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Abstract 
This paper presents an efficient computational method to 
identify a local symmetry axis in 3-dimensional viral 
structures obtained using electron cryomicroscopy. Local 
symmetry is frequently observed in viral structures. Many 
virus structures have various types of local symmetry such 
as 2-fold, 3-fold and 6-fold that exist in certain limited 
regions on the 3-dimensional structure. Locations of local 
symmetry axes can be used in structure averaging as well 
as in detecting small structural variations among different 
copies of the same protein. We present a computational 
method that uses two-dimensional local correlation to 
identify the local symmetry axis in 3-dimensional viral 
structures. Instead of enumerating all the possible 
orientations of the symmetry axis, this method starts with a 
visually identified orientation and detects the trace of the 
axis, from which the exact orientation of the axis can be 
calculated. The complexity of this algorithm is analysed, 
and a comparison with a naïve method is provided. This 
method is able to detect the symmetry axis fairly 
accurately if the initial orientation of the axis is within 20° 
from the z-–axis, the viewing axis. The application of this 
method to herpes simplex virus B capsid structure 
obtained using electron cryomicroscopy technique is also 
presented.  

Keywords: local symmetry, algorithm, structure, electron 
cryomicroscopy 

1 Introduction 
 The genetic material of viruses, such as DNA or RNA, is 
usually encapsulated by a layer of protein shell. Many such 
protein shells appear to be spherical and have icosahedral 
symmetry. A virus with icosahedral symmetry has twelve 
5-fold, twenty 3-fold, and thirty 2-fold symmetry axes 
(Figure 1A). The icosahedral symmetry axes are global 
because the symmetry operations associated with the axes 
apply to all regions on the virus structure. Because of the 
icosahedral symmetry, the viruses have a lot of repetitive 
information that can be used in averaging to enhance 
signal to noise ratio during reconstruction of the viral 
structures. The icosahedral symmetry has been widely 
applied during the reconstruction and therefore their  
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locations are known on viral structures. Besides 
icosahedral symmetry, many viruses also have local 
symmetry which exists within certain limited regions of 
the structure. In general, local symmetry is good within 
certain radius from the symmetry axis and gradually 
degrades as the distance from the axis increases. Biologists 
have to decide the radius for calculating symmetry based 
on their biological interest such as which part of the 
molecule they want to evaluate. In order to use local 
symmetry in structure averaging or structure comparison, 
the exact location of the axis needs to be identified.  

Although the exact locations of local symmetry axes are 
not directly available from the structure, their approximate 
locations are usually evident. Figure 1 shows the 
approximate locations of the local symmetry axes on 
herpes simplex virus B capsid structure. The herpes 
simplex virus B capsid has been determined at 8.5Å 
resolution using electron cryomicroscopy and image 
processing (Zhou, Dougherty, Jakana, He, Rixon and Chiu 
2000). The reconstructed 3-dimensional structure of 
herpes simplex virus B capsid is a protein density map in 
which a density value is associated with each pixel in the 
3-dimensional space of the map. Such a structural map is 
displayed by Iris Explorer (NAG, Downers Grove, Illinois) 
after applying a threshold value (Figure 1C). The 
hexamerous nature of the P, C and E hexon clearly 
indicates the approximate locations of local 6-fold axes. In 
this paper, we present an efficient way of detecting the 
exact location of a symmetry axis using an approximate 
orientation to start with.  

A local symmetry axis can be described by five parameters 
(Cx, Cy, Cz0,,θ, φ) where (Cx,Cy,Cz0,) is the location of a 
point on the axis (Figure 2A) and (θ, φ) is the orientation of 
the axis (Figure 2B). If the point is chosen to be the 
intersection between the axis and the middle z slice of the 
structure map, Cz0, is known. θ  is the rotation angle 
around the z-axis, and φ is the tilt angle away from the 
z-axis. In such a definition, identifying the local symmetry 
axis means identifying four parameters (Cx, Cy, θ, φ) of 
the axis around which local structure is symmetrically 
located. For example, a 120° rotation around a local 3-fold 
symmetry axis does not change the structure within certain 
distance from the axis. In this paper, we consider a 
cylindrical region around the axis. 

We present a computational method that uses 
two-dimensional local correlation to identify the local 
symmetry axis in 3-dimensional viral structures. The 
complexity of this algorithm is analysed, and a comparison 
with a naïve method is provided. Although the method was  



 

developed primarily for structures obtained by electron 
cryomicroscopy, it can potentially be applied to other 
structural density maps. The accuracy of the method and 
its application on herpes simplex virus capsid structure 
obtained using electron cryomicroscopy technique is also 
presented.  

 
Figure 2: Definition of the symmetry axis. 

2 Previous Results 
Although there has not been a method developed for 
locating local symmetry on virus structures obtained by 
electron cryomicroscopy, there are methods to find a 
non-crystallographic symmetry axis (NCS) in the 
crystallography community (Kleywegt and Read 1997, 
Vonrhein and Schulz 1999). In X-ray crystallography 
applications, two proteins can be related by both the 
rotation around the local symmetry axis and the translation 
along the axis. Such an axis is called an NCS. On spherical 
virus structures, proteins surrounding a local symmetry 
axis are usually related by rotation only. Therefore, the 
local symmetry axis discussed in this paper can be thought 
of as a special kind of NCS.  

NCS averaging has been a powerful way to enhance the 
signal during the refinement process of X-ray 

crystallography (Kleywegt and Read 1997). Previous 
methods in identifying NCS consist of two major 
categories. One is based on the X-ray diffraction data of 
the protein to identify the orientation and location of the 
axis. The orientation of the axis can be found using a 
self-rotation function (Rossmann 1972). The translation 
parameters can be searched or occasionally figured out 
from the information on heavy atom binding sites and 
Patterson vector (Schirmer, Keller, Wang and Rosenbusch 
1995, Stubbs, Nar, Löwe, Huber, Ladenstein, Sprangfort 
and Svensson 1996). The other is a direct method without 
using the knowledge of the diffraction data and heavy 
atoms in the structure. This method works on the protein 
structure directly. It uses an estimated shape mask of the 
protein and evaluates a large number of possible 
orientations of the axis (Vonrhein and Schulz 1999). 
3-dimensional correlation is used to measure the similarity 
between two possible objects related by a possible NCS. In 
this paper, we present a method that does not directly 
evaluate any of the possible orientations of the axis. It uses 
2-dimensional local correlation to calculate the orientation 
of the local symmetry axis if the initial structure map 
satisfies certain condition. 

3 Method 

3.1 A Naïve Method 
Identifying local symmetry axis means identifying the four 
parameters (Cx,Cy,θ,φ) of the axis around which rotation 
with a symmetrically related angle does not change the 
structure map locally.  A direct approach is to test all the 
possible orientations and locations by performing an 
exhaustive search. For each possible orientation and 
location of the axis, the local region of the structure around 
the axis is rotated and 3-dimensional correlation will be 

Figure 1: Local symmetry and their approximate 
locations on herpes simplex virus B capsid structure. 
(A) An icosahedron model of an icosahedral virus. An 
asymmetric unit, the structural unique region, on the 
icosahedron, and on the virus structure is indicated by 
dashed lines in (A), (B) and (C). (B) A diagram of the 
approximate locations of the unique local symmetry 
axes and the icosahedral symmetry axes on herpes 
simplex virus B capsid structure. Local 6-fold, 3-fold 
and 2-fold axes are indicated by red, blue and green 
symbols while the icosahedral 5-fold, 3-fold and 2-fold 
axes are indicated by black symbols. Note that the 
icosahedral 2-fold axis where E hexon is located is also 
a local 6-fold axis. (C) A portion of herpes simplex 
virus B capsid structure. The 8.5Å resolution structure 
of herpes simplex virus B capsid is obtained using 
electron cryomicroscopy and image processing (Zhou, 
Dougherty, Jakana, He, Rixon and Chiu 2000). The 
structure is radial colored as blue, white and red from 
the outer surface to the inner surface of the capsid shell. 
Each of the three types of hexons (P, C, and E) is 
composed of 6 copies of protein VP5, and each of the 
six types of triplexes (Ta, Tb, Tc, Td, Te, and Tf) is 
composed of two copies of protein VP23 and one copy 
of VP19C 



used to evaluate the similarity between the rotated and 
un-rotated local structure. The general form of normalized 
correlation coefficient is defined in (1.1). For 
3-dimensional correlation, A is the cylinder at the axis and 
B is the symmetrical rotation of A around the axis. Ai and 
Bi are the ith pixel of A, and B respectively. Aavg and Bavg 
are the averaged density of the cylinder A and B 
respectively. S is the volume of the cylinder. The higher 
the correlation score (correlation coefficient), the better 
the similarity. Obviously, this method will have to 
evaluation a large number of possible orientations and 
locations. The number of possible evaluations also 
depends on how fine the search interval it uses.   

 

3.2 Our Method 
Our method in this paper takes a different approach 
observing the fact that the rough location of the local 
symmetry axes can be visually identified on virus 
structures (Figure 1). This method requires the user to 
work on an initial structure where the orientation of the 
local symmetry axis is not too far way from the z-axis 
(usually within 20° from the z-axis). In this situation, the 
computationally intensive search step for all the possible 
orientations can be totally eliminated by using 
2-dimensional correlation.  

 

Figure 3: Local symmetry axis search process. 

Instead of using 3-dimensional correlation, this method 
uses real space 2-dimensional correlation to identify the 
trace of the symmetry axis from which the orientation can 
be calculated directly. Four steps are involved in deriving 
the orientation and the location of the symmetry axis: 
2-dimensional (2D) local correlation, peak search, line 
fitting and calculation of the translation and rotation 
parameters (Figure 3). Once the parameters are calculated, 
the structural map is translated and rotated so that the 
symmetry axis coincides with the z-axis. If the symmetry 
axis is accurately found and translated and rotated to the 
z-axis, the correlation peaks on all the slices should have 
identical x and y locations. Although one cycle is usually 
enough, it is possible to have multiple cycles to find the 
symmetry axis. 

The first step in the symmetry axis search is the 
two-dimensional local correlation. Initially, a cubic area of 

interest (for example the C hexon region of herpes simplex 
virus B capsid) is isolated from the whole virus structure 
by the user. Any three-dimensional structure can be 
thought of as a stack of two-dimensional slices. The 
purpose of the two-dimensional local correlation is to find 
the most symmetrical point that is reflected by the 
maximum correlation coefficient value on each slice. The 
2-dimensional correlation coefficient is defined in (1.1). 
For each pixel in the slice, a circular disc around it (A in 
1.1) is used to calculate the correlation coefficient 
associated with this pixel. The radius of the disc is chosen 
by the user depending on the interest of biological 
questions. Because of the characteristic of local symmetry, 
symmetry is good only within a certain distance from the 
symmetry axis. B is the symmetrical rotation of A around 
the pixel, and S is the area of the circular disc. Ai and Bi are 
the ith pixel of A and B respectively. The local correlation 
in this step uses a circular mask whose radius is decided by 
the user. In order for the correlation coefficient not to be 
biased by the overall brightness on different slices, the 
average density value of each slice (Aavg and Bavg) is used 
to normalize the coefficient. A general correlation 
coefficient formula is given in (1.1). In our application, 
Aavg and Bavg are the same. The result of 2-dimensional 
correlation of a structural map is a correlation map where 
each pixel is associated with a correlation coefficient 
calculated from a circular disc centered at that pixel. The 
next step, peak search, is to find the pixel with the highest 
correlation coefficient on each slice of the correlation map. 
The location of the correlation peak on each slice 
represents the most symmetrical point on the slice. The 
trace of such points from all the slices is used to do 
least-square fitting to find the line of the symmetry axis.  

3.3 Software Implementation 
We have implemented the above method in the single 
particle image processing package EMAN in C++ (Ludtke, 
Baldwin and Chiu 1999). The program symAxisSearch 
integrates all the above four steps and automatically 
iterates until the local symmetry axis is converged within a 
user-defined error threshold. The most computational 
intensive step in this method is the local 2D correlation 
step. Since the computation for different slices is 
independent, this step is amenable to trivial parallelization. 
To speed up the overall procedure, we have thus 
parallelized this step in the program symAxisSearch using 
OpenMP method in which the user defines the number of 
CPUs in the command line. The program symAxisSearch 
is freely distributed as part of EMAN package and is 
available at the National Center for Macromolecular 
Imaging, Baylor College of Medicine 
(http://ncmi.bcm.tmc.edu). 

4 Results 

4.1 Accuracy 
The main contribution of this paper is to demonstrate that 
it is possible to eliminate the exhaustive testing step for all 
the possible orientations of the symmetry axis. In order to 
test the accuracy of this method, we used a 3-fold 
symmetry axis whose orientation and location is known on 

Coefficient = 

√ ∑ (Ai –Aavg)2 ∑ (Bi – Bavg)2 
 S  S 

∑ (Ai – Aavg) (Bi– Bavg) 
S

(1.1) 

(1.1) 



a typical virus structure. A standard structure (81x81x53 
pixel in size) is created where the 3-fold symmetry axis is 
the z-axis and passes the center of the structure. A set of 

randomly generated orientation and translation parameters 
(φ, θ, Cx, Cy) is used to rotate and then translate the 
standard structure so that the 3-fold axis is away from the 
z-axis. Table 1 shows the fourteen sets of translation and 
rotation parameters (φ, θ, Cx, Cy) used in the accuracy test. 
Our method is used to identify the four parameters of the 
axis. The absolute difference (ECx, ECy, Eθ, Eφ) between 
the true and the identified value of (φ, θ, Cx, Cy) is 
calculated (Table 2). In both Table 1 and Table 2, the 
translation parameters are in the unit of pixel and the 

rotation parameters are in the unit of degree. The averaged 
error is less than 0.02 pixel for Cx and Cy, less than 0.1° 
forφ, and less than 0.7° for θ (Table 2). We found that 
when the initial orientation of the symmetry axis is less 

than 20°, our method can identify the axis fairly accurately. 
Note that the accuracy of the identified symmetry axis is 
determined by the quality of the symmetrical point on each 
slice of the structure. When the initial orientation of the 
axis is far from the z-axis, the symmetrical point on each 
slice is less accurate because the symmetrical information 
on each slice is weak. However, the initial location (Cx, Cy) 
of the symmetry axis does not affect the accuracy of the 
method, as long as the initial structure includes the 
symmetrical region of interest. This is because that the 
quality of symmetrical information on each slice does not 
depend on where the symmetrical information is located 
on the structure map. Therefore, only small translations 
were randomly generated in the tests.  

We found that the accuracy is closely related to the quality 
of the symmetrical point on each slice. Even though two 
such points are needed theoretically to determine a line, 
more are usually needed in practice. The least-square line 
fitting step is used for this purpose to achieve good 
accuracy. In order to produce high accuracy, we also used 
a non-integer representation for the location of the 
symmetrical points. The location of each peak 
(symmetrical point) is represented by its center of gravity 
in the neighborhood. The above two strategies are 
important for our method to achieve good accuracy.  

4.2 An Analysis of the Running Time 
Algorithm NAÏVE (Structure, R, X, Z, ∆θ, ∆φ, n) 
 
//This algorithm locates a local n-fold symmetry axis 
for the input structure Structure. 
//The input structure is given as density map on the 
cuboid [0…X,0…X,0…Z] 
//The algorithm uses the parameters ∆φ and ∆θ as 
incremental steps in conducting a naïve search for the 
n-fold axis 
//R is the radius of locally symmetric cylindrical region. 
 
max  0; 
φ  0; 
θ  0; 
for i 1 to 180/∆φ  

φ  φ +∆φ ; 
for j 1 to 360/∆θ 
     θ  θ  + ∆θ ;  
     for Cx  R to X-R 
         for Cy  R to X-R   

     Let S1 be the cylinder with axis (Cx, Cy,θ,φ ), 
      radius R and height Z; 

 Let S2 be the cylinder obtained by rotating  
S1 around the axis by 360/n degrees; 

  cc  correlation coefficient of S1 and S2; 
  if (cc > max) 
      max  cc; 
      opt  (Cx, Cy,θ,φ ); 

return opt; 
In order to analyse the running time, the pseudo code of 
both the naïve method and our method (Algorithm 
TRACE) are shown. In the pseudo code, Structure is the 
3-dimensional structure with length and width X and 
height Z. R is the radius of local symmetry selected by the 

Test Cx Cy θ φ
1 1 1.2 30 5
2 -1.1 2.1 -20.4 8
3 1.3 -3.2 8.5 -10
4 -0.3 0.6 5.2 12.4
5 -2.2 -1.2 60.5 -15.3
6 1.4 -2 -9.2 15
7 2.5 -1.6 4.6 17
8 -0.6 0.8 2.2 -16.8
9 0 0 15.1 4.2
10 0 0 100 -3.4
11 2.5 3.5 50.6 2
12 -3.2 -3 1.2 -4
13 -1 4.2 8.6 -8
14 4.4 -5.2 -70.5 10.4

Table 1: Fourteen sets of the translation and rotation
 parameters in the accuracy test. The unit for Cx and 
Cy is pixel. The unit for θ  and φ is °.

Test ECx ECy E θ Eφ
1 0.0041 0.0119 0.0219 0.0475
2 0.0083 0.0175 0.3235 0.0602
3 0.0006 0.0161 0.4874 0.1155
4 0.0056 0.0038 0.561 0.0326
5 0.0033 0.0051 0.884 0.1543
6 0.0111 0.0179 1.0926 0.2037
7 0.0091 0.0223 1.2252 0.2722
8 0.0193 0.0015 0.4551 0.2521
9 0.0077 0.0057 0.1721 0.0169
10 0.0031 0.0086 0.6279 0.0123
11 0.0165 0.0085 1.834 0.0337
12 0.0092 0.0078 0.7612 0.0269
13 0.0176 0.014 0.2128 0.0307
14 0.0027 0.0214 0.4912 0.0226

Avg 0.0084 0.0116 0.6534 0.0915

Table 2: Accuracy of the identified symmetry 
axis. ECx, ECy,E θ  and E φ are the absolute 
difference between the true and the identified 
value for Cx, Cy,θ  and φ respectively. The unit 
for ECx and ECy  is pixel and the unit for E θ 
and E φ is º.



user, ∆θ and ∆φ are the step size for θ and φ respectively. n 
is the type of symmetry. For example, when n=2, the 
methods will look for the 2-fold symmetry axis. 

In the naïve method, the correlation involves two 
3-dimensional cylinders of radius R and height Z. One is 
the cylinder at the potential axis, and the other is the same 
cylinder rotated around the potential axis by 360/n degrees.  
The time needed for each correlation is proportional to the 
volume of the cylinder that is 2πR2Z. Since the number of 
correlations performed is (360/∆θ)(180/∆φ)(X-2R)2, the 
total time is proportional to 
(360/∆θ)(180/∆φ)(X-2R)22πR2Z. 

In the TRACE method, the time for calculating the 
correlation coefficient of two circular discs of radius R is 
proportional to the size of the disc 2πR2. The number of 
correlation performed is (X-2R)2Z. The time for 
least-square line-fitting is proportion to Z, and calculating 
(Cx, Cy,θ,φ) takes constant time. The last two are 
negligible compared to the time required for correlation 
computation. So the total running time for TRACE is 
proportional to (X-2R)22πR2Z.  

The running time of the naïve method is inversely 
proportional to ∆θ and ∆φ, where as the running time of 
algorithm TRACE is independent of these parameters. 
This makes a vast difference in the running time of the two 
methods. As an example, if ∆θ and ∆φ are both chosen to 
be 1°, the naïve method will be roughly 360*180=64800 
times slower than the TRACE method. 

Algorithm TRACE (Structure, R, X, Z, n) 
 
//This algorithm locates a local n-fold symmetry axis for 
the input structure Structure. 
//The input structure is given as density map on the 
cuboid [0…X,0…X,0…Z] 
//R is the radius of locally symmetrical cylindrical 
region. 
 
for z  0 to Z 
      max  0; 
      for Cx  R to X-R 
           for Cy  R to X-R   
             Let S1 be the disc of radius R, centered at 
             (Cx, Cy); 
         Let S2 be the disc obtained by rotating S1  
             around (Cx, Cy) on the same z slice by  
             360/n degrees; 
          cc  correlation coefficient of S1 and S2; 
          if (cc > max) 
    max  cc; 
              peak[z]  (Cx, Cy); 
Fit a straight line through the points in  peak using 
least-square fitting; 
Calculate (Cx, Cy,θ,φ ) for this line; 
opt  (Cx, Cy,θ,φ ); 
return opt; 

4.3 Local 6-fold Symmetry of Herpes Virus 
Capsid Structure  

The method developed in this paper is used to evaluate the 
symmetry in the local 6-fold regions on herpes simplex 
virus B capsid structure (Zhou, Dougherty, Jakana, He, 
Rixon and Chiu 2000). The local 6-fold region is 
composed of a hexon which has 6 copies of the major 
protein VP5. Depending on the location in an asymmetric 
unit of the structure, there are three types of hexons: P, C, 
and E (Figure 1). Visual inspection shows that the three 
types of hexons are almost identical. We first located the 
local 6-fold symmetry axis and then calculated the 6-fold 
symmetry to see if the three types of hexons have similar 
quality of symmetry.  

 
Figure 4: Local 6-fold symmetry of P, C and E 
hexons of herpes simplex virus B capsid. The local 
symmetry is calculated using a cylindrical mask of 
64.4 Å in radius. The quality of the local 6-fold 
symmetry of the P, C, and E hexons is shown for all 
the slices perpendicular to the axis. 

The 6-fold symmetry of the P, C and E hexons are shown 
in figure 4. The quality of the hexon symmetry is reflected 
by the correlation coefficients between the original hexon 
and a 60°-rotated hexon. In order to know the symmetry 
change along the axis, the correlation coefficient was 
calculated for each slice perpendicular to the symmetry 
axis. The 6-fold symmetry of the hexons was calculated 
using a cylindrical mask of 64.4 Å in radius. Theoretically, 
the correlation coefficient of symmetry can range from –1 
to 1 with 1 being the perfect symmetry. However, it is 
usually not possible to have a perfect local symmetry in a 
structure from real data because of the breakdown of the 
local symmetry or the presence of noise in the structure. 
The overall 6-fold symmetry of P, C and E hexons are 
good with the majority of the slices having correlation 
coefficient over 0.8. This result coincides well with the 
visual inspection of the structure. However, in the region 
of about 34 Å-thick at the left of the symmetry curve, the 
correlation coefficient of P hexon is about 0.05 to 0.1 
lower than that of the C and E hexons. This 34 Å-thick 
region is located at the inner surface of the capsid shell. 
Since the lower symmetry value in the P hexon is 
exclusive to this region while the outer 3/4 of the hexon has 
close matching symmetry value, the reduced symmetry is 
likely to suggest a genuine conformational difference in 
this portion of the P hexon. Further investigation of this 



region shows that two of the 6 copies of the VP5 molecules 
moved slightly away from the 6-fold symmetry in this 
region of the P-hexon (He, Schmid, Zhou, Rixon and Chiu 
2001). 

5 Discussion 
The naïve method does not have the requirement for the 
initial orientation of the axis as opposed to our method 
which requires the initial φ to be less than 20° to achieve 
good accuracy. There is no requirement for the initial 
value for Cx, Cy and θ. The naïve method is a general 
method. However, given the fact that rough locations of 
the local symmetry axes are often easy to be identified 
visually on virus structures (Figure 1), the requirement of 
20° for φ is usually satisfied for virus structures. This 
paper provides an efficient algorithm to find the exact 
location of a local symmetry axis starting with a visually 
identified axis. It does not screen any of the possible 
orientations of the symmetry axis. Rather, it calculates the 
orientation using a trace of the symmetry axis from 
2-dimensional local correlation. The most time consuming 
step of both methods is the calculation of the correlation 
coefficient which is proportional to the volume of the 
cylinder 2πR2Z. Even when the naïve method is applied on 
the same initial structure (φ<20°), the number of 
correlations is 20*360=7200 times more than the 
2-dimensional correlation method assuming using step 
size of 1° for accuracy.  

When the initial orientation (φ) is less than 20° from the 
z-axis, the TRACE method is able to find the symmetry 
axis fairly accurately and efficiently because all of the 
fourteen tests finishes in one or two iterations. When the 
initial φ is more than 20° from the z-axis, the symmetrical 
information on each slice is weak. We did not perform a 
rigorous test in this situation. However, our experience 
suggests that for initial φ ranging from 20° to 45°, the 
TRACE method is usually able to find the axis through 
more iteration. For initial φ less than 1°, our method may 
have problem finding a more accurate axis depending on 
the number of z-slices on the structure. In general, the 
more number of z-slices exists on the structure, the more 
accurate the identified symmetry axis is. This is because 
that there are more symmetrical points for line fitting. The 
best way to use the TRACE method is to rotate the 
structure map by visual inspection so that the initial φ is 
within 20° from the z-axis. 

Both of the methods discussed in this paper calculate 
correlation in real space, the structure space. In general, a 
real space correlation can be computed more efficiently in 
Fourier space, the frequency space, by using Fast Fourier 
Transform (FFT) (Gonzalez and Woods 1992). For 
example, if the problem is to locate a template in an image, 
the typical way of using correlation is as the following. 
Apply FFT on both the image and the template, and then 
multiply the Fourier transform of the image and the 
complex conjugate of the Fourier transform of the 
template. The correlation coefficients are obtained by 
applying inverse FFT to the resulting Fourier transform. 
However, this method does not directly apply to the 
problem of locating local symmetry axis. In order to find 

the local similarity, the template in the correlation should 
reflect the local structural information. At different 
locations of the structure, the correlation should be done 
with different templates that are the local structures at 
those locations.   
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