
Declarative Diagnosis of Floundering in Prolog

Lee Naish

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

lee@cs.mu.oz.au

Abstract

Many logic programming languages have delay primi-
tives which allow coroutining. This introduces a class
of bug symptoms — computations can flounder when
they are intended to succeed or finitely fail. For con-
current logic programs this is normally called dead-
lock. Similarly, constraint logic programs can fail to
invoke certain constraint solvers because variables are
insufficiently instantiated or constrained. Diagnos-
ing such faults has received relatively little attention
to date. Since delay primitives affect the procedural
but not the declarative view of programs, it may be
expected that debugging would have to consider the
often complex details of interleaved execution. How-
ever, recent work on semantics has suggested an al-
ternative approach. In this paper we show how the
declarative debugging paradigm can be used to diag-
nose unexpected floundering, insulating the user from
the complexities of the execution.
Keywords: logic programming, coroutining, delay, de-
bugging, floundering, deadlock, constraints

1 Introduction

The first Prolog systems used a strict left to right eval-
uation strategy, or computation rule. However, since
the first few years of logic programming there have
been systems which support coroutining between dif-
ferent sub-goals (Clark & McCabe 1979). Although
the default order is normally left to right, individ-
ual calls can delay if certain arguments are insuf-
ficiently instantiated, and later resume, after other
parts of the computation have further instantiated
them. Such facilities are now widely supported in
Prolog systems. They also gave rise to the class
of concurrent logic programming languages, such as
Parlog (Gregory 1987), where the default evaluation
strategy is parallel execution and similar delay mecha-
nisms are used for synchronisation and prevention of
unwanted nondeterminism. Delay mechanisms have
also been influential for the development of constraint
logic programming (Jaffar & Lassez 1987). Delays
are often used when constraints are “too hard” to be
handled by efficient constraint solvers, for example,
non-linear constraints over real numbers.

Of course, more features means more classes of
bugs. In theory, delays don’t affect soundness of Pro-
log1 (see (Lloyd 1984)) — they can be seen as affect-

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at 35th Australasian Computer Science Confer-
ence (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology, Vol. 122. Mark Reynolds and Bruce Thomas, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1In practice, floundering within negation can cause unsound-
ness.

ing the “control” of the program without affecting the
logic (Kowalski 1979). However, they do introduce a
new class of bug symptoms. A call can delay and
never be resumed (because it is never sufficiently in-
stantiated); the computation is said to flounder. Most
Prolog systems with delays still print variable bind-
ings for floundered derivations in the same way as suc-
cessful derivations (in this paper we refer to these as
“floundered answers”), and may also print some indi-
cation that the computation floundered. Floundered
answers are not necessarily valid, or even satisfiable,
according to the declarative reading of the program,
and generally indicate the presence of a bug. In con-
current logic programs the equivalent of floundering is
normally called deadlock — the computation termi-
nates with no “process” (call) sufficiently instantiated
to proceed. In constraint logic programming systems,
the analogue is a computation which terminates with
some insufficiently instantiated constraints not solved
(or even checked for satisfiability). Alternatively, if
some constraints are insufficiently instantiated they
may end up being solved by less efficient means than
expected, such as exhaustive search over all possible
instances.

There is a clear need for tools and techniques
to help diagnose floundering in Prolog (and analo-
gous bug symptoms in other logic programming lan-
guages), yet there has been very little research in
this area to date. There has been some work on
showing floundering is impossible using syntactic re-
strictions on goals and programs (particularly logic
databases), or static analysis methods (for exam-
ple, (Marriott, Søndergaard & Dart 1990)(Marriott,
Garćıa de la Banda & Hermenegildo 1994)). How-
ever, this is a far cry from general purpose methods
for diagnosing floundering. In this paper we present
such a method. Furthermore, it is a surprisingly at-
tractive method, being based on the declarative de-
bugging paradigm (Shapiro 1983) which is able to
hide many of the procedural details of a computa-
tion. Declarative debugging has been widely used for
diagnosing wrong answers in programming languages
based on (some combination of) the logic, functional
and constraint paradigms (Pope & Naish 2003, Ca-
ballero, Rodŕıguez-Artalejo & del Vado Vı́rseda 2006)
and there has been some work on diagnosing missing
answers (Naish 1992) (which mentions some prob-
lems caused by coroutining) (Caballero, Rodŕıguez-
Artalejo & del Vado Vı́rseda 2007), pattern match
failure (Naish & Barbour 1995) and some other bug
symptoms (Naish 1997). However, floundering is not
among the symptoms previously diagnosed using this
approach.

The paper is structured as follows. We first give
some examples of how various classes of bugs can lead
to floundering. We then present our method of diag-
nosing floundering, give examples, and discuss how
our simple prototype could be improved. Next we

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

49

% perm(As0, As): As = permutation of
% list As0
% As0 or As should be input
perm([], []).
perm([A0|As0], [A|As]) :-

when((nonvar(As1) ; nonvar(As)),
inserted(A0, As1, [A|As])),

when((nonvar(As0) ; nonvar(As1)),
perm(As0, As1)).

% inserted(A, As0, As): As = list As0
% with element A inserted
% As0 or As should be input
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(As)),
inserted(A, As0, As)).

Figure 1: A reversible permutation program

% Bug 1: wrong variable AS0 in recursive
% call
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(As)),
inserted(A, AS0, As)). % XXX

% Bug 2: wrong variable A in when/2
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(A)), % XXX
inserted(A, As0, As)).

% "Bug" 3: assumes As0 is input XXX
% (perm/2 intended modes incompatible)
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when(nonvar(As0), % XXX
inserted(A, As0, As)).

Figure 2: Buggy versions of inserted/3

briefly consider some more theoretical aspects, then
conclude. Basic familiarity of Prolog with delays and
declarative debugging is assumed.

2 Example

Figure 1 gives a permutation program which has sim-
ple logic but is made reversible by use of delaying
primitives and careful ordering of sub-goals in perm/2
(see (Naish 1986) for further discussion). The de-
lay primitive used is the “when meta-call”: a call
when(Cond,A) delays until condition Cond is satis-
fied, then calls A. For example, the recursive call
to perm/2 will delay until at least one of its argu-
ments are non-variables. Generally there are other
features supported, such as delaying until a variable
is ground; we don’t discuss them here, though our
method and prototype support them. A great num-
ber of delay primitives have been proposed (Clark
& McCabe 1979, Naish 1986). Some, like the when
meta-call, are based on calls. Others are based on pro-
cedures (affecting all calls to the procedure), which is
often more convenient and tends to clutter the source
code less. Our general approach to diagnosis is not
affected by the style of delay primitive. The when
meta-call is by far the most portable of the more flex-
ible delay primitives, which is our main reason for
choosing it. We have developed the code in this pa-
per using SWI-Prolog.

We consider three separate possible bugs which

?- perm([1,2,3],A).
Call: perm([1,2,3],_G0)
Call: when(...,inserted(1,_G1,[_G2|_G3]))
Exit: when(...,inserted(1,_G1,[_G2|_G3]))
Call: when(...,perm([2,3],_G1))
Call: perm([2,3],_G1)
Call: inserted(1,[_G4|_G5],[_G2|_G3])
Exit: inserted(1,[_G4|_G5],[1,_G4|_G5])
Call: when(...,inserted(2,_G6,[_G4|_G5]))
Exit: when(...,inserted(2,_G6,[_G4|_G5]))
Call: when(...,perm([3],_G6))
Call: perm([3],_G6)
Call: inserted(2,[_G7|_G8],[_G4|_G5])
Exit: inserted(2,[_G7|_G8],[2,_G7|_G8])
Call: when(...,inserted(3,_G9,[_G7|_G8]))
Exit: when(...,inserted(3,_G9,[_G7|_G8]))
Call: when(...,perm([],_G9))
Call: perm([],_G9)
Call: inserted(3,[],[_G7|_G8])
Exit: inserted(3,[],[3])
Exit: perm([],[])
Exit: when(...,perm([],[]))
Exit: perm([3],[3])
Exit: when(...,perm([3],[3]))
Exit: perm([2,3],[2,3])
Exit: when(...,perm([2,3],[2,3]))
Exit: perm([1,2,3],[1,2,3])

Figure 3: Trace with delayed and resumed calls

could have been introduced, shown in Figure 2. They
exemplify three classes of errors which can lead to
floundering: logical errors, incorrect delay annota-
tions and confusion over the modes of predicates. Bug
1 is a logical error in the recursive call to inserted/3.
Such errors can cause wrong and missing answers
as well as floundering. Due to an incorrect variable
name, other variables remain uninstantiated and this
can ultimately result in floundering. This bug can
be discovered by checking for singelton variables, so
in practice declarative debugging should not be re-
quired, but we use it as a simple illustration of sev-
eral points. Despite the simplicity of the bug and
the program, a complex array of bug symptoms re-
sults, which can be quite confusing to a programmer
attempting to diagnose the problems.

The call perm([1,2,3],A) first succeeds with an-
swer A=[1,2,3], which is correct. Figure 3 shows the
execution trace generated using SWI-Prolog (some
details on each line are removed to save space). The
trace is the same for all versions of the program. The
first call to inserted/3 (wrapped in a when annota-
tion) delays, shown in the first Exit line of the trace.
It is resumed immediately after the recursive call to
perm([2,3],_G1) because matching with the clause
head for perm/2 instantiates _G1. Subsequent calls to
inserted/3 also delay and are resumed after further
recursive calls to perm/2. In this case, all resumed
subcomputations immediately succeed (they match
with the fact for inserted/3). To find other per-
mutations the recursive clause for inserted/3 must
be selected, and the resumed subcomputations delay
again when inserted/3 is called recursively.

On backtracking, for Bug 1, there are four other
successful answers found which are satisfiable but
not valid, for example, A=[1,2,3|_] and A=[3,1|_].
An atomic formula, or atom, is satisfiable is some
instance is true according to the programmer’s in-
tentions and valid if all instances are true. These
answers could be diagnosed by existing wrong an-
swer declarative debugging algorithms, though some
early approaches assumed bug symptoms were un-
satisfiable atoms (Naish 1997). An atom is unsat-

CRPIT Volume 122 - Computer Science 2012

50

?- perm([A,1|B],[2,3]).
Call: perm([_G0,1|_G1],[2,3])
Call: when(...,inserted(_G0,_G2,[2,3]))
Call: inserted(_G0,_G2,[2,3])
Exit: inserted(2,[3],[2,3])
Exit: when(...,inserted(2,[3],[2,3]))
Call: when(...,perm([1|_G1],[3]))
Call: perm([1|_G1],[3])
Call: when(...,inserted(1,_G3,[3]))
Call: inserted(1,_G3,[3])
Call: when(...,inserted(1,_G7,[]))
Call: inserted(1,_G7,[])
Fail: inserted(1,_G7,[])
Fail: when(...,inserted(1,_G7,[]))
Fail: inserted(1,_G3,[3])
Fail: when(...,inserted(1,_G3,[3]))
Fail: perm([1|_G1],[3])
Fail: when(...,perm([1|_G1],[3]))
Redo: inserted(_G0,_G2,[2,3])
Call: when(...,inserted(_G0,_G4,[3]))
Call: inserted(_G0,_G4,[3])
Exit: inserted(3,[],[3])
Exit: when(...,inserted(3,[],[3]))
Exit: inserted(3,[2|_G5],[2,3])
Exit: when(...,inserted(3,[2|_G5],[2,3]))
Call: when(...,perm([1|_G1],[2|_G5]))
Call: perm([1|_G1],[2|_G5])
Call: when(...,inserted(1,_G6,[2|_G5]))
Exit: when(...,inserted(1,_G6,[2|_G5]))
Call: when(...,perm(_G1,_G6))
Exit: when(...,perm(_G1,_G6))
Exit: perm([1|_G1],[2|_G5])
Exit: when(...,perm([1|_G1],[2|_G5]))
Exit: perm([3,1|_G1],[2,3])

Figure 4: Trace for Bug 1

isfiable if no instance is true according to the pro-
grammer’s intentions. These answers are interleaved
with four floundered answers, such as A=[1,3,_|_],
which are also satisfiable but not valid — when
inserted/3 is called recursively, As0 remains unin-
stantiated because the incorrect variable is used, and
after several more calls and some backtracking, floun-
dering results. The call perm(A,[1,2,3]) succeeds
with the answer A=[1,2,3] then has three floun-
dered answers, also including A=[1,3,_|_]. The call
perm([A,1|B],[2,3]) is unsatisfiable and should
finitely fail but returns a single floundered answer
with A=3. Figure 4 gives a trace of this computation.

Diagnosing floundering using execution traces is
also made more challenging by backtracking. In Fig-
ure 4, lines 13–18 are failures, which cause backtrack-
ing over previous events. Another complicating factor
is that when a predicate exits, it may not have com-
pleted execution. There may be subcomputations de-
layed which are subsequently resumed (see Figure 3),
and these resumed subcomputations may also have
delayed parts, etc — there can be coroutining between
multiple parts of the computation. There are typi-
cally Exit lines of the trace which are not valid but
are correct because the subcomputation floundered
rather than succeeded (often this is not immediately
obvious from the trace).

With Bug 2, an incorrect delay annotation on the
recursive call to inserted/3, several bug symptoms
are also exhibited. The call perm([X,Y,Z],A) be-
haves correctly but perm([1,2,3],A) succeeds with
the answers A=[1,2,3] and A=[1,3,2], then loops in-
definitely. We don’t consider diagnosis of loops in this
paper, though they are an important symptom of in-
correct control. The call perm(A,[1,2,3]) succeeds
with the answer A=[1,2,3] then has three further

floundered answers, A=[1,2,_,_|_], A=[1,_,_|_]
and A=[_,_|_], before terminating with failure.

Bug 3 is a more subtle control error. When
inserted/3 was coded we assume the intention was
the second argument should always be input, and the
delay annotation is correct with respect to this inten-
tion. This is a reasonable definition of inserted/3
and we consider it is correct. However, some modes
of perm/2 require inserted/3 to work with just the
third argument input. When coding perm/2 the pro-
grammer was either unaware of this or was confused
about what modes inserted/3 supported. Thus al-
though we have modified the code for inserted/3,
we consider the bug to be in perm/2. This version of
the program behaves identically to Bug 2 for the goal
perm(A,[1,2,3]), but the bug diagnosis will be dif-
ferent because the programmer intentions are differ-
ent. The mistake was made in the coding of perm/2,
and this is reflected in the diagnosis. The simplest
way to fix the bug is change the intentions and code
for inserted/3, but we only deal with diagnosis in
this paper.

Because delays are the basic cause of floundering
and they are inherently procedural, it is natural to as-
sume that diagnosing unexpected floundering requires
a procedural view of the execution. Even with such a
simple program and goals, diagnosis using just traces
of floundered executions can be extremely difficult.
Subcomputations may delay and be resumed multi-
ple times as variables incrementally become further
instantiated, and this can be interleaved with back-
tracking. Reconstructing how a single subcomputa-
tion proceeds can be very difficult. Although some
tools have been developed, such as printing the his-
tory of instantiation states for a variable, diagnosis of
floundering has remained very challenging.

3 Declarative diagnosis of floundering

To diagnose unexpected floundering in pure Pro-
log programs with delays we use an instance of the
three-valued declarative debugging scheme described
in (Naish 2000). We describe the instance precisely in
the following sections, but first introduce the general
scheme and how it is applied the more familiar prob-
lem of diagnosing wrong answers. A computation is
represented as a tree, with each node associated with
a section of source code (a clause in this instance) and
subtrees representing subcomputations. The choice of
tree generally depends in the language and the bug
symptom. For example, diagnosing wrong answers
in Prolog generally uses proof trees (see Section 3.1)
whereas diagnosing pattern match failure in a func-
tional language requires a different kind of tree. The
trees we use here are a generalisation of proof trees.
The debugger searches the tree and eventually finds
a node for which the associated code has a bug.

Each node has a truth value which expresses how
the subcomputation compares with the intentions of
the programmer. Normally the truth values of only
some nodes are needed to find a bug and they are de-
termined by asking the user questions. Three truth
values are used for tree nodes: correct, erroneous, and
inadmissible. To diagnose wrong answers, the user is
asked about the atoms in proof tree nodes, which were
proved in the computation. Correct nodes are those
containing an atom which is valid in the intended in-
terpretation, such as inserted(2,[1],[1,2]). The
corresponding subcomputation returned the correct
result and the subtree is eliminated from the search
space, since it cannot be the cause of a wrong an-
swer at the root of the tree. Erroneous nodes corre-
spond to subcomputations which returned a wrong
answer, such as inserted(2,[1],[1]). If such a

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

51

(f) perm([3,1| G1],[2,3]) e

(s) inserted(3,[2| G5],[2,3]) e

(s) inserted(3,[],[3]) c

(f) perm([1| G1],[2| G5]) i

(f) inserted(1, G6,[2| G5]) i (f) perm(G1, G6) i

Figure 5: A Partial proof tree for Bug 1

node is found, the search space can be restricted
to that subtree, since it must contain a bug. Inad-
missible nodes correspond to subcomputations which
should never have occurred. Inadmissibility was ini-
tially used to express the fact that a call was ill-typed
(Pereira 1986). For example, inserted is expected to
be called with a list in the second and/or third argu-
ment, so inserted(2,a,[2|a]) would be considered
inadmissible. Inadmissible means a pre-condition of
the code has been violated, whereas erroneous means
a post-condition has been violated. For inadmissible
nodes, the subtree can be eliminated from the search
space in the same way as a correct node. Here calls
which flounder because they never become sufficiently
instantiated are considered inadmissible.

Given a tree with truth values for each node, a
node is buggy if it is erroneous but has no erroneous
children. The computation associated with the node
behaved incorrectly but none of its subcomputations
behaved incorrectly, so there must be a bug in the
code associated with that node. Buggy nodes can
be classified into to kinds, depending on whether or
not they have any inadmissible children. If there are
no inadmissible children (all children are correct) the
code has simply produced the wrong result, called
an e-bug in (Naish 2000). If there are inadmissible
children the code has resulted in other code being
used in an unintended way, violating a pre-condition.
This is called an i-bug. Diagnosis consists of search-
ing the tree for a buggy node; such a node must exist
if the root is erroneous and the tree is finite. Many
search strategies are possible and (Naish 2000) pro-
vides very simple code for a top-down search. The
code first checks that the root is erroneous. It then
recursively searches for bugs in children and returns
them if they exist. Otherwise the root is returned as
a buggy node, along with an inadmissible child if any
are found. In the next sections we first define the trees
we use, then discuss how programmer intentions are
formalised, give some simple diagnosis sessions and
finally make some remarks about search strategy.

3.1 Partial proof trees

Standard wrong answer declarative diagnosis uses
Prolog proof trees which correspond to successful
derivations (see (Lloyd 1984)). Each node contains
an atomic goal which was proved in the derivation,
in its final state of instantiation, and the children of
a node are the subgoals of the clause instance used
to prove the goal. Leaves are atomic goals which
were matched with unit clauses. We use partial proof
trees which correspond to successful or floundered
derivations. The only difference is they have an addi-
tional class of leaves: atomic goals which were never
matched with any clause because they were delayed
and never resumed.

Definition 1 ((Callable) annotated atom) An
annotated atom is an atomic formula or a term of
the form when(C ,A), where A is an atomic formula

and C is a condition of a when meta-call. It is
callable if it is an atom or C is true according to the
normal Prolog meaning (for “,”, “;” and nonvar/1).
atom(X) is the atom of annotated atom X .

Definition 2 (Partial proof tree) A partial proof
tree for annotated atom A and program P is either

1. a node containing A, where atom(A) is an in-
stance of a unit clause in P or A is not callable,
or

2. a node containing callable atom A together with
partial proof (sub)trees Si for annotated atom Bi

and P, i = 1 . . . n, where atom(A):-B1, . . .Bn is
an instance of a clause in P.

A partial proof tree is floundered if it contains any
annotated atoms which are not callable, otherwise it
is successful.

Figure 5 gives the partial proof tree correspond-
ing to the floundering of goal perm([A,1|B],[2,3])
with Bug 1 (which corresponds to the trace of Fig-
ure 4). The “when” annotations are not shown. The
single letter prefix for each node indicates whether
the subtree is successful (s) or floundered (f). The
single letter postfix relates to the truth values of the
nodes: correct (c), erroneous (e), or inadmissible (i).
Given these assignments, the only buggy node is that
containing the atom inserted(3,[2|C],[2,3]). In
Section 3.2 we explain how these assignments reflect
the intentions of the programmer.

Representing a computation as a (partial) proof
tree has several advantages over representing it as a
linear trace if the goal is to diagnose incorrect suc-
cessful or floundered derivations. First, backtracking
is eliminated entirely, avoiding an important distrac-
tion. Second, the details of any coroutining are also
eliminated. It has long been known this could be done
for successful computations, but the realisation it can
be done for floundered computations is relatively new
and is the key to our approach. We retain information
on what sub-goals were never called, but the order in
which other subgoals were executed is not retained.
The structure of the tree reflects the static dependen-
cies in the code rather than the dynamic execution
order. Because of this, each node gives us the final
instantiation state of the atom, not just the instantia-
tion state when it exited (at that time some subcom-
putations may have been delayed). Finally, the tree
structure allows us search efficiently for buggy nodes
by checking the truth value of nodes, which can be
determine from the programmer’s intentions.

Declarative debuggers use various methods for
representing trees and building such representations.
The declarative debugger for Mercury (Somogyi &
Henderson 1999) is a relatively mature implementa-
tion. A much simpler method, which is suitable for
prototypes, is a meta interpreter which constructs an
explicit representation of the tree. Figure 6 is a very
concise implementation which we include for com-
pleteness. Floundering is detected using the “short

CRPIT Volume 122 - Computer Science 2012

52

% solve_atom(A, C0, C, AT): A is an
% atomic goal, possibly wrapped in
% when meta-call, which has succeeded
% or floundered; AT is the corresponding
% partial proof tree with floundered
% leaves having a variable as the list
% of children; C0==C iff A succeeded
solve_atom(when(Cond, A), C0, C, AT) :- !,

AT = node(when(Cond, A), C0, C, Ts),
when(Cond, solve_atom(A, C0, C,

node(_,_,_,Ts))).
solve_atom(A, C0, C, node(A,C0,C,AsTs)) :-

clause(A, As),
solve_conj(As, C0, C, AsTs).

% As above for conjunction;
% returns list of trees
solve_conj(true, C, C, []) :- !.
solve_conj((A, As), C0, C, [AT|AsTs]) :- !,

solve_atom(A, C0, C1, AT),
solve_conj(As, C1, C, AsTs).

solve_conj(A, C0, C, [AT]) :-
solve_atom(A, C0, C, AT).

Figure 6: Code to build partial proof trees

circuit” technique — an accumulator pair is associ-
ated with each subgoal and the two arguments are
unified if and when the subgoal succeeds. Tree nodes
contain an annotated atom, this accumulator pair and
a list of subtrees. A subcomputation is floundered if
the accumulator arguments in the root of the subtree
are not identical.

3.2 The programmer’s intentions

The way truth values are assigned to nodes encodes
the user’s intended behaviour of the program. In
the classical approach to declarative debugging of
wrong answers the intended behaviour is specified
by partitioning the set of ground atoms into true
atoms and false atoms. There can still be non-ground
atoms in proof tree nodes, which are considered true
if the atom is valid. A difficulty with this two-
valued scheme is that most programmers make im-
plicit assumptions about the way their code will be
called, such as the “type” of arguments. Although
inserted(2,a,[2|a]) can succeed, it is counter-
intuitive to consider it to be true (since it is “ill-
typed”), and if it is considered false then the defi-
nition of inserted/3 must be regarded as having a
logical error. The solution to this problem is to be
more explicit about how predicates should be called,
allowing pre-conditions (Drabent, Nadjm-Tehrani &
Maluszynski 1988) or saying that certain things are
inadmissible (Pereira 1986) or having a three-way par-
titioning of the set of ground atoms (Naish 2006).

In the case of floundering the intended behaviour
of non-ground atoms must be considered explicitly.
As well as assumptions about types of arguments,
we inevitably make assumptions about how instan-
tiated arguments are. For example, perm/2 is not
designed to generate all solutions to calls where nei-
ther argument is a (nil-terminated) list and even if it
was, such usage would most likely cause an infinite
loop if used as part of a larger computation. It is rea-
sonable to say that calls to perm/2 where neither ar-
gument is ever instantiated to a list should not occur,
and hence should be considered inadmissible. An im-
portant heuristic for generating control information is
that calls which have an infinite number of solutions
should be avoided (Naish 1986). Instead, such a call
is better delayed, in the hope that other parts of the

computation will further instantiate it and make the
number of solutions finite. If the number of solutions
remains infinite the result is floundering, but this is
still preferable to an infinite loop.

We specify the intended behaviour of a program
as follows:

Definition 3 (Interpretation) An interpretation
is a three-way partitioning of the set of all atoms into
those which are inadmissible, valid and erroneous.
The set of admissible (valid or erroneous) atoms is
closed under instantiation (if an atom is admissible
then any instance of it is admissible), as is the set of
valid atoms.

The following interpretation precisely defines our
intentions for perm/2: perm(As0,As) is admissible
if and only if either As0 or As are (nil-terminated)
lists, and valid if and only if As is a permutation of
As0. This expresses the fact that either of the argu-
ments can be input, and only the list skeleton (not the
elements) is required. For example, perm([X],[X])
is valid (as are all its instances), perm([X],[2|Y])
is admissible (as are all its instances) but erroneous
(though an instance is valid) and perm([2|X],[2|Y])
is inadmissible (as are all atoms with this as an
instance). For diagnosing Bugs 1 and 2, we say
inserted(A,As0,As) is admissible if and only if As0
or As are lists. For diagnosing Bug 3, As0 must be
a list, expressing the different intended modes in this
case.

Note we do not have different admissibility criteria
for different sub-goals in the program — the intended
semantics is predicate-based. Delay primitives based
on predicates thus have an advantage of being natural
from this perspective. Note also that atoms in partial
proof tree nodes are in their final state of instantia-
tion in the computation. It may be that in the first
call to inserted/3 from perm/2, no argument is in-
stantiated to a list (it may delay initially), but as long
as it is eventually sufficiently instantiated (due to the
execution of the recursive perm/2 call, for example) it
is considered admissible. However, since admissibility
is closed under instantiation, an atom which is inad-
missible in a partial proof tree could not have been
admissible at any stage of the computation. The de-
bugger only deals with whether a call flounders —
the lower level procedural details of when it is called,
delayed, resumed et cetera are hidden.

Truth values of partial proof tree nodes are defined
in terms of the user’s intentions:

Definition 4 (Truth of nodes) Given an inter-
pretation I , a partial proof tree node is

1. correct, if the atom in the node is valid in I and
the subtree is successful,

2. inadmissible, if the atom in the node is inadmis-
sible in I , and

3. erroneous, otherwise.

Note that floundered subcomputations are never cor-
rect. If the atom is insufficiently instantiated (or “ill-
typed”) it is inadmissible, otherwise it is erroneous.

3.3 Diagnosis examples

In our examples we use a top-down search for a buggy
node, which gives a relatively clear picture of the par-
tial proof tree. They are copied from actual runs of
our prototype2 except that repeated identical ques-
tions are removed and some white-space is changed.

2Available from http://www.cs.mu.oz.au/~lee/papers/ddf/

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

53

?- wrong(perm([A,1|B],[2,3])).
(floundered) perm([3,1|A],[2,3])...? e
(floundered) perm([1|A],[2|B])...? i
(succeeded) inserted(3,[2|A],[2,3])...? e
(succeeded) inserted(3,[],[3])...? v
BUG - incorrect clause instance:
inserted(3,[2|A],[2,3]) :-

when((nonvar(A);nonvar([3])),
inserted(3,[],[3])).

Figure 7: Bug 1 diagnosis for perm([A,1|B],[2,3])

...
(floundered) perm([1,2,3],[1,3,A|B])...? e
(floundered) perm([2,3],[3,A|B])...? e
(floundered) inserted(2,[3],[3,A|B])...? e
(floundered) inserted(2,[A|B],[A|C])...? i
BUG - incorrect modes in clause instance:
inserted(2,[3],[3,A|B]) :-

when((nonvar([]);nonvar([A|B]))
inserted(2,[A|_],[A|B])).

Figure 8: Bug 1 diagnosis for perm([1,2,3],A)

In section 3.4 we discuss strategies which can re-
duce the number of questions; the way diagnoses are
printed could also be improved. The debugger defines
a top-level predicate wrong/1 which takes an atomic
goal, builds a partial proof tree for an instance of the
goal then searches the tree. The truth value of nodes
is determined from the user. The debugger prints
whether the node succeeded or floundered, then the
atom in the node is printed and the user is expected
to say if it is valid (v), inadmissible (i) or erroneous
(e).

Figure 7 shows how Bug 1 is diagnosed for the goal
perm([A,1|B],[2,3]). The root of the tree (shown
in Figure 5) is erroneous, so the debugger proceeds
to recursively search for bugs in the children. In this
case it first considers the right child, which is inad-
missible (so the recursive search fails), then the left
child, which is erroneous (and the search continues in
this subtree). Note that the call to perm/2 in the root
calls itself in an inadmissible way but this, in itself,
does not indicate a bug. The cause of the inadmis-
sible call is the other child, which is erroneous, and
the root is not a buggy node. The recursive search in
the left subtree determines the left-most leaf is correct
and hence the buggy node is found. The diagnosis is
a logical error in the inserted/3 clause: the body of
the clause is valid but the head is not.

Figure 8 shows how Bug 1 is diagnosed for the
goal perm([1,2,3],A). We assume the user decides
to diagnose a floundered answer, backtracking over
the previous answers. The diagnosis is ultimately a
control error: the arguments of the clause head are
sufficiently instantiated but the arguments of the re-
cursive call are not. Both are diagnoses are legitimate.
Even without delays, logical bugs can lead to both
missing and wrong answers, which typically result in
different diagnoses in declarative debuggers.

Figure 9 shows how Bug 2 is diagnosed. The first
question relates to the first answer returned by the
goal. It is valid, so the diagnosis code fails and the
computation backtracks, building a new partial proof
tree for the next answer, which is floundered. The
root of this tree is determined to be erroneous and
after a few more questions a buggy node is found.
It is a floundered leaf node so the appropriate diag-
nosis is an incorrect delay annotation, which causes
inserted(A,B,[]) to delay indefinitely (rather than
fail). Ideally we should also display the instance of the

?- wrong(perm(A,[1,2,3])).
(succeeded) perm([1,2,3],[1,2,3])...? v
(floundered) perm([1,2,A,B|C],[1,2,3])...? e
(floundered) perm([2,A,B|C],[2,3])...? e
(floundered) perm([A,B|C],[3])...? e
(floundered) inserted(A,[3|B],[3]) ...? e
(floundered) inserted(A,B,[])...? e
BUG - incorrect delay annotation:
when((nonvar(A);nonvar(B)),inserted(B,A,[]))

Figure 9: Diagnosis of bug 2

?- wrong(perm(A,[1,2,3])).
(succeeded) perm([1,2,3],[1,2,3])...? v
(floundered) perm([1,2,A,B|C],[1,2,3])...? e
(floundered) perm([2,A,B|C],[2,3])...? e
(floundered) perm([A,B|C],[3])...? e
(floundered) inserted(A,[3|B],[3])...? i
(floundered) perm([A|B],[3|C])...? i
BUG - incorrect modes in clause instance:
perm([A,C|D],[3]) :-

when((nonvar([3|B]);nonvar([])),
inserted(A,[3|B],[3])),

when((nonvar([C|D]);nonvar([3|B])),
perm([C|D],[3|B])).

Figure 10: Diagnosis of bug 3

clause which contained the call (the debugger code in
(Naish 2000) could be modified to return the buggy
node and its parent), and the source code location.

Figure 10 shows how Bug 3 is diagnosed, using
the same goal. It proceeds in a similar way to the
previous example (the partial proof trees are iden-
tical), but due to the different programmer inten-
tions (the mode for inserted/3) the floundering call
inserted(A,[3|B],[3]) is considered inadmissible
rather than erroneous, eventually leading to a differ-
ent diagnosis. Both calls in the buggy clause instance
are inadmissible. The debugger of (Naish 2000) re-
turns both these inadmissible calls as separate diag-
noses. For diagnosing floundering it is preferable to
return a single diagnosis, since the floundering of one
can result in the floundering of another and its not
clear which are the actual culprit(s).

3.4 Search strategy

A top-down left to right search is the simplest search
strategy to implement. In our prototype we have a
slightly more complex strategy, searching floundered
subtrees before successful ones (this is done by ad-
justing the order in which the childern of a node are
returned — see Figure 11). More complex strategies
for diagnosing some forms of abnormal termination

% returns children of a node,
% floundered ones first
child(node(_, _, _, Ts), T) :-

nonvar(Ts), % not a floundered leaf
(member(T, Ts),

T = node(_, C0, C, _),
C0 \== C % T is floundered

;
member(T, Ts),
T = node(_, C0, C, _),
C0 == C % T is not floundered

).

Figure 11: Finding children in partial proof trees

CRPIT Volume 122 - Computer Science 2012

54

are given in (Naish 2000), and these can be adapted
to floundering. From our definition of truth values
for nodes, we know no floundered node is correct. We
also know that floundering is caused by (at least one)
floundered leaf node. Thus we have (at least one)
path of nodes which are not correct between the root
node and a leaf. It makes sense to initially restrict our
search to such a path. Our prototype does a top-down
search of such a path. There must be an erroneous
node on the path with no erroneous children on the
path. Both bottom-up and binary search strategies
are likely to find this node significantly more quickly
than a top-down search. Once this node is found, its
other children must also be checked. If there are no
erroneous children the node is buggy. Otherwise, an
erroneous child can be diagnosed recursively, if it is
floundered, or by established wrong answer diagnosis
algorithms.

4 Theoretical considerations

We first make some remarks about the soundness and
completeness of this method of diagnosis, then dis-
cuss related theoretical work. An admissible atomic
formula which flounders has a finite partial proof tree
with an erroneous root and clearly this must have a
buggy node. Since the search space is finite, com-
pleteness is easily achieved. Soundness criteria come
from the definition of buggy nodes (erroneous nodes
with no erroneous children). The three classes of bugs
mentioned in Section 2 give a complete categorisation
of bugs which cause floundering. Incorrect delay an-
notations cause floundered buggy leaf nodes: they are
admissible but delay. Confusions over modes cause
floundered buggy internal nodes: they are admissible
but have one or more floundered inadmissible chil-
dren. Logical errors can also cause such nodes and can
cause successful buggy nodes. Note that ancestors of
a successful buggy node may also be floundered, as in
Figure 5.

Our current work on diagnosis arose out of more
theoretical work on floundering (Naish 2008). Nearly
all delay primitives have the property that if a cer-
tain call can proceed (rather than delay), any more
instantiated version of the call can also proceed (the
set of callable annotated atoms is closed under instan-
tiation). Our diagnosis method can be effectively ap-
plied to other delay primitives for which this property
holds simply by changing the definition of callable an-
notated atoms. An important result which follows
from this property is similar to the result concerning
success: whether a computation flounders, and the
final instantiation of variables, depends on the delay
annotations but not on the order in which sufficiently
instantiated call are selected. Non-floundering is also
closed under instantiation, so it is natural for admissi-
bility to inherit this restriction and partial proof trees
provide a basis for intuitive diagnoses. Furthermore,
there is a very close correspondence between floun-
dered and successful derivations, and this is what en-
ables our approach to diagnosis. A floundered deriva-
tion D for program P can be transformed into a suc-
cessful derivation D ′ for a program P ′ which is identi-
cal to P except for the delay annotations. We briefly
explain (a simplified version of) the mapping next.

The key idea is that a floundered derivation (or
partial proof tree) using P will correspond to a suc-
cessful derivation (or proof tree) in P ′ where the vari-
ables which caused floundering in P are instantiated
to special terms which could not be constructed by
the rest of the computation — the variables are en-
coded using special terms. This encoding has no ef-
fect on successful subcomputations; any subcomputa-
tion which succeeds with an answer containing vari-

ables will also succeed if any of those variables are
further instantated. Because Prolog uses most gen-
eral unifiers, the only terms constructed in a Prolog
derivation contain function symbols which appear in
the program. Thus “extraneous” function symbols,
which do not occur in P , can be used to encode vari-
ables. For simplicty, we will just use $, and assume
it does not appear in P (in (Naish 2008) multiple en-
codings are used, which makes the mapping between
derivations more precise).

Each annotated atom when(C ,A) in P is trans-
fomed so that the corresponding code in P ′ just calls
A when C is satisfied but can also succeed when C
is not satisfied, encoding the appropriate variables.
Calling A is achieved by having A as a disjunct in the
transformed code. The other disjunct implements the
negation of C , using the encoding. The negation of
nonvar(V) ensures V is an encoded variable, $, and
De Morgan’s laws handle conjunction and disjunction
in delay conditions.

Definition 5 The transformation T applied to when
annotations is:
T (when(C ,A)) = (T (C) ;A)
T ((C1,C2)) = (T (C1) ; T (C2))
T ((C1 ; C2)) = (T (C1),T (C2))
T (nonvar(V)) = (V = $)

For example, the recursive clause for the correct ver-
sion of inserted/3 is transformed to:

inserted(A, [A1|As0], [A1|As]) :-
(As0 = $, As = $; inserted(A, As0, As)).

The goal inserted(1,[2,3|A],[2,3|B]) has a
derivation/partial proof tree in P which is floundered
due to an annotated recursive call to inserted/3
with variables A and B as the second and third ar-
guments, respectively. There is a corresponding suc-
cessful derivation/proof tree in P ′ where A and B are
instantiated to $. This correspondence between floun-
dered and successful computations means we can use
the properties of successful derivations in the diagno-
sis of floundering — in particular, abstracting away
backtracking and the order in which sub-goals are ex-
ecuted.

In section 3.2 we defined interpretations by par-
titioning the set of all atoms, rather than just the
ground atoms. This is what allows us to say an insuf-
ficiently instantiated floundered atom is inadmissible.
The ground encoded versions of such atoms would
normally be considered ill-typed, hence it is reason-
able to consider them inadmissible also. For example,
inserted(1,[2,3|A],[2,3|B]) is inadmissible and
the encoded atom inserted(1,[2,3|$],[2,3|$])
has non-lists in the last two arguments. Thus, by
encoding atoms and using ill-typedness in place of
under-instantiation, it is possible to define interpre-
tations over just ground atoms. The way we described
our intended interpretation in section 3.2 can remain
unchanged. Encoding our example from that section,
perm([$],[$]) is valid, perm([$],[2|$]) is erro-
neous and perm([2|$],[2|$]) is inadmissible. By
only using ground atoms, the three-valued seman-
tics proposed in (Naish 2006) can be used unchanged
(and our approach can indeed be considered “declara-
tive”). Diagnosis of floundering becomes almost iden-
tical to diagnosis of wrong answers in the three-valued
scheme. The only difference is the rare case of a valid
ground atom which flounders rather than succeeds:
when floundering is converted to success it appears
there is no bug. For this case it is necessary to dis-
tinguish success from floundering, for example, with
extra information in each node of the proof tree, as
we have done in our implementation.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

55

5 Conclusion

There has long been a need for tools and techniques
to diagnose unexpected floundering in Prolog with de-
lay primitives, and related classes of bug symptoms
in other logic programming languages. The philos-
ophy behind delay primitives in logic programming
languages is largely based on Kowalski’s equation:
Algorithm = Logic + Control (Kowalski 1979). By
using more complex control, the logic can be sim-
pler. This allows simpler reasoning about correctness
of answers from successful derivations — we can use
a purely declarative view, ignoring the control be-
cause it only affects the procedural semantics. When
there are bugs related to control it is not clear the
trade-off is such a good one. The control and logic
can no longer be separated. Since the normal declar-
ative view cannot be used, the only obvious option
is to use the procedural view. Unfortunately, even
simple programs can exhibit very complex procedu-
ral behaviour, making it very difficult to diagnose and
correct bugs using this view of the program.

In the case of floundering, a much simpler high
level approach turns out to be possible. The com-
bination of the logic and control can be viewed as
just slightly different logic, allowing declarative diag-
nosis techniques to be used. The procedural details
of backtracking, calls delaying and the interleaving
of subcomputations can be ignored. The user can
simply put each atomic formula into one of three cat-
egories. The first is inadmissible: atoms which should
not be called because they are insufficiently instanti-
ated and expected to flounder (or are “ill-typed” or
violate some pre-condition of the procedure). The
second is valid: atoms for which all instances are true
and are expected to succeed. The third is erroneous:
atoms which are legitimate to call but which should
not succeed without being further instantiated (they
are not valid, though an instance may be). A floun-
dered derivation can be viewed as a tree and this
three-valued intended semantics used to locate a bug
in an instance of a single clause or a call with a delay
annotation.

References

Caballero, R., Rodŕıguez-Artalejo, M. & del
Vado Vı́rseda, R. (2006), Declarative diagnosis
of wrong answers in constraint functional-logic
programming, in S. Etalle & M. Truszczynski,
eds, ‘ICLP’, Vol. 4079 of Lecture Notes in Com-
puter Science, Springer, pp. 421–422.

Caballero, R., Rodŕıguez-Artalejo, M. & del
Vado Vı́rseda, R. (2007), Declarative debugging
of missing answers in constraint functional-logic
programming, in V. Dahl & I. Niemelä, eds,
‘ICLP’, Vol. 4670 of Lecture Notes in Computer
Science, Springer, pp. 425–427.

Clark, K. & McCabe, F. (1979), The control facilities
of IC-Prolog, in D. Michie, ed., ‘Expert systems
in the microelectronic age’, Edinburgh Univer-
sity Press, pp. 122–149.

Drabent, W., Nadjm-Tehrani, S. & Maluszynski, J.
(1988), The use of assertions in algorithmic de-
bugging, in ‘Proceedings of the 1988 Interna-
tional Conference on Fifth Generation Computer
Systems’, Tokyo, Japan, pp. 573–581.

Gregory, S. (1987), Design, application and imple-
mentation of a parallel logic programming lan-
guage, Addison-Weseley.

Jaffar, J. & Lassez, J.-L. (1987), From unification to
constraints, in K. Furukawa, H. Tanaka & T. Fu-
jisaki, eds, ‘Proceedings of the Sixth Logic Pro-
gramming Conference’, Tokyo, Japan, pp. 1–18.
published as Lecture Notes in Computer Science
315 by Springer-Verlag.

Kowalski, R. (1979), ‘Algorithm = Logic + Control’,
CACM 22(7), 424–435.

Lloyd, J. W. (1984), Foundations of logic program-
ming, Springer series in symbolic computation,
Springer-Verlag, New York.

Marriott, K., Garćıa de la Banda, M. &
Hermenegildo, M. (1994), Analyzing Logic
Programs with Dynamic Scheduling, in ‘20th.
Annual ACM Conf. on Principles of Program-
ming Languages’, ACM, pp. 240–254.

Marriott, K., Søndergaard, H. & Dart, P. (1990),
A characterization of non-floundering logic pro-
grams, in S. Debray & M. Hermenegildo, eds,
‘Proceedings of the North American Conference
on Logic Programming’, The MIT Press, Austin,
Texas, pp. 661–680.

Naish, L. (1986), Negation and control in Prolog,
number 238 in ‘Lecture Notes in Computer Sci-
ence’, Springer-Verlag, New York.

Naish, L. (1992), ‘Declarative diagnosis of missing an-
swers’, New Generation Computing 10(3), 255–
285.

Naish, L. (1997), ‘A declarative debugging scheme’,
Journal of Functional and Logic Programming
1997(3).

Naish, L. (2000), ‘A three-valued declarative de-
bugging scheme’, Australian Computer Science
Communications 22(1), 166–173.

Naish, L. (2006), ‘A three-valued semantics for logic
programmers’, Theory and Practice of Logic
Programming 6(5), 509–538.

Naish, L. (2008), ‘Transforming floundering into suc-
cess’.
URL: ww2.cs.mu.oz.au/˜lee/papers/flounder

Naish, L. & Barbour, T. (1995), A declarative
debugger for a logical-functional language, in
G. Forsyth & M. Ali, eds, ‘Eighth Interna-
tional Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Ex-
pert Systems — Invited and Additional Papers’,
Vol. 2, DSTO General Document 51, Melbourne,
pp. 91–99.

Pereira, L. M. (1986), Rational debugging in logic
programming, in E. Shapiro, ed., ‘Proceedings
of the Third International Conference on Logic
Programming’, London, England, pp. 203–210.
published as Lecture Notes in Computer Science
225 by Springer-Verlag.

Pope, B. & Naish, L. (2003), Practical aspects of
declarative debugging in Haskell-98, in ‘Fifth
ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming’, pp. 230–
240. ISBN:1-58113-705-2.

Shapiro, E. Y. (1983), Algorithmic program debug-
ging, MIT Press, Cambridge, Massachusetts.

Somogyi, Z. & Henderson, F. J. (1999), The imple-
mentation technology of the Mercury debugger,
in ‘Proceedings of the Tenth Workshop on Logic
Programming Environments’, Las Cruces, New
Mexico, pp. 35–49.

CRPIT Volume 122 - Computer Science 2012

56

