path when running
the MST (t=5) and MDLMST (t=5) algorithms with
15 nodes (Coordinator and 14 Workers). Levels with
high concurrency (e.g., mDiffFit jobs) are signifi-
cantly reduced in overall makespan when distributed
across Workers, while bottlenecks such as mBgModel
comprise the majority of the CPL and, hence, the
execution time with 15 nodes. MDLMST is able to
significantly reduce input file acquisition time (red
bars). However, file acquisition still comprises a large
portion of the waiting time for aggregation jobs such
as mAdd, even with data locality considerations, pre-
venting convergence to the CPL.

4.3.2 Resource Usage

As the design of sophisticated dynamic resource pro-
visioning strategies is out of scope of this paper, we
adopt a simple elastic resource provisioning strat-
egy. In particular, with the workflow execution
status information a job scheduling algorithm pro-
vides to Worker Manager, DEWE terminates idle
worker nodes towards the end of workflow execution
as they are no longer needed (see Figure 4). Although
this strategy is very simple (even primitive), it still
demonstrates the elasticity capability of DEWE in
that resource usage in our experiments was reduced
by 12% on average and up to 27%.

As mConcatFit and mBgModel constitute the ma-
jority of execution and all worker nodes except the
one running those two jobs are idling, DEWE can
terminate those idle worker nodes and lease again
once those two jobs complete their execution. The
demand for such dynamic scaling support might not

seem to be very attractive with the hourly billing
plan in Amazon EC2, but makes more sense with
more fine-grained billing mechanisms such as the per-
minute billing plans in Google Compute Engine and
Windows Azure.

5 Conclusion

Systems for the distributed execution of scientific
workflows tend to focus on providing independence
from the underlying execution environment, and often
require long-running, static resources. However, the
on-demand, open nature of public clouds has made
explicit consideration and modification of the under-
lying environment during runtime a powerful strat-
egy in terms of decreasing cost and increasing per-
formance. In this paper, we have presented DEWE,
a framework for the distributed, elastic execution of
scientific workflows. DEWE is designed to provide an
easy-to-deploy and highly customizable framework on
which scientists may design algorithms with the abil-
ity to shape the underlying execution environment
during runtime through automated Worker addition
and removal. Evaluations of DEWE using a Montage
workflow with AWS as the cloud environment have
demonstrated that researchers are able to design, de-
ploy, and compare various resource allocation and job
scheduling algorithms on real clusters.

References

[1] “Montage: An astronomical image mosaic en-
gine,” http://montage.ipac.caltech.edu/, 2013.

[2] J. C. Jacob and D. S. e. a. Katz, “Montage: a
grid portal and software toolkit for science-grade
astronomical image mosaicking,” International
Journal of Computational Science and Engineer-
ing, vol. 4, no. 2, pp. 73–87, Jul. 2009.

[3] “Cybershake,” http://scec.usc.edu/scecpedia/
CyberShake, 2013.

[4] R. Graves, T. H. Jordan, and et. al., “Cyber-
shake: A physics-based seismic hazard model
for Southern California,” Pure and Applied Geo-
physics, vol. 168, no. 3-4, pp. 367–381, 2010.

[5] A. Abramovici, W. E. Althouse, and et. al.,
“Ligo: The laser interferometer gravitational-
wave observatory,” Science, vol. 256, no. 5055,
pp. 325–333, 1992.

[6] “Ligo: Laser interferometer gravitational-wave
observatory,” http://www.ligo.caltech.edu/,
2012.

[7] S. Bharathi, A. Chervenak, E. Deelman,
G. Mehta, M.-H. Su, and K. Vahi, “Characteri-
zation of scientific workflows,” in Proceedings of
the 3rd Workshop on Workflows in Support of
Large-Scale Science (WORKS), 2008, pp. 1–10.

[8] J. Livny, H. Teonadi, M. Livny, and M. K. Wal-
dor, “High-Throughput, Kingdom-Wide Predic-
tion and Annotation of Bacterial Non-Coding
RNAs,” PLoS ONE, vol. 3, pp. e3197+, 2008.

[9] M. Litzkow, M. Livny, and M. Mutka, “Con-
dor - a hunter of idle workstations,” in Proceed-
ings of the 8th International Conference on Dis-
tributed Computing Systems (ICDCS), 1988, pp.
104–111.

Proceedings of the 13th Australasian Symposium on Parallel and Distributed Computing
(AusPDC 2015), Sydney, Australia, 27 - 30 January 2015

9

[10] E. Deelman, G. Singh, and et. al., “Pegasus: A
framework for mapping complex scientific work-
flows onto distributed systems,” Journal of Sci-
entific Programming, vol. 13, no. 3, pp. 219–237,
2005.

[11] I. Altintas, C. Berkley, E. Jaeger, M. Jones,
B. Ludascher, and S. Mock, “Kepler: An exten-
sible system for design and execution of scien-
tific workflows,” in Proceedings of the 16th Inter-
national Conference on Scientific and Statistical
Database Management (SSDBM), 2004, pp. 423–
424.

[12] N. Killeen, J. Lohrey, M. Farrell, W. Liu,
S. Garic, D. Abramson, and G. Egan, “Integra-
tion of modern data management practice with
scientific workflows,” in Proceedings of 8th IEEE
Conference on eScience, 2012.

[13] D. Abramson, R. Sosic, J. Giddy, and B. Hall,
“Nimrod: A tool for performing parameterised
simulations using distributed workstations,” in
Proceedings of the 4th International Symposium
on High Performance Distributed Computing
(HPDC), 1995, pp. 112–121.

[14] H. Topcuouglu, S. Hariri, and M. Wu,
“Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Sys-
tems (TPDS), vol. 13, no. 3, pp. 260–274, 2002.

[15] M. Tanaka and O. Tatebe, “Workflow schedul-
ing to minimize data movement using multi-
constraint graph partitioning,” in Proceedings of
the International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid), 2012, pp. 65–72.

[16] Y. Kwok and I. Ahmad, “Dynamic critical-
path scheduling: An effective technique for al-
locating task graphs to multiprocessors,” IEEE
Transactions on Parallel and Distributed Sys-
tems (TPDS), vol. 7, no. 5, pp. 506–521, 1996.

[17] Y. C. Lee and A. Y. Zomaya, “Stretch Out and
Compact: Workflow Scheduling with Resource
Abundance,” in Proceedings of the International
Symposium on Cluster, Cloud, and Grid Com-
puting (CCGrid), 2013.

[18] M. Mao and M. Humphrey, “Auto-scaling to
minimize cost and meet application deadlines
in cloud workflows,” in Proceedings of Interna-
tional Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC),
2011, pp. 49:1–49:12.

[19] M. Malawski, G. Juve, E. Deelman, and
J. Nabrzyski, “Cost- and deadline-constrained
provisioning for scientific workflow ensembles in
iaas clouds,” in Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012,
pp. 22:1–22:11.

[20] L. M. Leslie, Y. C. Lee, P. Lu, and A. Y.
Zomaya, “Exploiting performance and cost di-
versity in the cloud,” in Proceedings of the 6th
IEEE International Conference on Cloud Com-
puting (CLOUD), 2013, pp. 107–114.

[21] T. Oinn, M. J. Addis, and et. al., “Taverna: a
tool for the composition and enactment of bioin-
formatics workflows,” Bioinformatics, vol. 20,
no. 17, pp. 3045–3054, 2004.

[22] R. S. Barga, J. Jackson, N. Araujo, D. Guo,
N. Gautam, and Y. Simmhan, “The trident scien-
tific workflow workbench,” in Proceedings of 4th
IEEE Conference on eScience, 2008, pp. 317–
318.

[23] B. Plale, E. C. Withana, C. Herath, K. Chan-
drasekar, and Y. Luo, “Effectiveness of hybrid
workflow systems for computational science,” in
Proceedings of the International Conference on
Computational Science (ICCS), vol. 9, 2012, pp.
508–517.

[24] M. Mao and M. Humphrey, “A performance
study on the VM startup time in the cloud,” in
Proceedings of the 5th IEEE International Con-
ference on Cloud Computing (CLOUD), 2012,
pp. 423–430.

CRPIT Volume 163 - Parallel and Distributed Computing 2015

10

