
Descriptional Complexity of Determinization and
Complementation for Finite Automata

Aniruddh Gandhi Nan Rosemary Ke Bakhadyr Khoussainov

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand
{agan014, nke001}@aucklanduni.ac.nz

bmk@cs.auckland.ac.nz

Abstract

In this paper we study the subset construction that
transforms nondeterministic finite automata (NFA)
to deterministic finite automata (DFA). It is well
known that given a n-state NFA, the subset construc-
tion algorithm produces a 2n-state DFA in the worst
case. It has been shown that given n,m (n < m ≤
2n), there is a n-state NFA N such that the mini-
mal DFA recognizing L(N) has m states. However
this construction requires O(n2) number of transi-
tions in the worst case. We give an alternative so-
lution to this problem that requires asymptotically
fewer transitions. We also investigate the question
of the complementation of NFA. In this case also, it
known that given n,m (n < m ≤ 2n), there exists
a n-state NFA N such that the minimal NFA recog-
nizing the complement of L(N) needs m states. We
provide regular languages such that given n, k (k > 1
and n > k), the NFA recognizing these languages
need n states and the NFA recognizing their comple-
ment needs (k + 1)n − (k + 1)2 + 2 states. Finally
we show that for given n, k > 1, there exists a O(n)-
state NFA A such that the minimal NFA recognizing
the complement of L(A) has between O(nk−1) and
O(n2k) states. Importantly however, the constructed
NFA’s have a small number of transitions, typically in
the order of O(n) or O(n2/log2(n)). These are better
than the comparable results in the literature.

Keywords: Finite automata, state complexity, the
subset construction, determinization, exponential
blow-up, complementation.

1 Introduction

The subset construction is one of the fundamental
constructions in automata theory that converts non-
deterministic finite automata into equivalent deter-
ministic automata. Under the subset construction,
the states of the constructed DFA are subsets of the
underlying NFA. Therefore, if the underlying NFA
has n states the then resulting equivalent DFA has at
most 2n states. Hence, the cost of determinization is
an exponential blow-up in the number of states (Ra-
bin & Scott 1959). In (Moore 1971) it was shown that
this blow-up in the number of states is sharp. This
sharpness result implies hardness for the complemen-
tation problem as well. Namely, for any n there exists
an n state NFA recognizing a language L such that 2n

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 17th Computing: The Australasian The-
ory Symposium (CATS 2011), Perth, Australia, January 2011.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 119, Alex Potanin and Taso Viglas, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

number of states are needed for a DFA to recognize
the complement of the language L.

In general, the study of the descriptional complex-
ity of regular languages is one of the active areas of
current research in the theory of finite automata (Yu
2005). An important measure for the descriptional
complexity of regular languages is state complexity.
Recall that given a regular language L, its NFA-state
complexity (DFA-state complexity) is the number of
states in a minimal NFA (minimal DFA) that recog-
nizes L. There have been a series of results that study
the state complexity of the Boolean operations, the
concatenation and the Kleene-star operation on reg-
ular languages. For instance, in (Holzer & Kutrib
2003b) it is shown that n+m+ 1 states are necessary
and sufficient to recognize the union of regular lan-
guages L1 and L2, recognized by n state and m state
NFA, respectively. Similarly, in (Holzer & Kutrib
2003b) it is shown that n · m states are necessary
and sufficient to recognize the intersection of regu-
lar languages L1 and L2, recognized by n state and m
state NFA, respectively. The papers (Holzer & Kutrib
2003b) and (Jirásek et al. 2005) study the state com-
plexity of other operations. Also, there has recently
been some work on the study of average state com-
plexity of regular languages and operations thereon.

Another measure for the descriptional complexity
of regular languages is the transition complexity. For
a given regular language L, its transition complexity
is the number of transitions in the minimal NFA rec-
ognizing L. Transition complexity of a regular lan-
guage seems to be a better measure of the descrip-
tional complexity of a regular language since the tran-
sitions of the minimal NFA are needed to completely
specify a regular language. Moreover, the transition
complexity of a regular language L may be exponen-
tially greater than the NFA-state complexity of L.
The papers (Gramlich & Schnitger 2007, Schnitger
2006) investigate the transition complexity of regu-
lar languages. Our paper fits in the realm of these
investigations.

In this paper we revisit the subset construction
that transforms NFA to DFA and investigate the
problems around the following questions: (1) Given n
and m such that n ≤ m ≤ 2n, does there exist a regu-
lar language whose NFA-state complexity is n and its
DFA-state complexity is m? In (Jirásek et al. 2007)
and (Jirásková 2008), it has been shown that it is pos-
sible to fill in this exponential gap. Here we seek to
provide a solution to this problem which has asymp-
totically fewer transitions than the constructions of
(Jirásek et al. 2007) and (Jirásková 2008). (2) Given
n and m with n ≤ m ≤ 2n, does there exist a regular
language whose NFA-state complexity is n such that
the NFA-state complexity of the complement of the
language is m? This question is answered in the affir-
mative by (Jirásek et al. 2005) and (Jirásková 2008).
Again we would like to provide an alternative solu-

tion which has has asymptotically fewer transitions.
Below we outline some of the known results related
to these questions.

In (Piotr Berman 1977) it is shown that for every n
there exists a language L whose NFA-state complexity
is n but DFA state complexity is 2n−1. Interestingly
the complement of this language is recognized by an
NFA with O(n) states. In other words, the comple-
mentation problem for the language L is easy in the
class of nondeterministic finite automata. In (Holzer
& Kutrib 2003b) a language M is constructed whose
NFA-state complexity is n but whose NFA-state com-
plexity for the complement of M is 2n−2. In other
words, the complementation problem for the language
M is hard in the class of nondeterministic finite au-
tomata. A natural question arises whether one can
fill in the exponential gap.

In (Jirásek et al. 2005) for every n and m such that
n ≤ m ≤ 2n a regular language L is constructed such
that its NFA state complexity is n and the NFA-state
complexity of the complement ism. These results also
show that for every n and m such that n ≤ m ≤ 2n

there exists a regular language whose NFA-state com-
plexity is n and whose DFA-state complexity is m.
However, these precise bounds are obtained in the
expense of increasing the alphabet size exponentially
on n. The authors of (Jirásek et al. 2005) pose the
problem if the sizes of the alphabets can be controlled.
For instance, can the sizes of alphabets be dependent
on n linearly or be of a fixed size. In (Jirásek et al.
2007), the authors prove that for for every m,n such
that n ≤ m ≤ 2n, there exists a n-state NFA whose
DFA state complexity is m for a fixed four letter al-
phabet. Furthermore in (Jirásková 2008), the authors
prove that for every m,n such that n ≤ m ≤ 2n, there
exists a n-state NFA A such that the NFA state com-
plexity of the complement of L(A) is m for a fixed
five letter alphabet. The question of whether similar
results can be achieved using a binary alphabet is still
open.

In this paper we present asymptotic solutions to
the problems posed. The languages we construct are
over either binary alphabets or alphabets that depend
on n linearly. These languages exhibit the same be-
havior as the languages in (Jirásek et al. 2007) but
the bounds on the number of states are not sharp and
the size of the alphabet varies linearly with n. How-
ever the n-state NFA constructed in (Jirásek et al.
2007) have O(n2) transitions in the worst case. The
n-state NFA constructed by us have asymptotically
fewer transitions than the NFA constructed by the
authors of (Jirásek et al. 2007) in the worst case.

More precisely, we construct the following lan-
guages:

1. For every k > 1 there exists a regular language
Ln over a k-letter alphabet, where n > k, such
that a minimal NFA recognizing Ln needs ex-
actly n states and the minimal DFA recognizing
Ln needs exactly (k + 1) · n− c states and O(n)
transitions, where c = (k+ 1)2 − 2 (Theorem 1).

2. For every n = k + m there exists a regular lan-
guage Ln over the binary alphabet such that
the minimal NFA recognizing Ln needs exactly
n states and the minimal DFA needs exactly p ·n
states and O(n) transitions (Theorem 2). Unlike
in (Jirásek et al. 2007), we use a binary alphabet
instead of a four letter alphabet.

3. For every k > 1 there exists a regular lan-
guage Ln over a k-letter alphabet such that the
minimal NFA A recognizing Ln needs n states,
where n > k, and the minimal DFA recogniz-
ing Ln has asymptotically nk states. The NFA

A has O(n2

log2n
) transitions which is asymptoti-

cally fewer than the O(n2) transitions required
by the NFA described in (Jirásek et al. 2007) in
the worst case (Theorem 3).

4. For every k > 1 there exists a regular language
Ln over the k-letter alphabet, where n > k, such
that the minimal NFA recognizing Ln needs ex-
actly n states and the minimal NFA recognizing
the complement of Ln needs exactly (k+ 1)n− c
states and O(n) transitions, where c = (k+1)2−2
(Theorem 4).

5. For every k > 1 there exists a regular language
Ln over the k-letter alphabet, where n > k,
such that the minimal NFA A recognizing Ln
needs exactly n states and the minimal NFA rec-
ognizing the complement of Ln needs between
O(nk−1) and O(n2k) states. Moreover, in the

worst case A has O(n2

log2n
) transitions in the

worst case, which is asymptotically fewer than
the O(n2) transitions of the NFA described in
(Jirásková 2008) (Theorem 5).

The outline of this paper is as follows. The next
section gives basic definitions and introduces a nec-
essary notation. In our proofs we use Myhill-Nerode
theorem that is also stated in the next section. Sec-
tion 3 is devoted to proving Theorems 1 and 2. Sec-
tion 4 proves Theorem 3. In Section 5 we provide a
proof of Theorems 4 and 5.

2 Basic Notations and Definitions

A deterministic finite automaton (DFA)A is a 5-tuple
〈S,Σ, δ, s0, F 〉 such that:

1. S is a finite set of states.

2. Σ is an alphabet.

3. δ : S × Σ→ S is the transition function.

4. s0 ∈ S is the initial state.

5. F is the set of accepting states.

A nondeterministic finite automaton (NFA) A is a 5
tuple 〈S,Σ, δ, s0, F 〉 such that:

1. S is a finite set of states.

2. Σ is an alphabet.

3. δ : S × Σ→ 2S is the transition function.

4. s0 ⊆ S is the set of initial states.

5. F is the set of accepting states.

For an alphabet Σ, let Σ∗ denote the set of all
words over the alphabet, let λ denote the empty string
and Σ+ = Σ∗\{λ}. For σ ∈ Σ, σm denotes letter σ
concatenated m times, σ+ = σ∗\{λ} and σ0 = λ.

We define δ+ : S × Σ+ → 2S recursively by:

1. δ+(s, σ) = δ(s, σ) and

2. δ+(s, w · σ) = δ(δ+(s, w), σ)

where s ∈ S, σ ∈ Σ and w ∈ Σ+. Here, for each
X ⊂ S, we set δ(X,σ) = ∪s∈Xδ(s, σ).

A run of the automaton A on the word v = σ1σ2...
σn is a sequence of states s0, s1...sn−1, sn, such that
s0 is the initial state and si+1 ∈ δ(si, σi). If for this
run sn ∈ F then we say that the run is accepting. The

automaton accepts the word v if it has an accepting
run on v. The language accepted by an automaton A,
denoted by L(A), is as follows:

{w | the automaton A accepts w}.

Consider a language L ⊆ Σ∗. We define an equiv-
alence relation ≡L for pair of words u,w ∈ Σ∗. We
say that u and v are ≡L-equivalent, written u ≡L w,
if u · z ∈ L ⇐⇒ w · z ∈ L for all z ∈ Σ∗. The well
known Myhill-Nerode Theorem states (Nerode 1958)
(Hopcroft & Ullman 1979):

Theorem (Myhill-Nerode) For a regular lan-
guage L, the number of equivalences classes of ≡L
is equal to the number of states of the minimal DFA
accepting L.

We will be using this theorem in our proofs to
follow.

3 Regular Languages with Linear State Com-
plexity upon determinization

Let Σ = {0, 1, . . . , k−1} be an alphabet of k symbols,
we define the following language:

Lk,m={ux | x ∈ σ+, σ ∈ Σ, u ∈ Σ∗, and
|u| ≡ m− 1(mod m)}.

The following NFA Ak,m = 〈S,Σ, δ, sI , F 〉 accepts
Lk,m and has m+ k states.

1. S = {s0, s1, . . . , sm+k−1} and
Σ = {0, 1, . . . , k − 1}.

2. sI = {s0} and F = {sm, sm+2, ..., sm+k−1}.

3. δ(si, σ) =

{ {si+1} if i < m− 1, σ ∈ Σ
{s0, sm+σ + 1} if i = m− 1, σ ∈ Σ
{si} if i ≥ m, σ = i−m− 1

At state sm−1 the automaton Ak,m non-
deterministically guesses the form of the remaining
word to be either σ+ or uσ+ (|u| ≡ m − 1(modm)),
where σ ∈ Σ. The nondeterministic automaton A2,4
is shown in Figure 1. It is not hard to see that Ak,m
has n+ k transitions.

2 3
0,1 0,1 0,1

0 1

0 1

0,1

0 1

4 5

Figure 1: The nondeterministic automaton A2,4

Lemma 1. NFA Ak,m with m+k states is a minimal
NFA accepting Lk,m.

Proof. Let NFA C= 〈S′,Σ, δ′, s′I , F ′〉 be a minimal
NFA accepting Lk,m. For a word w where w =
(10)∗(0), |w| = m − 1 and a symbol σ ∈ Σ, the
word w · σ · σ ∈ Lk,m, and there is an accepting run
for C in w · σ · σ. Let s(w · σ) = {s ∈ S′ | s ∈
δ′+(s0, w · σ) ∧ δ′+(s, σ) ∩ F ′ 6= ∅}. Assume for the
sake of contradiction that s(w ·σ)∩s(w ·α) 6= ∅ where
σ 6= α and σ, α ∈ Σ. Then the word w · σ · α /∈ Lk,m
will be accepted, and we have reached a contradic-
tion. Hence there are k symbols in the alphabet σ,
NFA C has at least k states.

Let p0, p1, . . . , pm+1 be tha accepting run of Ak,m
on w ·0 where w = (10)∗(0) and |w| = m−1. Since no

word of length less thanm is in the language, the state
pm is an accepting state and states p0, p1, . . . , pm−1
are non-accepting states. If there exist pi and pj with
i < j ≤ m such that pi = pj . Then a cycle of length
i where i < m exists, without running through the
cycle, a word u where |u| < m is accepted. However
no word of length less than m is in Lk,m. Hence we
have reached a contradiction and p0, p1, . . . , pm are all
distinct states. If there exists pi (i < m) such that
pi ∈ s(w ·α) for some α 6= 0. Then the word w ·α · u
where |u| < m will be accepted. However w · α · u
is not in Lk,m. Hence the states {p0, p1, . . . , pm−1} ∩
s(w · α) = ∅ for α ∈ Σ and C has another m states.
Overall, C has at least m+ k states.

The following DFA Bk,m = 〈S′,Σ, δ′, s′I , F ′〉 ac-
cepts Lk,m with (k+1)m+(1−k) states. Intuitively,
the automaton by reading an input string w counts
the lengths of the prefixes of w modulo m, and once
the length equals m − 1 modulo m the automaton
starts verifying that the rest of the string is from σ+

for some σ ∈ Σ.

1. S = {s′0, s′1, . . . , s′k−1} ∪ {s′0,1, . . . , s′0,k−1} ∪ . . . ∪
{s′k−1,1, . . . , s′k−1,k−1} ∪ {s′F }.

2. s′I = s′0

3. F ′ = {s′F } ∪ {s′i,j | i ≤ k− 1 and 1 ≤ j ≤ k− 1}.
4. For σ ∈ Σ, we have the following transition func-

tions:

δ′(s′i, σ) =

{
s′i+1 if i < m− 1
s′σ,1 if i = m− 1

δ′(s′i,j , σ) =

 s′i,j+1 if σ = i and 1 ≤ j < k − 1
s′j if σ 6= i and i ≤ j < k − 1
s′F if j = k − 1

The automaton B2,4 is shown in Figure 2.

0 1 2 3
0,1 0,10,1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0,1 1,1

0,2 1,2

0,3 1,3

F

Figure 2: The deterministic automaton B2,4

Lemma 2. The minimal DFA recognizing Lk,m has
exactly (k + 1)m+ (1− k) states.

Proof. For the proof we use Myhill-Nerode theorem
and count the number of ≡Lk,m equivalence classes.
First consider a word x ∈ Σ∗ where |x| ≥ m, we can
write it in the form x = u · w where u,w ∈ Σ∗ and
|u| ≡ m− 1(mod m) and 1 ≤ |w| ≤ m. There are two
cases for the word w:

Case 1: w ∈ σi where σ ∈ Σ and 1 ≤ i ≤ m. For
this case we want to show that the number of ≡Lk,m
equivalence classes is k · (m− 1) + 1. To show this we
distinguish the following two possibilities for w = σi:

1. |w| < m: Consider any other word x′ such that x′

is of the form u′ ·w′ where |u′| = m−1 modulo m
and w′ is of the form αj with α ∈ Σ and 1 ≤ j ≤

m. Then either |w| = |w′| or |w| 6= |w′|. First we
consider the case when |w| = |w′|. In this case it
must be that σ 6= α. It is not hard to see that for
z = σm−|w| we have x·z ∈ Lk,m. However, x′ ·z /∈
Lk,m because |αiσm−i| = m and α 6= σ. Hence,
x 6≡Lk,m x′. Now we consider the case when
|w| 6= |w′|. Without loss of generality, we may
assume |w| > |w′|. Next consider z = βm−|w|+1,
where β ∈ Σ with β 6= α. For this z we have
x · z ∈ Lk,m because it is of the form uσiβm−iβ
and |uσiβm−i| = m − 1 modulo m. However,
x′ · z /∈ Lk,m. Thus, this possibility proves that
there are exactly k · (m − 1) number of ≡Lk,m
equivalence classes represented by the words of
the form x = u · w where |u| ≡ m − 1(mod m)
and w = σi with σ ∈ Σ and 1 ≤ i ≤ m.

2. |w| = m: Consider any word x′ of the form x′ =
u′ · w′, where |u′| = m − 1 modulo m. It is not
hard to see that x ≡Lk,m x′ since for all z ∈ Σ∗

we have x · z ∈ Lk,m ⇐⇒ x′ ∈ Lk,m. Now we
want to show that x is not ≡Lk,m equivalent to

any word y of the form y = u0 · αi where α ∈ Σ,
1 ≤ i < m and |u0| ≡ m − 1 (mod m). Take
β ∈ Σ such that β 6= α. Then it is clear that
x · β ∈ Lk,m, but y · β /∈ Lk,m.

Thus, Case 1 proves that there are k · (m− 1) + 1
equivalence ≡Lk,m -classes.

Case 2: Assume that w is not of the form σi for
σ ∈ Σ and 1 ≤ i ≤ m − 1). We want to show that
there are m number of ≡Lk,m equivalence classes all
distinct from the equivalence classes provided in Case
1.

Consider a word x′ of the form x′ = u′ ·w′, where
u′ and w′ are components of x′ and satisfy the same
conditions as the u and w components of x. Then
either |w| = |w′| or |w| 6= |w′|. First we consider the
case |w| = |w′|. It is not hard to see that x ≡Lk,m x′

since for all z ∈ Σ∗ that x · z ∈ Lk,m ⇐⇒ x′ · z ∈
Lk,m. This is due to the choices of u, u′, w and w′.
Next we consider the case |w| 6= |w′| and assume that
|w′| < |w|. For z = 0m−|w|+1, we have x · z ∈ Lk,m
and x′ · z /∈ Lk,m. Therefore x 6≡Lk,m x′.

Now we need to show that x is not ≡Lk,m to any

word from Case 1. Consider y = u0 · σi where u0 ∈
Σ∗, 1 ≤ i ≤ m and |u0| ≡ m − 1(mod m). Take
z = σm−|x|−1, it is not hard to see that y · z ∈ Lk,m
but x · z /∈ Lk,m. Hence y 6≡Lk,m x, and in this case
Lk,m has m− 1 distinct equivalence classes.

Next we consider a word x ∈ Σ∗ where |x| < m,
there are two cases:

Case 1: We consider all 1 ≤ |x| < m. Then it
is not hard to see that for all z ∈ Σ∗ that x · z ∈
Lk,m ⇐⇒ 0m−1 · x· ∈ Lk,m. Therefore x ≡Lk,m
0m−1 ·x and we have already counted the equivalence
classes.

Case 2: We consider the case when x = λ. Con-
sider a word x′ ∈ Σ∗\{λ}. If x′ ∈ Lk,m, we set z = λ.
It is clear that x · z /∈ Lk,m, but x′ · z ∈ Lk,m. There-
fore x 6≡Lk,m x′. If x′ /∈ Lk,m, then let i = |x|(mod m)

such that 0 ≤ i < m. Now set z = 0m−i+1. It is clear
that x·z /∈ Lk,m but x′·z· ∈ Lk,m and thus x 6≡Lk,m x′.
Therefore λ is an equivalence class on its own.

We have shown that Lk,m has (k + 1)m + (1 −
k) equivalence classes. Therefore, by Myhill Nerode
theorem the minimal DFA accepting Lk,m has exactly
(k + 1)m+ (1− k) states.

We now reformulate our results above in terms of
linear blow-up of the determination process of non-
deterministic finite automata.

Theorem 1. [Linear Blow-Up Theorem 1] For every
k > 1 there exists a regular language Ln over a k-
letter alphabet, where n > k, such that a minimal
NFA recognizing Ln needs exactly n states and the
minimal DFA recognizing Ln needs exactly (k+1)·n−c
states, where c = (k+1)2−2. Moreover, the minimal
NFA recognizing Ln needs O(n) transitions.

Proof. The language Ln is Lk,m where n = k + m.
Lemma 1 shows that this language requires exactly n
states to be recognized by a minimal NFA. Theorem 2
shows that this language requires exactly (k+1)·n−c
states to be recognized by a minimal DFA. From the
definition of the NFA recognizing Lk,m, it is not hard
to see that it has exactly n+ k states.

One would like to sharpen the theorem above to
build a regular language Ln such that the minimal
NFA recognizing Ln has exactly n states and the min-
imal DFA recognizing Ln has exactly k ·n states. Be-
low we present another class of languages in which
this sharpness can be achieved for infinitely many n.

Let Σ = {0, 1} and k,m ∈ N+. We define the
following language

Uk,m = {u · 0 · w | u,w ∈ Σ∗, |u| ≥ m and |w| = k}.

Intuitively, Uk,m is the set of all words v such that
|v| ≥ (m+k+1) and the k+1th letter from the right
is 0.

The following NFA Ak,m = 〈S,Σ, δ, sI , F 〉 accepts
Uk,m with m+ k + 2 states.

1. S = {s0, s1, ..., sm+k+1}, Σ = {0, 1}.
2. sI = s0, F = {sm+k+1}.

3. δ(si, σ) =

si+1 if 0 ≤ i < m or

m < i ≤ m+ k and σ ∈ Σ
si if i = m, σ ∈ Σ
si+1 if i = m and σ = 0

Intuitively, the automaton Ak,m, after processing the
prefix of an input word of length greater than m, non-
deterministically guesses that the rest of the string
has length k once a 0 is read. Then the automaton
verifies that the guess was correct.

The nondeterministic automaton A3,6 which has
11 states is shown in Figure 3. It is not hard to see
that Ak,m has m+ k + 2 transitions.

0 1 2 6

0,1

0,1 0,1 0,1 0,1

0

78910 0,10,10,1

Figure 3: NFA A3,6 with 11 states

Lemma 3. A minimal NFA accepting Uk,m has ex-
actly m+ k + 2 states.

Proof. Assume for a contradiction that there exists
an NFA C= 〈S′,Σ, δ′, s′I , F ′〉 accepting Uk,m with at
most m + k + 1 states. Consider 0m+1w ∈ Σ∗ where
|w| = k. Let r = p0, p1, ..., pm+k+1 be an accepting
run of C on 0m+1w. There are m+k+2 states in this
run and hence there is at least one state p appearing
twice in r. Thus, a cycle of length smaller than m+
k + 1 exists. Let string v0, v1 ∈ Σ∗ be such that

p ∈ δ′(s′0, v0) ∩ δ′(pi, v1), and string v2 be such that
δ(pi, v2) ∩ F ′ 6= ∅. Therefore δ′(s′0, v0v2) ∩ F ′ 6= ∅.
However, |v0v2| < m+k+1 and therefore v0v2 /∈ Uk,m.
Hence we have reached a contradiction.

Next we show the minimal number of states a DFA
requires to accept Uk,m is 2k+1 + m. Intuitively, the
deterministic automaton needs to remember the first
m states of the NFAAk,m. Afterwards, once 0 is read,
the DFA needs to remember all the strings of length
at most k. This is formally proven in the lemma:

Lemma 4. The minimal DFA recognizing Uk,m has
2k+1 +m states.

Proof. For the proof we use Myhill-Nerode Theorem
and count the number of ≡Uk,m equivalence classes.
Consider a word x ∈ Σ∗, there are three cases:

Case 1: |x| ≤ m: Consider any other word y ∈ Σ∗

where |y| ≤ m. There are two possibilities, either
|x| = |y| or |x| 6= |y|. First we consider the case
|x| 6= |y|. Without loss of generality we may assume
|x| > |y|. The word x · 1m−|x| · 0k+1 ∈ Uk,m and

y ·1m−|x| ·0k+1 /∈ Uk,m. Hence, corresponding to each
0 ≤ i ≤ m we have one distinct equivalence class
giving us m+ 1 classes.
Now consider |x| = |y|. It is clear for z ∈ Σ∗ that
x · z ∈ Uk,m ⇐⇒ y · z ∈ Uk,m. Thus, x ≡Uk,m y
and we have already counted the equivalence classes.
There is a total of m + 1 equivalence classes in this
case.

Case 2: m+1 ≤ |x| ≤ m+k+1: In this case either
x = u·0·w or x = u·1·w where u,w ∈ Σ∗ and |u| = m.
First we consider x = u · 0 · w. Take any other word
y = u′ · 0 · w′ where u′, w′ ∈ Σ∗ and |u′| = m. If w 6=
w′, then let w1 be the suffix such that w = w0 · σ ·w1
and w′ = w′0 ·σ′ ·w1 (σ, σ′ ∈ Σ and σ 6= σ′). Without
loss of generality we may assume σ = 0 and σ′ = 1. It
is clear that x · 1k−i+1 ∈ Uk,m and y · 1k−i+1 /∈ Uk,m,
and hence x 6≡Uk,m y. Therefore Uk,m has another

20+21+. . .+2k = 2k+1−1 equivalence classes. When
w = w′ for all z ∈ Σ∗ it is clear that x · z ⇐⇒ y · z
and we have already counted the equivalence classes.

Next we consider x of the form u · 1 · w (u,w ∈
Σ∗ and |u| = m). If w ∈ 1∗, then it is clear that
x ≡Uk,m u. Otherwise, let w1 be such that w = 1∗ ·0 ·
w1. Then x ≡Uk,m 0m+1 · w1. In both cases we have
already counted the equivalence classes. Thus Uk,m
has another 2k+1 − 1 equivalence classes in Case 2.

Case 3: |x| > m + k + 1: We first consider x ∈
Uk,m. Then x = u ·0 ·w where u,w ∈ Σ∗ and |w| = k.
It is clear that x ≡Uk,m 0m+1 · w. Now we consider
x /∈ Uk,m, then x = u · 1 · w where u,w ∈ Σ∗ and
|w| = k. If w ∈ 1∗ then x ≡Uk,m u, else w can be
written as 1∗ · 0 · w1 where w1 ∈ Σ∗. It is clear that
x ≡Uk,m 0m+1 · w1. In this case, we have already
counted the equivalence classes.

From the above arguments, we have shown that
Uk,m has 2k+1 +m equivalence classes. Hence, by the
Myhill-Nerode theorem, the minimal DFA accepting
Uk,m has 2k+1 +m states.

Let p be a natural number. We fixm = 2k+1−pk−2p
p−1

and assume that m is also a natural number. For
instance, when p = 2 we have m = 2k+1−2k−4. For
such chosen m and p we have the following theorem
that sharpens Theorem 3.

Theorem 2 (Linear Blow-Up Theorem 2). For ev-
ery n = k+m there exists a regular language Ln over
the binary alphabet such that the minimal NFA rec-
ognizing Ln needs exactly n states and the minimal
DFA needs exactly p · n states. The minimal NFA
recognizing Ln has O(n) transitions.

Proof. The desired language Ln is Uk,m. We have
shown in Lemma 3 that n = m+k+ 2. Furthermore,
we have shown in Theorem 4 that the minimal DFA
accepting Uk,m needs m + 2k+1 states. Since m =
2k+1−pk−2p

p−1 , the minimal DFA accepting Uk,m needs

p(m+k+2) states. From the definition of the NFA for
Uk,m, it is not hard to see that it has O(n) transitions.

4 Regular Languages with Polynomial State
Complexity upon determinization

Let Σ = {0, 1, . . . , (k − 1)} be an alphabet of k sym-
bols. For m ∈ N+, we define the following languages:

Vk = 0∗1∗ . . . (k − 1)∗.

Vk,m = {u | u ∈ Vk and |u| = m}.
Rk,m = {u · 0 · w | u ∈ Vk and w ∈ Vk,m}.

Lemma 5. The number of states sufficient for a NFA
accepting Rk,m is km+ 2.

Proof. The following NFA Ak,m accepts Rk,m with
km + 2 states. Let Ak,m = 〈S,Σ, δ, sI , F 〉 be such
that:

1. S = {s0, s1, . . . , sk−1} ∪ sk ∪ {s0,1, . . . , s0,m−1} ∪
. . . ∪ {sk−1,1, . . . , sk−1,m−1} ∪ {sF }.

2. sI = s0 and F = {sF }.
3. For σ ∈ Σ and s ∈ S, the transition function is:

δ(si, σ) =

{
{sσ, sk} if i ≤ k − 1 and σ ≥ i
{sσ,1} if i = k

δ(si,j , σ) =

{si,j+1} if j < m− 1 and i = σ
{sσ,j+1} if j < m− 1 and i < σ
{sF } if j = m− 1 and i ≤ σ

Lemma 6. For a fixed k, the NFA recognizing Rk,m
has O(n) transitions, where n = km+ 2.

Proof. Let NFA Ak,m = 〈S,Σ, δ, sI , F 〉 be the NFA
recognizing Rk,m as defined in Lemma 5. For a state
s ∈ S, let t(s) be the number of states s has tran-
sitions to. First we consider the case t(si) where
i ≤ k. For state si where i ≤ k − 1, state si
has transitions to states si, si+1, . . . , sk and hence
t(si) = k+ 1− i. Therefore the total number of tran-
sitions s0, s1, . . . , sk+1 have are

k−1∑
i=0

t(si) = (k + 1) + k + . . .+ 2 =
k(k + 3)

2

Furthermore, it is not hard to see that t(sk) = k.

Hence we have accounted for k(k+3)
2 + k transitions.

Now we consider a state si,j where i ≤ k − 1 and
j ≤ m − 1. The state si,j has transitions to states
si,j+1, . . . , sk−1,j+1 and hence t(si, j) = k − i. Hence
we have

k−1∑
i=0

m−1∑
j=1

t(si,j) = (m−2)(1+. . .+k) =
(k + 1)k(m− 1)

2

Note that state sF has no transitions.
Hence in total Ak,m has k+1

2 km − c transitions,

where c = k(k+1)
2 . Therefore the Ak,m recognizing

Rk,m has O(n) states.

The nondeterministic automaton A2,3 is shown in
Figure 4.

0 1

2

1

0 0

0 0

1

1

1

0 1

1

0,10,1 0,2 F

1,1 1,2

Figure 4: NFA A2,3 with 8 states

Lemma 7. For the language Vk,m, where 1 ≤ m and
k is the size of the alphabet, the cardinality of Vk,m is∏k−1
i=1

(m+i)
i .

Proof. We show this by an induction on k. For the
base case k = 2, it is not hard to see that

|V2,m| = (m+ 1) =
∏2−1
i=1

(m+i)
i .

Assume it is true for k = n− 1 that

|Vn−1,m| =
∏n−2
i=1

(m+i)
i .

Words in Vn,m are of the form un−1,m−i ·ni where 0 ≤
i ≤ m and un−i ∈ Vn−1,m−i. Thus, the cardinality of
Vn,m is:

|Vn,m| = |Vn−1,m|+ |Vn−1,m−1|+ ...+ |Vn−1,0| =∏n−2
i=1

(m+i)
i + . . .+

∏n−2
i=1

(0+i)
i =

∏n−1
i=1

(m+i)
i .

Lemma 8. For the language Vk,m, where 1 ≤ m and
k is the size of the alphabet∑m

i=0 |Vk,i| =
∏k
i=1

(m+i)
i .

Proof. We have previously shown in Lemma 7 that

|Vk,m| =
∏k−1
i=1

(m+i)
i . Hence we have the following

relation:
∑m
i=0 |Vk,i| = |Vk,0| + |Vk,1| + ... + |Vk,m| =∏k−1

i=1
(i+0)
i + . . .+

∏k−1
i=1

(i+m)
i =

∏k
i=1

m+i
i .

Lemma 9. The minimal DFA accepting Rk,m needs∏k
i=1

m+i
i + (km+ 3) states.

Proof. We count the number of distinct ≡Rk,m -
equivalence classes. Rk,m is represented by the regu-
lar expression 0∗ · 1∗ · . . . · k∗ · 0 · u where u ∈ Vk,m.
Consider a word x ∈ Σ∗, there are two cases:

Case 1 : ∃z ∈ Σ∗ such that x ·z ∈ Rk,m. There are
the following sub-cases:

0 1 2
1 0 0

1

1

1

1

0

0 0 0

1

1

1

1

1

1
1

1

1

0

0

0

0

0

00
1 *

*

*

*

*

*

1

0,1

8 9 10 11

12 13 14

15 16

17

All transitions marked ∗ go to State 2.

0,1 0,2

1,1 1,2

F1

0

Figure 5: Determinstic Automaton B2,3

1. x ∈ 0 · u such that u ∈ Vk,i (0 ≤ i ≤ m): In this
case, corresponding to every u ∈ Vk,i we have
a distinct ≡Rk,m -equivalence class containing the
word 0 ·u. Consider distinct words 0 ·u and 0 ·u′,
where u ∈ Vk,n and u′ ∈ Vk,j (0 ≤ n, j ≤ m).
Without loss of generality we may assume that
n ≤ j.
First, consider the case when n < j. If j = m,
then 0 · u′ ∈ Rk,m but 0 · u /∈ Rk,m and thus
0 · u 6≡Rk,m 0 · u′. If j 6= m then let σ ∈ Σ be
the last symbol that occurs in u′. Then 0 · u′ ·
σm−j ∈ Rk,m but 0 · u · σm−j /∈ Rk,m and hence
0 · u 6≡Rk,m 0 · u′.
Next consider the case when n = j. Let u = 0+ ·v
and u′ = 0+·v′ where v, v′ ∈ (Σ\{0})∗. Since u 6=
u′, we have |v| 6= |v′|. Without loss of generality,

assume that |v| > |v′|. Then 0·u′ ·σm−|v′| ∈ Rk,m
but 0 · u · σm−|v′| /∈ Rk,m where σ is the last
symbol of v′. Thus 0 · u 6≡R2,m

0 · u′.
By Lemma 8, we have

∑m
i=0 |Vk,i| =

∏k
i=1

(m+i)
i

and therefore we have
∏k
i=1

(m+i)
i distinct equiv-

alence classes corresponding to each word of the
form 0 · u.

2. x ∈ v·0·u where v ∈ (1∗ ·. . .·k∗)\{λ} and u ∈ Vk,i
(0 ≤ i ≤ m): Let x = v·0·lj and consider another
word w ∈ v · 0 · pj where l, p ∈ Σ \ {0} and l < p
(1 ≤ j ≤ m−1). Then x 6≡Rk,m w since x·lm−j ∈
Rk,m but w · lm−j /∈ Rk,m. Also x,w 6≡Rk,m
0 · u′ (u′ ∈ Vk,i) since 0 · u′ · 0 · 0m ∈ Rk,m but
x · 0 · 0m /∈ Rk,m (similarly w · 0 · 0m /∈ Rk,m).
Hence, corresponding to each 1 ≤ j ≤ m − 1
we have k distinct equivalence classes giving us
k · (m − 1) equivalence classes. We further have
one equivalence class for all words of the form
v · 0. For u ∈ Vk,m, all x ∈ v · 0 · u form another
equivalence class.

Note that x ∈ v · 0 · u · σ (σ ∈ Σ and u ∈ Vk,i
for 0 ≤ i ≤ m − 1) is equivalent to all words of
the form v · 0 ·σi+1 and we have already counted
these equivalence classes.

Thus, there are a total of k · (m− 1) + 2 distinct
equivalence classes in this case.

3. x ∈ 0+ · v where v ∈ (1∗ · . . . · k∗) \ {λ}: If
|x| ≤ m + 1, then x is of the form 0 · u for
u ∈ Vk,|x|−1 and we have already counted the
equivalence class corresponding to x.

If |x| > m+1, let x = 0 ·0n ·v such that n ≥ 0. If
|v| > m, then it is easy to see that x ≡Rk,m σ|v|

where σ is the last symbol of x. Therefore let
|v| ≤ m. If n + |v| ≤ m, then x is of the form
0 · u where u = 0n · v ∈ Vk,n+|v|. If n + |v| >
m, then x ≡Rk,m 0 · 0m−|v| · v. In either case
we have already counted the equivalence classes
corresponding to x. Hence, all x ∈ 0+ · v belong
to previously enumerated equivalence classes.

4. x ∈ σ+ (σ ∈ Σ \ {0}): For every σ ∈ Σ \ {0}, all
words of the form σ+ form a distinct equivalence
class. Consider words li and pj such that l, p ∈
Σ \ {0} and l < p (i, j ≥ 1). Then li · l · 0m+1 ∈
Rk,m but pj · l · 0m+1 /∈ Rk,m and li 6≡Rk.m pj .

Hence we have k − 1 equivalence classes in this
case.

5. x = λ: λ forms a distinct equivalence class.

Case 2 : ∀z ∈ Σ∗ we have x · z /∈ R2,m: All such x
form one distinct equivalence class.

From the above arguments, we can see that there

are
∏k
i=1

(m+i)
i + (k · m + 3) distinct ≡Rk,m equiv-

alence classes. Thus, by the Myhill-Nerode theo-
rem the minimal DFA accepting Rk,m has exactly∏k
i=1

(m+i)
i + (k ·m+ 3) states.

The next two lemmas analyse the transition com-
plexity of the language Rk,m and show that the tran-
sition complexity of Rk,m is asymptotically less than
the number of transitions of the NFA of (Jirásek et al.
2007) in the worst case.

Lemma 10. For α = 2n − n + 1, the n-state NFA
A constructed in (Jirásek et al. 2007), such that the
DFA complexity of L(A) is α, has O(n2) transitions
where the alphabet is {a, b, c, d}.
Proof. Let α = 2n − n + 1. In this case the
states in NFA A constructed in (Jirásek et al.
2007) has the following transitions for symbol
d: δ(1, d) = {0, 2}, δ(2, d) = {0, 2, 3}, . . . , δ(n −
3, d) = {0, 2, 3, . . . , n − 2} and δ(n − 2, d)=δ(n −
1, d)=δ(n, d) = {0, 1, 2, 3, . . . , n− 1}.

It is not hard to see that A has O(n2) transitions
for the symbol d. There are O(n) number of transi-
tions for the symbols a, b, c and hence A has O(n2)
transitions in total.

Lemma 11. For α = 2n−n+1, the n-state NFA Bk,m
recognizing Rk,m such that the DFA state complexity

of Rk,m is O(α) has O(n2

log2n
) transitions.

Proof. For k = logn(2n − (n − 1)), the DFA state
complexity of Rk,m is O(α) according to Lemma 9.

State si where i < k − 1 has k + 1 − i outgoing
transitions and state sk has k outgoing transitions.
States of the form si,j where 1 ≤ i ≤ k− 1 have k− i
outgoing transitions each. Hence Bk,m has 1

2m(k +
1)(k + 2) transitions. We have n = km+ 2 as shown
in Lemma 6 and hence Bk,m has O(k · n) transitions.
Since k = logn(2n − (n − 1)), we have k = n

log2n
− c

(c > 0). Hence Bk,m has O(n2

log2 n
) transitions.

Theorem 3 (Polynomial blow-up theorem). For ev-
ery k > 1 there exists a regular language Ln over a
k-letter alphabet such that

1. The minimal NFA recognizing Ln needs n states,
where n > k, and the minimal DFA recognizing
Ln has O(nk) states.

2. For α = 2n−n+1, the minimal NFA recognizing

Ln and having a blowup of O(α) has O(n2

log2n
)

transitions. This is asymptotically fewer than the
O(n2) transitions required by the NFA with DFA-
state complexity α that was described in (Jirásek
et al. 2007) .

Proof. As shown in Lemma 5 and Lemma 9, km+ 2
states are sufficient for a NFA accepting Rk,m and

the minimal DFA accepting Rk,m has
∏k
i=0

m+i
i +

(km+3) states. Since n > k, this implies the minimal
DFA accepting Rk,m has O(nk) states. Our desired
language Ln then is Rk,m with n = km + 2. The
second part of the theorem follows from Lemmas 10
and 11.

5 Complementation

In this section, we investigate the complementation
problem for NFA. The complementation operation for
DFA is efficient and the DFA recognizing the comple-
ment of a n-state DFA has at most n states. However
for every n ≥ 1 and the binary alphabet, there ex-
ists a n-state NFA such that the minimal NFA recog-
nizing its complement needs 2n states (Moore 1971).
The authors of (Jirásková 2008) show that for every
n,m > 1 with log n ≤ m ≤ 2n there exists a n-state
NFA such that the minimal NFA accepting its com-
plement has m states with a fixed five letter alphabet
. However, in the worst case the number of transitions
in the n-state NFA is O(n2).

For a fixed k > 1, we first show that for every
n > k, there exists a O(n) state NFA such that the
minimal NFA for the complement has k · n+ c states
where k is the alphabet size and c is a constant. Next
we show that for every n, k ≥ 2, there exists a O(n)-
state NFA such that the minimal NFA accepting its
complement has between O(nk−1) and O(n2k) states
where the alphabet is of size k. We would like to point
out that the n-state NFA that we describe in this
section have asymptotically fewer transitions than the
NFA of (Jirásková 2008).

5.1 Linear blow-up

Let Σ = {0, 1, . . . , k−1} be an alphabet of k symbols.
Recall the language Lk,m we defined in Section 3.

Lk,m={ux | x ∈ σ+, σ ∈ Σ, u ∈ Σ∗, and
|u| ≡ m− 1(mod m)}.

We proved that the minimal DFA recognizing Lk,m
has exactly (k+ 1)m+ (1− k) states. Then it is clear
that the DFA recognizing the complement of Lk,m has
at most (k+1)m+(1−k) many states. Our goal is to
show that a succinct representation of this language
using NFA still needs exactly (k+1)m+(1−k) many
states.

Lemma 12. A minimal NFA recognizing the comple-
ment of Lk,m has at least (k + 1)m+ (1− k) states.

Proof. Let NFA A=〈S,Σ, δ, sI , F 〉 be a minimal NFA
accepting Lck,m, the complement of the language

Lk,m. For u, v ∈ Σ∗, define S(u, v) = {s ∈ S | s ∈
δ+(sI , u) and δ+(s, v) ∩ F 6= ∅}.

First, we show that A needs at least k(m− 1) + 1
non-accepting states. Consider a word 0m−1 ·σi where
1 ≤ i ≤ m and σ ∈ Σ. There are two cases for i:

Case 1 : i < m: Consider any other word 0m−1·αj
where 1 ≤ j ≤ m − 1 and α ∈ Σ. There are two
possibilities for i and j:

1. i = j: In this case α 6= σ. It is easy to see
that 0m−1 · σi · αm−i ∈ Lck,m. Assume for a

contradiction that S(0m−1 ·σi, αm−1)∩S(0m−1 ·
αj , αm−1) 6= ∅. Let s ∈ S(0m−1 · σi, αm−1) ∩
S(0m−1 · αj , αm−1). Then δ+(sI , 0

m−1 · αj ·
αm−i) ∩ F 6= ∅ and hence 0m−1 · αj · αm−i is
accepted by A. This is a contradiction since
0m−1 · αj · αm−i /∈ Lck,m.

2. i 6= j: Let β ∈ Σ \ {α}. Clearly 0m−1 · αj ·
βm−i+1 ∈ Lck,m. Assume for the sake of con-

tradiction that S(0m−1 · σi, βm−i+1) ∩ S(0m−1 ·
αj , βm−i+1) 6= ∅. Then there must be an s ∈
S(0m−1 ·σi, βm−i+1)∩S(0m−1 ·αj , βm−i+1) and
therefore δ+(sI , 0

m−1·σi·βm−i+1)∩F 6= ∅. Hence
A accepts the word 0m−1 · σi · βm−i+1. This is a
contradiction since 0m−1 · σi · βm−i+1 /∈ Lck,m.

Since we have k(m−1) words of type 0m−1 ·σi, we
have shown that A needs at least k(m − 1) distinct
states.

Case 2 : i = m: Let β ∈ Σ \ {σ}. Consider any
other word 0m−1·αj where 1 ≤ j ≤ m − 1. Then
clearly 0m−1·αj · β ∈ Lck,m. Assume for contradiction

that S(0m−1·αj , β)∩S(0m−1·σm, β) 6= ∅. Then there
must be an s ∈ S(0m−1·αj , β) ∩ S(0m−1·σm, β) and
hence δ+(sI , 0

m−1 · σm · β) ∩ F 6= ∅. Therefore, A
accepts 0m−1 · σm · β which is a contradiction since
0m−1 · σm · β /∈ Lck,m. Hence A has at least one more
state.

From the two cases above, we conclude that A has
at least k(m − 1) + 1 states. We would now like to
show that A has at least m more states.

Consider a word 0i for 0 ≤ i ≤ m − 1. Consider
another word 0j for 0 ≤ j ≤ m − 1 such that i 6= j.
Without loss of generality assume that i < j. Clearly
0i · 0m−1−j · 0 ∈ Lck,m. Assume for the sake of contra-

diction that S(0i, 0m−1−j · 0)∩ S(0j , 0m−1−j · 0) 6= ∅.
Then there exists a state s ∈ S(0i, 0m−1−j · 0) ∩
S(0j , 0m−1−j ·0) and hence δ+(sI , 0

j ·0m−1−j ·0)∩F 6=
∅. Thus A accepts 0j · 0m−1−j · 0 and this is a con-
tradiction since 0j · 0m−1−j · 0 /∈ Lck,m.

Now consider a word 0i (0 ≤ i ≤ m −
1) and another word 0m−1αj (1 ≤ j ≤
m − 1 and α ∈ Σ). Clearly we have 0i ·
αm−i−1 ∈ Lck,m. Assume for contradiction that

S(0i, αm−i−1) ∩ S(0m−1αj , αm−i−1) 6= ∅ and there
is s ∈ S(0i, αm−i−1) ∩ S(0m−1αj , αm−i−1). Hence
δ+(sI , 0

m−1 · αj · αm−i−1) ∩ F 6= ∅ and therefore A
accepts 0m−1 · αj · αm−i−1. This is a contradiction
since 0m−1 · αj · αm−i−1 /∈ Lck,m.

From the above arguments, we can conclude that
A has at least m more states as required. Hence we
have shown that A has at least k(m − 1) + 1 + m =
(k + 1)m+ (1− k) states.

Theorem 4 (Linear blow-up for complementation).
For every k > 1 there exists a regular language Ln
over k-letter alphabet, where n > k, such that

1. The minimal NFA recognizing Ln needs exactly n
states and the minimal NFA recognizing the com-
plement of Ln needs exactly (k + 1)n − c states,
where c = (k + 1)2 − 2.

2. The minimal NFA recognizing Ln needs O(n)
transitions.

Proof. The language Ln is Lk,m where n = k + m.
We have shown in Lemma 1 a minimal NFA accept-
ing Ln needs exactly n states. In Theorem 3 we have
shown the minimal DFA accepting Ln needs exactly
(k + 1)n− c states, hence the complement of Ln can
be accepted by a (k + 1)n − c states DFA. Further-
more in Lemma 12, we have shown that (k + 1)n− c
states are necessary for a minimal NFA accepting the
complement of Ln. Hence this proves (k + 1)n − c
states are necessary and sufficient for a minimal NFA
recognizing Lcn. We have shown in Theorem 1 the
minimal NFA accepting Ln has O(n) transitions.

5.2 Polynomial Blow-up

First consider the language Vk,m = {u | u ∈ 0∗ ·
. . . · (k − 1)∗ and |u| = m}. Then it is clear that the
following NFA A = (S,Σ, δ, sI , F) with k(m− 1) + 2
states recognizes Vk,m:

1. S = {s0} ∪ {s0,1, . . . , s0,m−1} ∪ . . . ∪
{sk−1,1, . . . , sk−1,m−1} ∪ {sF } and Σ =
{0, 1, . . . , k − 1}.

2. sI = s0 and F = {sF }.
3. For 0 ≤ i < k and σ ∈ Σ, δ(s0, σ) = {sσ,1}.
4.

δ(si,j , σ) =

{
{sσ,j+1} if j < m− 1 and i ≤ σ
{sF } if j = m− 1 and i ≤ σ

The NFA recognizing V2,4 is shown in Figure 6. It
is not hard to see that the NFA for Vk,m has O(k2m)
transitions.

0 0,1 0,2 0,3

1,1 1,2 1,3

F
0 0 0 0

1

1 1
1

1 1

Figure 6: The NFA accepting V2,4

Later we will need to use the following language:
Gk,m,α = {β · u | β · u ∈ Vk,m and β ∈ {0, . . . α −
1}} where α ∈ {1, . . . , k − 1}. The following NFA C
recognizes Gk,m,α:

1. S = {s0,0, . . . , s0,m} ∪ . . . ∪ {sα−1,0, . . . , sα,m} ∪
{sα,1, . . . , sα,m} . . . ∪ {sk−1,1, . . . , sk−1,m}.

2. The initial states are {sσ,0 | σ ∈ Σ} and F =
{sσ,m | σ ∈ Σ}.

3. For i, σ ∈ Σ and 0 ≤ j < m:

δ(si,j , σ) = {sσ,j+1} where i ≤ σ

The NFA recognizing G2,2,1 is shown in Figure 7.
It is not hard to see that the NFA for Gk,m,α has
α(m+ 1) + (k−α)m states and O(k2m) transitions.

0,0 0,1

1,1

0 0

1

0,2

1,2

1 1

Figure 7: The NFA accepting G2,2,1

Lemma 13. For every k,m > 1, there exists a O(m)-
state NFA B such that NFA accepting the complement
of L(B) has at least O(mk−1) states.

Proof. Consider the language Hk,m = (Σ∗ · 0 · y · (Σ \
{0}) ·Σ∗) + (Σ∗ · 1 · y · (Σ \ {1}) ·Σ∗) + . . .+ (Σ∗ · (k−
1) ·y ·(Σ\{k−1}) ·Σ∗) where the following conditions
hold:

1. |y| = m and

2. y = y1 ·y2 such that a·y1, y2 ·b ∈ 0∗ ·1∗ ·. . .·(k−1)∗

for some symbols a 6= b.

Intuitively, the NFA recognizing Hk,m behaves as
follows: It guesses the position of a symbol a ∈ Σ and
then starts verifying whether the next m+ 1 symbols
are in Vk,m. If at position i in this verification, the
automaton reads a symbol α such that the symbol
at position i − 1 is β > α then the automaton tries
to verify whether the last m − i + 1 symbols are in
Vk,m−i+1 and the (m+ 1)th symbol is b 6= a.

Formally, let the following be the NFA’s recog-
nizing Vk,m, . . . , Vk−i,m, . . . , V1,m respectively (i.e. Ai
recognizes Vk−i,m where 0 ≤ i ≤ k − 1):

A0 = (SA
0

,Σ, δA
0

, sIA0 , FA
0

)

. . .

Ai = (SA
i

,Σ \ {0, . . . , i− 1}, δAi , sIAi , FA
i

)

. . .

Ak−1 = (SA
k−1

,Σ \ {0, . . . , k− 2}, δAk−1

, s
IAk−1 ,

FA
k−1

)

Let C0 = (SC
0

,Σ, δC
0

, sIC0 , FC
0

) be the NFA recog-
nizing Gk,m−2,k−1 and the following be the NFA’s rec-
ognizing Gk,m−1,1, . . . Gk,m−1,k−2 (i.e. Ci recognizes
Gk,m,i where 1 ≤ i ≤ k − 2) .

C1 = (SC
1

,Σ, δC
1

, sIC1 , FC
1

)

. . .

Ck−2 = (SC
k−2

,Σ, δC
k−2

, s
ICk−2 , FC

k−2

)

Also, let Ck−1 = (SC
k−1

,Σ\{k − 1}, sδCk−1

, s
ICk−1 ,

FC
k−1

) be the NFA recognizing Gk−1,m−1,k−1.

The following NFA Dk,m accepts Hk,m:

1. S = {s0}∪SA
k−1 ∪ . . .∪SA0 ∪SCk−1 ∪ . . . SC1 ∪

SC
0 ∪ {sF }.

2. I = {s0} and F = {sF }.
3. For every σ ∈ Σ, δ(s0, σ) = {s0, sIAσ } and
δ(sF , σ) = {sF }.

4. For s ∈ SA
i

(1 ≤ i ≤ k) and σ ∈ Σ, δ(s, σ) =

δA
i

(s, σ). Similarly for s ∈ SCj (0 ≤ j ≤ k − 1).

5. For every 0 ≤ i ≤ k− 1, the following conditions
hold:

(a) sF ∈ δ(sA
i

F , σ) for every σ ∈ Σ \ {i}.
(b) For i > 0, sF ∈ δ(sC

i

α,m−1, σ) for every α in
the alphabet of Ci and σ ∈ Σ \ {i}. For

i = 0, sF ∈ δ(sC
0

α,m−2, σ) for every α ∈ Σ
and σ ∈ Σ \ {0}.

6. For every 1 ≤ i ≤ k− 1, the following conditions
hold:

(a) For σ ∈ {0, . . . , i− 1}, sCiσ,0 ∈ δ(sIAi , σ).

(b) For 0 ≤ j ≤ k − i − 1 and 1 ≤ j′ ≤ m − 1,

sC
i

σ,j′ ∈ δ(sA
i

j,j′ , σ) for every σ ∈ {0, . . . , j +

i− 1}.
7. For i = 0, the following is true:

(a) For 1 ≤ j ≤ k − 1 and 1 ≤ j′ ≤ m − 1,

sC
0

σ,j′−1 ∈ δ(sA
0

j,j′ , σ) for every σ ∈ {0, . . . , j−
1}.

The NFA recognizing H2,4 is shown in Figure 8.
Since the NFA recognizing Vk,m has k(m − 1) + 2
states and the NFA for Gk,m,α has α(m+1)+(k−α)m
states, it is not hard to see that the NFA recognizing
Hk,m has O(k2m) = O(m) states.

sA
0

0,1

0 0 0
sA

0

0,2 sA
0

0,3

1

1

11

1
sA

0

1,1 sA
0

1,2 sA
0

1,3

1

0
sA

0

1

0

1

1

11

1

0
sC

0

0,0 sC
0

0,1 sC
0

0,2

sC
0

1,1 sC
0

1,2 F

0 00
sC

1

0,0 sC
1

0,1 sC
1

0,2 sC
1

0,3

sA
1

1

0

sA
1

0,1 sA
1

0,2 sA
1

0,3

0

1

1 1 1 1

0

0

0

0

1

0

0

0

0

A0 accepting V2,4

C1 accepting G1,3,1

A1 accepting V1,4

sA
0

F

sA
1

F

C0 accepting G2,2,1

0

Figure 8: The NFA accepting H2,4

Let A = (S,Σ, δ, sI , F) be a NFA recognizing
Hc
k,m. Consider any word w ∈ Vk,m+1. Then

w · w ∈ Hc
k,m since any symbols in w · w that are

separated by m positions are identical. We define
S(w) = {s ∈ S | s ∈ δ+(sI , w) and δ+(s, w)∩F 6= ∅}.
Consider any other word w′ ∈ Vk,m+1. Assume for
the sake of contradiction that S(w) ∩ S(w′) 6= ∅.
Then there is a state s ∈ S(w) ∩ S(w′) and we have
δ+(sI , w · w′) ∩ F 6= ∅ and δ+(sI , w

′ · w) ∩ F 6= ∅.
Hence A accepts w · w′ and w′ · w.

However w and w′ are distinct words and differ
for at at least one position 1 ≤ p ≤ m + 1. Hence
w · w′ is of the form x1x2 . . . xp−1a . . . xm+1x

′
1x
′
2 . . .

x′p−1b . . . x
′
m+1 such that a 6= b. There are two cases:

1. xm+1 ≤ x′1: Since w,w′ ∈ Vk,m, it is not hard to
see that axp+1 . . . x

′
p−1 ∈ 0∗ ·1∗ · . . . · (k−1)∗ and

b ∈ 0∗ · 1∗ · . . . · (k − 1)∗. Hence w · w′ is of the
form Σ∗ ·a ·y ·b ·Σ∗ where y1 = xp+1 . . . x

′
p−1 and

y2 = λ and a · y1, y2 · b ∈ 0∗ · 1∗ · . . . · (k − 1)∗.

2. xm+1 > x′1: In this case axp+1 . . . xm+1 ∈ 0∗ ·1∗ ·
. . .·(k−1)∗ and x′1 . . . x

′
p−1b ∈ 0∗ ·1∗ ·. . .·(k−1)∗.

Hence, w · w′ is of the form Σ∗ · a · y · b · Σ∗

where y1 = xp+1 . . . xm+1 and y2 = x′1 . . . x
′
p−1

and a · y1, y2 · b ∈ 0∗ · 1∗ · . . . · (k − 1)∗.

In both cases w · w′ /∈ Hc
k,m but the word is ac-

cepted by A. A very similar argument can be made
for w′ · w. We have arrived at a contradiction. By
Lemma 7 there are O(mk−1) words in Vk,m+1 and
hence A has at least O(mk−1) states.

In the following theorem we give an upper bound
for the DFA recognizing the complement of the lan-
guage Hk,m.

Lemma 14. For every k,m > 1, the DFA recogniz-
ing the complement of the language Hk,m has at most
O(m2k) states.

Proof. We use the Myhill-Nerode theorem to prove
this bound. First we observe that for any words u, v ∈
Hk,m, we have u ≡ v.

Now consider any word w /∈ Hk,m such that w 6= λ.
Then w must be of the form Σ∗ · a · y where a ∈ Σ
and 0 ≤ |y| ≤ m. Here y is the maximal length word
such that y = y1 · y2 and a · y1 ∈ 0∗ · . . . (k − 1)∗.

Consider any other word w′ /∈ Hk,m such that w′ ∈
Σ∗ ·a · y. Then it is not hard to see that w ≡ w′ since
w · x ∈ Hk,m iff w′ · x ∈ Hk,m for any x ∈ Σ∗. There
are at most O(m2k) words of the form a · y and hence
there are at most O(m2k) equivalence classes.

Lemma 15. For n > 0 and α = 2n−n+ 1, the NFA
A constructed in (Jirásková 2008) with n-state such
that the NFA accepting the complement has α states
has O(n2) number of transitions.

Proof. The NFA A constructed in (Jirásková 2008)
with n states has exactly has an alphabet of five sym-
bols a, b, c, d, f . The number of transitions for sym-
bols a, b, c, d are exactly the same as those for the NFA
constructed in (Jirásek et al. 2007) which is O(n2)
by lemma 10. The symbols f only adds O(n) num-
ber of transitions. Hence, the NFA A constructred in
(Jirásková 2008) has O(n2) number of transitions.

Lemma 16. For n > 0 and α = 2n − n + 1, the
O(n)-state NFA Dk,m accepting Hk,m, such that the

NFA accepting Hc
k,m has O(α) states, has O(n2

log2n
)

transitions.

Proof. In order for the minimal NFA for Hc
k,m to

have O(α) transitions, we must have k ∈ O(n
log2n

).

The NFA Dk,m has O(k3m) number of transitions
since the NFA’s for Vk,m and Gk,m,α have O(k2m)
transitions each. Also Dk,m has O(k2m) states by
lemma 13. Hence Dk,m has O(kn) transitions where
n ∈ O(k2m). Since k ∈ O(n

log2n
), it is clear that Dk,m

has O(n2

log2n
) transitions.

The following theorem follows from lemmas 13, 14,
15 and 16 proved above.

Theorem 5. For every k,m > 1, there exists a NFA
A with O(m) states such that:

1. The minimal NFA recognizing the complement of
L(A) has between O(mk−1) and O(m2k) states.

2. In the worst case, the NFA A has O(n2

log2n
)

transitions which is asymptotically fewer than
the O(n2) transitions of the NFA described in
(Jirásková 2008).

References

Birget, J.-C. (1992), ‘Intersection and union of regular
languages and state complexity’, Inform. Process.
Lett. 43(4), 185–190.

Câmpeanu, C., Culik, K., Salomaa, K. & Yu, S.
(2001), State complexity of basic operations on fi-
nite languages, in ‘Automata Implementation’, Vol.
2214 of Lecture Notes in Comput. Sci., Springer,
Berlin / Heidelberg, pp. 148–157.

Gramlich, G. & Schnitger, G. (2007), ‘Minimizing
NFA’s and regular expressions’, J. Comput. Syst.
Sci. 73(6), 908–923.

Holzer, M. & Kutrib, M. (2003a), ‘Nondeterministic
descriptional complexity of regular languages’, In-
ternat. J. Found. Comput. Sci. 14(6), 1087–1102.
Selected papers from CIAA 2002 (Tours).

Holzer, M. & Kutrib, M. (2003b), State complex-
ity of basic operations on nondeterministic finite
automata, in ‘Implementation and application of
automata’, Vol. 2608 of Lecture Notes in Comput.
Sci., Springer, Berlin, pp. 148–157.

Hopcroft, J. E. & Ullman, J. D. (1979), Introduc-
tion to automata theory, languages, and compu-
tation, Addison-Wesley Publishing Co., Reading,
Mass. Addison-Wesley Series in Computer Science.

Iwama, K., Kambayashi, Y. & Takaki, K. (2000),
‘Tight bounds on the number of states of DFA’s
that are equivalent to n-state NFA’s’, Theor. Com-
put. Sci. 237(1-2), 485–494.

Jirásek, J., Jirásková, G. & Szabari, A. (2005), State
complexity of concatenation and complementation
of regular languages, in ‘Implementation and appli-
cation of automata’, Vol. 3317 of Lecture Notes in
Comput. Sci., Springer, Berlin, pp. 178–189.

Jirásek, J., Jirásková, G. & Szabari, A. (2007), De-
terministic blow-ups of minimal nondeterministic
finite automata over a fixed alphabet, in ‘Devel-
opments in language theory’, Vol. 4588 of Lecture
Notes in Comput. Sci., Springer, Berlin, pp. 254–
265.

Jirásková, G. (2005), ‘State complexity of some oper-
ations on binary regular languages’, Theoret. Com-
put. Sci. 330(2), 287–298.

Jirásková, G. (2008), On the state complexity of com-
plements, stars, and reversals of regular languages,
in ‘Developments in language theory’, Vol. 5257 of
Lecture Notes in Comput. Sci., Springer, Berlin,
pp. 431–442.

Jirásková, G. (2009), Magic numbers and ternary al-
phabet, in V. Diekert & D. Nowotka, eds, ‘Devel-
opments in Language Theory’, Vol. 5583 of Lecture
Notes in Computer Science, Springer Berlin / Hei-
delberg, pp. 300–311.

Moore, F. R. (1971), ‘On the bounds for state-set
size in the proofs of equivalence between deter-
ministic, nondeterministic, and two-way finite au-
tomata’, IEEE Trans. Comput. 20(10), 1211–1214.

Nerode, A. (1958), ‘Linear automaton transforma-
tions’, Proc. Amer. Math. Soc. 9, 541–544.

Piotr Berman, A. L. (1977), On complexity of regular
languages in terms of finite automata, Institute of
Computer Science, Polish Academy of Sciences.

Rabin, M. O. & Scott, D. (1959), ‘Finite automata
and their decision problems’, IBM J. Res. Develop.
3, 114–125.

Salomaa, A., Salomaa, K. & Yu, S. (2007), ‘State
complexity of combined operations’, Theoret. Com-
put. Sci. 383(2-3), 140–152.

Schnitger, G. (2006), Regular expressions and NFA’s
without ε-transitions, in ‘in 23th Symposium on
Theoretical Aspects of Computer Science (STACS
2006), LNCS 3884 (2006’, pp. 432–443.

Yu, S. (2005), ‘State complexity: recent results and
open problems’, Fund. Inform. 64(1-4), 471–480.

