Detecting Topic Labels for Tweets by Matching Features from **Pseudo-Relevance Feedback**

Jing Zhang

Derek Liu

Kok-Leong Ong

Zhijie Li

Ming Li

School of Information Technology, Deakin University 221 Burwood Highyway, Burwood, Victoria 3125 Email: {jing.zhang, derek.liu, kok-leong.ong, z.li, ming.li}@deakin.edu.au

Abstract

Detecting a suitable topic label for short texts, e.g., tweets from Twitter, is an important component in many applications including diversity ranking, clustering, information retrieval, and information filtering. To automatically detect topic labels however is a major challenge. The character limit of a short text means the lack of a significant feature space to adequately describe its content in relation to other short texts in a given collection. Therefore, methods like LDA, TF-IDF or similarity measures all fail due to their sensitivity to a small feature space. And when a collection of related short texts are considered, e.g., from a Twitter search, the result set collectively exhibits sparsity and high dimensionality – a nightmare for information processing. A solution to this problem is to expand the feature space through a process known as pseudo-relevance feedback. Unfortunately, they disappoint when subjected to real-world conditions. The fundamental problem lie in the level of noise present in both the short texts and the feedback source, which is often the World Wide Web. We propose a novel pseudo-relevance feedback algorithm to accurately identify topic labels for short texts. Our algorithm robustly handles noise in both the short texts and the feedback source through a method called 'feature matching'. Empirical results confirm the efficacy of our algorithm.

Keywords: Tweets, Twitter, Pseudo-Relevance Feedback, Short Texts, Topic Detection

1 Introduction

The modern Web is no longer just a repository for Web documents. It is now a hybrid of different media and different Web applications. Most recently, a huge amount of user generated content arising from social networking Websites are fuelling a new category of data. They are large in volume but each is terse in its content. We call them short texts. Short texts are increasingly becoming prevalent on the Web. They exist as summaries to a Website in search results, as tweets on Twitter, as status updates on FaceBook, or as comments on YouTube.

The volume of short texts has motivated many applications requiring the use of algorithms in areas such as diversity ranking, clustering, classification, information retrieval, and information filtering. These algorithms in turn depend on core components, one of which is to know the topic label of a short text. For example, some diversity ranking algorithms achieve diversity by ensuring different topics of short texts are included. Another example would be in classification, where a rank of topic labels is used to classify short texts into pre-determined categories.

Topic detection in short texts however is a challenging problem. Using the case of tweets for example, the 140 character limit means that there is hardly sufficient features present to adequately describe its content in relation to other tweets in a given collection. When the feature space is very small and the collection in question creates a collective feature space that is very sparse and high in dimension, most techniques like LDA (Blei, Ng & Jordan 2003), TF-IDF (Manning , Raghavan & Schtze 2008), or feature-based similarity measures would all fail under real-world conditions. This has been well-reported in many other literature such as (Bernstein et. al. 2010) and (Zhang *et. al.* 2011).

A way to overcome the limitation of small feature spaces and to deal with a collection that is sparse and highly dimensioned is to expand (or enrich) the original feature space by adding related features from another source. This technique is known as pseudo-relevance feedback, or simply relevance feedback (Lloret 2009). The feedback source, which is where additional related features are found, can be

- a collection of other short texts that has been manually processed;
- a collection of well-structured documents in the same domain as the short texts;
- a public domain collection such as Wikipedia or WordNet;
- or the largest public domain resource, i.e., World Wide Web.

If we consider short texts such as those drawn from Twitter, then the first two feedback sources will not be practically feasible because (i) of the effort required to build the short texts collection or the well-structured documents; and also (ii) the feedback source is likely to become outdated quickly when we consider how fast tweet topics may change. The third feedback source, although more robust towards changes, can be limited in the scope of topics it can cover. The last feedback source, the World Wide Web, is the largest public domain resource and is likely to evolve as rapidly as the topics developing on Twitter. So theoretically, the Web is the ideal candidate.

Copyright ©2012, Australian Computer Society, Inc. This paper appeared at the 10th Australasian Data Mining Conference (AusDM 2012), Sydney, Australia, December 2012. Conferences in Research and Practice in Information Technology (CR-PIT), Vol. 134, Yanchang Zhao, Jiuyong Li, Paul Kennedy, and Peter Christen, Ed. Reproduction for academic, not-for-profit purposes permitted provided this text is included.

In exploring our solution, we came across feedback systems that uses the Web as its feedback source. The most recent is the work reported in (Bernstein *et. al.* 2010), which is also very close to the problem we are trying to solve. We recreated this system based on the description given and discovered that when the Web is used as the feedback source, the results can disappoint when real-world tweets are used. The problem lie in the noise level of the feedback source, which we will discuss in detail next. Nevertheless, the poor results motivated us to search for a solution that would perform well in real-world situations.

Our quest, based on an understanding of the issues surrounding the Web as a feedback resource, saw the development of a *feature matching* algorithm that would produce an accurate way to determine the topic label of a tweet. The prototype of our implementation is now live for public testing and the evaluation of user results has confirmed its ability to deliver a high level of accuracy based on users of Twitter.

We shall now introduce our *feature matching* algorithm in Section 3 but before that, we discuss in Section 2 why current Web-based feedback systems fail to produce adequate results. We then present our experimental results in Section 4, where we compare the topic labels detected from our algorithm against other Web-based feedback systems. We then end this paper by pointing readers to related works in Section 5 and drawing our conclusions in Section 6.

2 Relevance Feedback in the Real-World

To understand why the state of the art in Web-based pseudo-relevance feedback fail, we discuss an implementation call Eddi (Bernstein *et. al.* 2010). Eddi was designed as a tool to organise tweets by their topics. To do so, a relevance feedback process was used to compute a topic label for the tweet. Tweets with similar topic labels are then grouped together.

Eddi's algorithm consists of three main steps: (i) text transformation, (ii) search engine query, and (iii) text feature extraction. The first step aims to transform a tweet into a search query. This involves basic pre-processing such as removing 'RT' (re-tweets), '@username' mentions, URL references, etc. The second step involves taking the transformed tweet and converting it into a search query. In (Bernstein et. al. 2010), this is done by identifying the noun phrases as it was found that nouns are good topic markers in long documents (Bendersky and Croft 2008, Hulth 2003). To find the nouns, a Part-of-Speech (POS) tagging software is used (Kristina and Christopher 2000). The nouns identified are then used to query a search engine - in their case, Yahoo!. The top ten Web documents associated with the nouns are then Each Web document is then computed retrieved. for its TF-IDF (i.e., term frequency-inverse document frequency) and the top TF-IDF (Manning, Raghavan & Schtze 2008) terms are then merged through a voting system, where terms more common among the ten documents are selected over terms with fewer votes. These terms are the topic label(s) associated with the tweet.

Let's look at a tweet that was handled well by Eddi: "awesome article on some SIGGRAPH user interface work: http://bit.ly/30MJy". As per the algorithmic steps, the transformed output presents us with the search phrase (consisting of noun terms): "article SIGGRAPH user interface work". The first ten Web documents obtained from the search phrase are then downloaded and the TF-IDF of each term across the documents computed. The top TF-IDF terms obtained in this specific case were *animation*, *character*, 3D, *computer*, *graphics*, *user*, *interface* and *SIGGRAPH*. These terms were clearly good candidates as topic labels for the original short text (tweet).

To see why this specific case works, we look at the results from the search engine (our feedback source) as shown in Figure 2. For the SIGGRAPH example, i.e., Figure 2(a), the documents returned are close to plain text which makes them easy to process. Compared to the Web documents we obtained from the next example shown in Figure 2(b), there is a sharp contrast in the level of 'noise' between the two sets of Web documents. For the SIGGRAPH tweet, the query returns the following URLs.

- http://www.interaction-design.org/references/ conferences/proceedings_of_the_1st_annual_acm_ siggraph_symposium_on_user_interface_software. html
- http://www.interaction-design.org/references/ conferences/proceedings_of_the_3rd_annual_acm_ siggraph_symposium_on_user_interface_software_ and_technology.html
- http://en.wikipedia.org/wiki/WIMP_(computing)
- http://www.siggraph.org/publications/newsletter/ v32n3/columns/elvins.html
- http://kyungku.net/xe/publication/6442
- http://www.ee.columbia.edu/~sfchang/course/ svia-F03/papers/siggraph-reject-how.htm
- http://mi-lab.org/about/people/michael-haller/
- http://web.cs.wpi.edu/~matt/courses/cs563/talks/ smartin/int_design.html
- http://plecebo.org/content/ fun-ui-innovations-siggraph-09-conference
- http://userwww.sfsu.edu/~jkveeder/bio/500.htm

Now compare this to a tweet about Qantas, Figure 2(b): "Sale #airfare #fly #Čan-berra to #Wellington from \$410 with Qantas http://t.co/2jsXBRbv" which after the POS tagging, we had the search phrase "sale airfare canberra wellington qantas". The ten Web documents we obtained for this case contain JavaScripts, Flash content, advertisements, CSS styling, animated menus, dynamic presentation structures, dynamic forms, and server-side generated content. With so many layers of 'noise', any attempt to get to the actual content relevant to the search query becomes very challenging. We also went further by developing variations of Eddi such as (i) taking advantage of any short URLs present in the tweet to compute the TF-IDF; (ii) using a constrained set of Web documents (BlogSpot) to limit the level of noise; and (iii) using algorithms such as NReadability to extract the content. Unfortunately, the results we obtained from our experiments on all the variations were unsatisfactory. We conclude that when presented with such noisy documents, Eddi fails to provide accurate results. And with most of the Web documents today looking more like those seen in our Qantas example, the ability for Eddi to extend to real-world usage is actually questioned.

3 Feature Matching as Proxy Measure

Having failed from attempts to improve Eddi through various 'de-noising' strategies, we conclude that we have to accept the presence of noise in a feedback source like the Web. We also conclude that it would be difficult to overcome noise. This led us to a different strategy, where we embrace the noise present in Web documents instead. The idea in Eddi is to compute the TF-IDF from Web documents so as to

Figure 1: (a) A montage of the various screens for the search phrase "article SIGGRAPH user interface work". Notice that the Web documents for this particular instance is not "noisy" and many of them are simple textoriented documents without formatting, layers, advertisements, etc. Consequently, this makes extraction of the actual body of content easy and lowers the error probability significantly to allow the TF-IDF compute to show meaningful topic labels. (b) A montage of the various screens for the search phrase "sale airfare canberra wellington qantas". Compared to (a), the Web documents here are a lot more complex in their presentation as they incorporate dynamic content such as Flash and JavaScript, CSS styling and interactive menu, advertisements, photos and forms, etc. Extracting the main content from these Web documents so as to compute the TF-IDF of its word terms is not only challenging but it clearly showcases where relevance feedback systems would fail to provide accurate results.

derive the topic labels. As a result, it is very dependent on what terms are in the document. And given the way TF-IDF works for just ten documents, spurious terms can be highly weighted so noise is actually highlighted as topic labels. Furthermore, the results of a TF-IDF compute are single word terms. Topic labels such as "global warming" would appear as two word terms that require an expert to further piece them together. When we consider these limitations, the want for a different solution becomes clear.

3.1 Problem Formulation

Our solution to make Web-based relevance feedback work comes from a simple observation about the relationship between the Web documents, the topic label and the short text, which are all part of the pseudorelevance feedback process.

Given a tweet t, a human expert could provide a topic label ℓ based on the word terms in t. At the same time, the same word terms from t could be used by the human expert to select a collection of documents $\mathcal{D}_t = \{d_1, d_2, \ldots, d_j\}$, such that these documents also share the topic ℓ . In other words, if all the documents in \mathcal{D}_t are selected for ℓ and that ℓ is some function of t, then ℓ can be seen as a query that returns a set of relevant Web documents \mathcal{D}_t . And the query, which is ℓ , is in fact the topic label of t.

The problem in this case is that ℓ is determined by the human expert. For example, the tweet in Figure 2(b) can be labelled by the human expert as ℓ ='qantas domestic sales'. This would make a good topic label for t and a set of relevant documents to expand the feature space can be easily obtained by searching the Web using the terms from ℓ .

Clearly, the human expert cannot possibly be a component of the relevance feedback system. It would appear that without human expertise to determine ℓ , we won't have a solution. This turns out to be not the case. For a tweet, we often obtain them from a search, a hash tag, or by following another Twitterer. In such situations, we can easily determine the top-level con-

cept \mathcal{C} in relation to the tweet. For example, the tweets in Figure 2 are obtained by searching for 'siggraph' and 'qantas' respectively on Twitter. These query terms are therefore our top-level concepts. As soon as we know \mathcal{C} , we can easily derive a set of ℓ candidates, i.e., $\mathcal{L}(\mathcal{C}) = \{\ell_1, \ell_2, \ldots\}$.

In implementation, one way to easily derive the ℓ -candidates from the top-level concept C is to use the 'related searches' often suggested by a search engine. For example when C = 'qantas', the Bing search engine returns {'frequent flyer', 'international', 'domestic flights', 'staff travel', 'holidays', 'staff credit union', 'flights', 'frequent flyer points account'} as related search topics. If we drill deeper into 'international', we obtain further suggestions which include {'arrivals', 'air fares', 'bookings', 'baggage allowance', etc.}. Clearly, each related search suggestion is a candidate for a topic label. So from C, we can now derive a good set of ℓ -candidates, i.e., $\mathcal{L}(C)$.

At this point, it becomes clear that each $\ell_i \in \mathcal{L}(\mathcal{C})$ allows us to easily obtain a relevant set of documents \mathcal{D}_{ℓ_i} . So for each $\ell_i \in \mathcal{L}(\mathcal{C})$, we now have a tuple $\langle \ell_i, \mathcal{D}_{\ell_i} = \{d_i, d_j, \ldots\} \rangle$ or for $\mathcal{L}(\mathcal{C})$, a set of tuples $\{\langle \ell_x, \mathcal{D}_{\ell_x} \rangle, \langle \ell_y, \mathcal{D}_{\ell_y} \rangle, \ldots\}$. To determine the topic label for t obtained via the same concept \mathcal{C} , we perform the usual relevance feedback to obtain the tuple $\langle t_\ell, \mathcal{D}_t = \{d_p, d_q, \ldots\} \rangle$, where t_ℓ is the transformed t as per step (i) of a relevance feedback system. Now the solution to our problem of finding a topic label ℓ for t is transformed into finding a tuple in $\{\langle \ell_x, \mathcal{D}_{\ell_x} \rangle, \langle \ell_y, \mathcal{D}_{\ell_y} \rangle, \ldots\}$ where the features in \mathcal{D}_ℓ is closest to the features in \mathcal{D}_t . The ℓ of this tuple is the topic label for t as their associated documents (or enriched feature space) are the most similar.

By matching features found in \mathcal{D}_t and \mathcal{D}_ℓ , we are no longer looking for specific word terms. Rather, we are looking for a signature in the set of documents to describe a topic label ℓ . Here, when two sets of documents share a similar signature in their features, we can suggest (or equate) ℓ_t as ℓ . In doing so, the solution of finding ℓ for t is solved.

Algorithm 1 FindTopicLabel(t, C)1: build $\mathcal{L}(C)$ from C using 'related search'2: obtain $\mathcal{T}_t = \langle t_\ell, \mathcal{D}_t \rangle$ by relevance feedback3: obtain $\mathcal{T}_{\mathcal{L}(C)} = \{\langle \ell_1, \mathcal{D}_{\ell_1} \rangle, \dots\}$ from search engine4: for each $i \in \mathcal{T}_{\mathcal{L}(C)}$ do5: // calculate each S and store result6: // in hash table M.7: $M(i) \leftarrow S(S'(\mathcal{T}_t.\mathcal{D}_t, i.\mathcal{D}_{\ell_x}))$ 8: end for9: return $i.\ell$: $M(i) > M(j) \forall j \neq i$

We can compute the signature in many ways and we present a simple approach in the next section. The strength of the signature approach is that it is a lot more robust against the presence of 'noise' in Web documents. In fact, our approach accepts the presence of noise and incorporates them as part of a topic label's signature.

3.2 Algorithmic Solution

Recall from our earlier discussion, both \mathcal{D}_{ℓ} and \mathcal{D}_t are a set of documents, i.e., $\{d_x, d_y, \ldots\}$. The straightforward approach is to take these documents as the respective signature. After all, the combination of Web documents in \mathcal{D} form a collective set of features that describes the topic label.

In this straightforward approach, we can compute a signature similarity score S to show how similar the signatures are. This is done in two steps: (i) compute the basic cosine similarity between two documents, each drawn from \mathcal{D}_t and \mathcal{D}_{ℓ_x} respectively, i.e.,

$$\begin{aligned} \mathcal{S}'(\mathcal{D}_t, \mathcal{D}_{\ell_x}) &= \mathcal{D}_t \times \mathcal{D}_{\ell_x} \\ &= \{ \mathtt{Sim}(d_i, d_j) : d_i \in \mathcal{D}_t \land d_j \in \mathcal{D}_{\ell_x} \} \end{aligned}$$

and then (ii) obtain the average of the cosine similarity scores in \mathcal{S}' , i.e.,

$$\mathcal{S}(\mathcal{S}') = \frac{1}{|\mathcal{S}'|} \sum_{i} s \in \mathcal{S}$$

The highest signature similarity score S for an ℓ -candidate from $\mathcal{L}(\mathcal{C})$ will be selected as the topic label. The algorithm to the discussion of our solution together is shown in Algorithm 1.

While the algorithm uses C to obtain the ℓ -candidates in Step 1, the solution does not really require it. The presence of C helps cut the search space, i.e., the number of ℓ -candidates to consider and consequently, improves runtime performance. Step 2 of the algorithm would be the usual relevance feedback, where t is first transformed into t_{ℓ} (by the usual preprocessing and POS tagging), and a search conducted using t_{ℓ} to find a set of relevant documents \mathcal{D}_t . In Step 3, the relevant documents for each ℓ -candidate from $\mathcal{L}(C)$ are retrieved. Again, a good implementation would have cached the frequently used ℓ -candidates to minimise Web access for performance reasons.

While we didn't implement caching in our prototype, we did limit the size of each document download to 300KB. This greatly improved performance without having to cache any ℓ -candidate documents, some of which are up to 10MB in our experiments. Empirically, the 300KB performed well without affecting our accuracy. Given that we are only interested in using the documents to form a signature, truncating the download is actually fine. Steps 4 to 8 simply computes the signature similarity score for each pair of documents in \mathcal{D}_t and \mathcal{D}_{ℓ_x} storing the result in a hash table M. Once this is completed, Step 9 returns the ℓ with the top S score but since one has access to M, the algorithm can return the top-n topic labels as well.

4 Empirical Results

An important aspect of our solution is the premise that a search query is (or will contain) an implicit topic label. This topic label is developed in a search query as users seek relevant documents by refining their search with additional keywords. Over time, this large amount of user queries and clickthroughs has allowed the search engine to learn related searches and the best documents matching each specific query. The indirect consequence of this is that we can now use 'related searches' as a viable source of topic labels based on the solution we presented. It becomes a very powerful way of cutting the search space. At up to two levels deep of related searches, our experimental results show that the topic labels assigned to a tweet will worked very well.

We validated our results as follows. We first obtained a published list of top Twitter queries¹ and hash tags² used in 2010 and 2011 respectively. We then performed a Twitter search using these query terms and hash tags to obtain a collection of tweets for our experiment. In this paper, we reported the results from the tweets we collected over the period of July 2012. For each tweet, we recorded the top three and the bottom three topic labels as determined by our algorithm. We then presented the results to a group of Twitter users to assess whether they agree with the topic label assigned.

Our Twitter users were students in a third year software development class taught by one of the authors. Each student was given twenty tweets, half of the tweets were picked from search terms and the other half from hash tags. For each tweet, the top three and bottom three topic labels are shown. The students were to give a score between 1 to 5 to indicate whether they think the top topic label is the best among the six shown. A score of 5 indicates that they fully agree with the algorithm's assessment.

There was a total of twenty students who took part in the assessment. After they made their assessment, we assessed the inter-rater agreement for each tweet across the twenty raters using Flesis's Kappa measure (Fleiss 1977). The Kappa measure is a statistical method to determine the realibility of agreement between raters. In our experiment, the score of 1 to 5 is treated as a nominal measure rather than a ordinal one. Over the twenty tweets, the Kappa value we obtained was just over 0.6 but less than 0.61 (0.6036 to be exact). This places us somewhere between "moderate agreement" and "substantial agreement" according to (Landis and Koch 1977).

Our personal and possibly subjective assessment however motivated us to look deeper into the results as we anticipated a score that clearly puts us in the "substantial agreement" category. We note that the wider the range of scores, the weaker the final result. When we reduced the scoring system to just 'yes', 'no' and 'possibly', the same twenty tweets achieved a better score of 0.73 putting it clearly in the "substantial

¹http://blog.sfgate.com/techchron/2010/12/13/

gulf-oil-spill-world-cup-top-twitter-trends-for-2010/ ²http://tallskinnykiwi.typepad.com/tallskinnykiwi/2011/12/

egypt-the-top-twitter-hashtag-for-2011.html

agreement" category. We did however have one variable: we had a different group of students to score the same twenty tweets. So while Flesis's Kappa measure provided some statistical validation required for our experiments, we conclude that the best assessment is for the reader to determine the results themselves.

Table 1 shows the tweets we retrieved in July 2012 using the top query terms reported for 2010. The original tweet is shown along with the top/bottom three topic labels (and their S scores). Table 2 on the other hand shows the tweets we retrieved using the top hash tags reported for 2011. The results are presented in the same way as Table 1. We have given a rather comprehensive list of the results for the readers to make their evaluation. At the same time, we also encourage the reader to download the prototype to test it with their own data. The prototype can be downloaded from http://www.deakin.edu.au/~leong/getTopic.

5 Related Works

Topic detection has always been an on-going research question, with reference to the research question from as early as 1996 and discussed with greater interest recently by (Young et. al. 2004). Much of the research in topic detection started with conventional text documents, for example, news articles drawn from the Reuters-21578³ or Web pages from the Open Directory $project^4$, or in newsgroup. Since then, interests in topic detection moved to short texts such as instant messages and SMS as they became popular. Most of the works however were conducted for a conversational model, i.e., an exchange of emails, SMS or instant messages, e.g., in (Dong et. al. 2006, Cselle and et. al. 2007, Tian et. al. 2010). Soon after, the popularity of blogs moved the research to detecting topics for blog posts, e.g., (Zhang et. al. 2011, Xu and Oard 2011). As short texts become increasingly common, e.g., status updates and tweets, the research focus once again shifted with works from (AlSumait et. al. 2008, Karandikar 2010, Phuvipadawat and Murata 2010, Cataldi et.al. 2010, Zhang and Fan and Chen 2011) being good exemplars.

Among these exemplars, (Cataldi et.al. 2010)'s work for example, looks at detecting emerging topics for tweets. Their method begins by modelling tweet content as a feature vector where its word terms are then weighted over time against other tweets drawn from a top-level concept. The idea is that terms with a bigger weight becomes candidates for emerging topics. To confirm a candidate as an emerging topic, user authority and content age are considered. Finally, either a supervised or unsupervised selection algorithm is used to pick word terms that qualify as emerging topics. Therefore, while the objective is to detect a topic label for a tweet, the direction is different. Our goal is to detect a topic for a given tweet. (Cataldi et.al. 2010)'s method however requires a constant stream of tweets and requires a window before any emerging topics can be reported.

Most recently in (Zhang and Fan and Chen 2011), the problem of detecting topics from chinese short texts was investigated. The authors approached their research by asking two questions: (i) how to determine the keywords (akin to our topics) in the short text; and (ii) how to expand the keywords to track other short texts that have the same 'topic' but used different word terms. Their work interests us because of their method of finding keywords and then expanding them using hyponymies, i.e., a 'type of' relationship between word terms. Thismay be a way for us to expand our top level concept C without the need to perform a related search. However, how to relate each expanded keyword to a corpus of documents/short texts isn't immediately obvious.

6 Conclusions

Making sense of short texts is an important research problem as they are becoming increasingly prevalent and ubiquitous. A crucial component to process short texts is the need to know its class or topic label. However, short texts have little features and collectively, has a sparse feature space that makes processing them using conventional algorithms difficult. We present a method to detect topic labels for short texts such as tweets. Our method does not require priori training but produce results that agree well under expert assessment. More importantly, we present a solution that allows the Web to be used as the relevance feedback source. In doing so, our system is guaranteed to be up to date in learning new topic labels. This is crucial in dealing with evolving topics from the large volume of short texts been generated everyday, such as those seen in Twitter.

References

- Fleiss, J. L. (1971) "Measuring Nominal Scale Agreement Among Many Raters." Psychological Bulletin, Vol. 76, No. 5 pp. 378 – 382.
- Landis, J. R. and Koch, G. G. (1977) "The Measurement of Observer Agreement for Categorical Data." Biometrics. Vol. 33, pp. 159 – 174.
- Zhang, C., Fan, X. and Chen, X. (2011) "Hot Topic Detection on Chinese Short Text." Springer Berlin Heidelberg, Vol. 176, pp. 207 – 212.
- Lloret, E. (2009) "Topic Detection and Segmentation in Automatic Text Summarization. http://www.dlsi.ua.es/~elloret/ publications/SumTopics.pdf.
- Cataldi, M., Di Caro, L. and Schifanella, C. (2010) "Emerging topic detection on Twitter based on temporal and social terms evaluation." The 10th International Workshop on Multimedia Data Mining. Washington, D.C., ACM, New York, USA. pp. 1 - 10.
- Tian, Y., Wang, W., Wang, X., Rao, J., Chen, C and Ma, J. (2010) "Topic Detection and Organization of Mobile Text Messages." The 19th ACM International Conference on Information and Knowledge Management. Toronto, ON, Canada. ACM. New York, NY, USA. pp. 1877–1880.
- Dong, H., Hui, S.C. and He, Y. (2006) "Structural Analysis of Chat Messages for Topic Detection." Online Information Review, Vol. 30, pp.496–516.
- Perez-Tellez, F., Pinto, D., Cardiff, J. and Rosso, P. (2010) "Clustering Weblogs on the Basis of a Topic Detection Method." The 2nd Mexican conference on Pattern recognition: Advances in pattern recognition.Puebla, Mexico. Springer-Verlag. Berlin, Heidelberg. pp. 342–351.

 $^{^{3} {\}rm http://www.daviddlewis.com/resources/testcollections/reuters21578/}$

⁴http://dmoz.org/

- Moens, M.F. and De Busser, R. (2001) "Generic Topic Segmentation of Document Texts." The 24th Annual International ACM SIGIR conference on Research and Development in Information Retrieval. New Orleans, Louisiana, United States, ACM, New York, USA. pp.418–419.
- Cselle, G., Albrecht, K. and Wattenhofer, R. (2007) "BuzzTrack: Topic Detection and Tracking in Email." The 12th International Conference on Intelligent User Interfaces. Honolulu, Hawaii, USA, ACM, New York, USA. pp. 190–197.
- Phuvipadawat, S. and Murata, T. (2010) "Breaking News Detection and Tracking in Twitter." The 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE Computer Society, Washington, DC, USA. pp.120–123.
- AlSumait, L., Barbar, D. and Domeniconi, C. (2008) "On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking." The 8th IEEE International Conference on Data Mining.IEEE Computer Society, Washington, DC, USA. pp. 190–197.
- Xu, T. and Oard, D.W. (2011) "Wikipedia-based Topic Clustering for Microblogs." Wiley Subscription Services, Inc., Vol. 48, pp. 1–10.
- Karandikar, A. (2011) "Clustering short Status Messages : a Topic Model based Approach." published PhD thesis, The University of Maryland.
- Manning, C.D., Raghavan, P. and Schtze, H. (2008) "Introduction to Information Retrieval." Cambridge University Press.New York, NY, USA.
- Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) "Latent Dirichlet Allocation.", JMLR.org, Vol. 3, pp.993– 1022.
- Kristina, T. and Christopher, M. (2000) "Enriching the Knowledge Sources used in a Maximum Entropy Part-of-Speech tagger." The 2000 Joint SIG-DAT Conference: Empirical Methods in NLP and Very Large Corpora.
- Bernstein, M.S., Suh, B., Hong, L., Chen, J., Kairam, S. and Chi, E.H. (2010) "Eddi: Interactive Topicbased Browsing of Social Status Streams." The 23rd annual ACM symposium on User Interface Software and Technology. New York, USA. ACM, New York, USA. pp. 303–312.
- Hulth, A. (2010) "Improved Automatic Keyword Extraction Given More Linguistic Knowledge." The 2003 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 216– 223.
- Joachims, T. (1998). "Text Categorization with Support Vector Machines: Learn-ing with Many Relevant Features." In European Conference on Machine Learning (ECML). Springer, Berlin, Germany, pp. 137–142.
- Young, W. S., Sycara, K. (2004). "Text Clustering for Topic Detection." Technical Report (CMU-RI-TR-04-03), Robotics Institute, Carnegie Mellon University.
- Zhang, J., Xia, Y., Ma, B. and Yao, J. (2011) "Thread Cleaning and Merging for Microblog Topic Detection." IJCNLP, 17 December 2011

Bendersky, M. and Croft, W.B. (2010) "Discovering key concepts in verbose queries." The 31st annual international ACM SIGIR conference on Research and development in information retrieval. Singapore, Singapore. ACM, New York, USA. pp. 491– 498.

Concept \mathcal{C}	Tweet	Topic Labels (top/bottom 3 tweets)	\mathcal{S} Score
Gulf Oil Spill	bp you've a lot to answer for! do	Gulf Coast Oil Spill Timeline	0.0620
	my eyes deceive me? a	Gulf Oil Spill	0.0601
	captain's view of dolphin	BP Gulf Oil Spill	0.0600
	health in the gulf	Gulf of Mexico Map	0.0149
	http://huff.to/lqy3ya via	Gulf Oil Logo	0.0195
	@huffpostgreen	Oil Spill Clean Up Products	0.0214
	photographs of animal skeletons	Animals Affected by Oil Spills	0.0256
	inspired by the gulf oil spill	Animals in Oil Spills	0.0230
	#photography http://bit.ly/leyl3d	Animals After Oil Spill	0.0226
		Gulf of Mexico Map	0.0065
		BP Oil Spill	0.0081
		Gulf Coast Oil Spill Information	0.0085
	cdc response to the gulf of mexico	Oil Spill Response	0.0719
	oil spill http://tinyurl.com/432odhm	Gulf of Mexico Oil Spill	0.0665
		Gulf Coast Oil Spill Information	0.0570
		Lucas Oil Company History	0.0152
		Gulf of Mexico Map	0.0178
		Gulf Coast	0.0200
Inception	what is the most resilient parasite?	Inception Review Ending	0.0657
	bacteria? a virus? an intestinal	Inception Film Review	0.0628
	worm? an idea. leonardo dicaprio	Inception Explanation Ending	0.0600
	inception 2010	Limitless Torrent	0.0095
		Urigin of Hooky	0.0119
		Inception forrent Kick-Ass	0.0129
	doepest movies even	Inception the Movie	0.1487
	deepest movies ever	Inception	0.1400 0.1200
		Origins of Islam	0.1390
		Origin of Hooky	0.0003
		Origins of Words	0.0005
	#meta #inception rt @loudboos:	Inception Review	0.0324
	seriously, people rt this? rt	Inception Wiki	0.0294
	@jaketapper: ???	Inception Reviews	0.0276
	0 11	Limitless Torrent	0.0083
		Origin of Hooky	0.0087
		Inception the Movie	0.0097
Haiti Earthquake	powered by action in action in	Haiti Earthquake Relief	0.0677
	response to the haiti earthquake.	Haiti Earthquake Relief Charities	0.0606
	see the video	Haiti Earthquake Relief Red Cross	0.0587
	- http://bit.ly/yjsoph	Avg. Weather for Dominican Rep.	0.0102
		Mermaid Found in Haiti Pictures	0.0119
		Television National d'Haiti	0.0127
	even before the earthquake	Earthquake in Haiti CNN	0.0778
	, conditions in haiti were quite	CNN News Haiti	0.0680
	desperate. just behind our hotel	The Earthquake That Hit Haiti	0.0638
	in port- http://pinterest.com/pin/	Television National d'Haiti	0.0098
	235102043018196777/	Halti TV Metropolo Heiti	0.0109
	undate, did kaam aave the	Metropole Halti	0.0110
	update: did naarp cause the	Forthquake in Holt: 2010 Arti-1-	0.0814
	http://bit.ly/nomiid	Date Haiti Earthquake Hit	0.0740
	ութե.// ութույ/ пршյյս	Haiti TV	0.0731
		Television National d'Haiti	0.0091
		Haiti Radio	0.0102

Table 1: Tweets and their assigned topic labels obtained by using top query terms reported for 2010.

Concept \mathcal{C}	Tweet	Topic Labels (top/bottom 3 tweets)	\mathcal{S} Score
Vuvuzela	mind some love blowing their	South Africa Horn	0.0278
v av azora	own trumpet rt @p45c4l linking	Horns at World Cup	0.0249
	your twitter account to linkedin	World Cup Noise	0.0240
	is like bringing a vuvuzela to a job	Vuvuzela Hero	0.0035
	interview	YouTube Vuvuzela Alpha Blondi	0.0045
		Vuvuzela Video	0.0057
	cek linkedin rt @15iune: rt	Buy World Cup Vuyuzela	0.0168
	@p45c4l: linking your twitter	World Cup Vuyuzela	0.0164
	account to linkedin is like bringing	Soccer Horn Vuvuzela	0.0162
	a vuvuzela to a job interview.	Vuvuzela Hero	0.0027
	5	YouTube Vuvuzela Alpha Blondi	0.0034
		Vuvuzela Video	0.0046
	#loveprotest time: 10:00am	Horns at World Cup	0.0236
	where: uhuru park-freedom	World Cup Noise	0.0230
	corner dress code: kenyan	South Africa Horn	0.0217
	colours,carry a vuvuzela	Vuvuzela Hero	0.0029
		Vuvu Hero	0.0053
		YouTube Vuvuzela Alpha Blondi	0.0058
Apple iPad	google's nexus 7 could force	iPad Mini 2012	0.0677
	apple's hand on 'ipad mini' -	Mini iPad	0.0654
		New Tablets	0.0649
		Apple	0.0096
		AT&T Wi-Fi	0.0106
		Apple iPhone Support	0.0117
	microsoft surface vs apple	New Tablets	0.0676
	new ipad http://bit.ly/mywxqj	HP iPad-like	0.0628
		HP iPad Computer	0.0625
		Apple	0.0108
		AT&T Wi-Fi	0.0116
		Apple iPhone Manual	0.0121
	google unveils \$199 tablet	New Tablets	0.0675
	to take on ipad -	iPad 2 Price Drop	0.0608
	http://interaksyon.com http	HP iPad On Sale	0.0602
	://fb.me/1aw2h68p7	AT&T WI-FI	0.0096
		Apple	0.0135
		Apple 1Phone Support	0.0158
Google Android	google's new youtube app	Google Android M Downloads	0.0805
	for android 4.0 is rolling	Google AppBrain	0.0691
	out today http://tnw.to/n0dj	Google Market Download	0.0682
	by @harrisonweber	Transaction Fees	0.0098
		What Does Apps Mean	0.0153
		Google Plus Post	0.0156
	google's new android 4.1	Android Ice Cream Sandwich	0.0909
	http://bit.ly/n5p5up	Lee Cream Sandwich Operating System	0.0772 0.0721
	http://bit.iy/nopoup	Transaction Food	0.0731 0.0178
		What Doog Appg Mean	0.0178
		Google Android M Downloads	0.0100
	google nevus 7 is official	Ice Cream Sandwich Tablets	0.0132 0.0707
	shows off android 4.1	Ice Cream Sandwich Android Tablet	0.0704
	ielly bean http://cnet.co	Android Tablets 2011	0.0704
	/oxew6m	What Does Apps Mean	0.0156
	/ 045 / 011	Transaction Fees	0.0175
		Live Android Downloads	0.0207
l	1		<u>.</u>

Concept \mathcal{C}	Tweet	Topic Labels (top/bottom 3 tweets)	\mathcal{S} Score
Justin Bieber	one direction will be the biggest	Selena Gomez and Justin Bieber	0.0422
	boyband in the world by the end	Justin Bieber Paternity Suit	0.0404
	of this year justin bieber	J.B. Selena Gomez Pregnant	0.0402
		YouTube Videos	0.0140
		Project Live Love	0.0152
		Countdown to 18th Birthday	0.0153
	official: justin bieber's	How Old Is Justin Bieber	0.0428
	'believe' is year's biggest	YouTube J.B. Music Videos	0.0395
	debut, bows at no. 1 -	Justin Bieber Lyrics	0.0389
	http://bit.ly/mtlgfu	Project Live Love	0.0089
		Happy Birthday 18th	0.0097
		YouTube Videos	0.0101
	niall horan in justin bieber's	Selena Gomez Justin Bieber Kiss	0.0438
	boyfriend video.	YouTube J.B. Baby Baby	0.0403
	http://pic.twitter.com/edcgvwva	YouTube J.B. Favorite Girl	0.0403
		Project Live Love	0.0120
		Happy Birthday 18th	0.0131
		Countdown to 18th Birthday	0.0141
Harry Potter &	when a muggle saw me reading	H.P. SparkNotes Sorcerer's Stone	0.0541
the Deathly	the deathly hallows book, he	Harry Potter Reviews	0.0476
Hallows	asked me "how does harry potter	Hogwarts Professor Names	0.0470
	end?" i simply answered "it doesn't."	Dumbledore's Army Font	0.0114
		The Wizard Stone	0.0135
		Harry Potter Fun and Games	0.0146
	harry potter and the deadly	Harry Potter Reviews	0.0532
	hallows, part 1 (four-disc blu	Harry Potter Actors	0.0481
	-ray deluxe edition): the 4-disc	Harry Potter Film Cast	0.0440
	lutimate blu-ray edit	Dumbledore's Army Font	0.0093
	nttp://amzn.to/obiort	Harry Potter Fun and Games	0.0119
	rt if you gried throughout most	Deathly Hallows Movies	0.0122 0.1217
	of harry potter and the deathly	Deathly Hallows Movies	0.1217 0.1183
	hallows part 2	H P and the Deathly Hallows	0.1103 0.1087
		Staff Trivia Questions	0.1001
		The Wizard Stone	0.0000
		Actor Killed Today	0.0097
Pulpo Paul	-hola_c_mo_te_llamas?vogi	Preguntar Al Pulpo Paul	0.0001
i uipo i aui	v t? -paul jajaja!. no	Spanish Octopus Recipes	0.0092
	mames como el pulpo	Spanish Octopus Tapas	0.0091
		Stoneware Drinking Glass	0.0027
		Bell Co51 Octopus Cup Holder	0.0031
		Al Paul Car Wash	0.0032
	i have doubts about today s	Octopus World Cup Prediction	0.0513
	spain match but if	Paul the Octopus Predictions	0.0505
	©virginiecapric (the new pulpo	Paul the Psychic Octopus	0.0485
	paul) says germany - spain,	What Is Pulpo	0.0064
	well, here we go to the final!!	Al Paul Car Wash	0.0075
		Stoneware Drinking Glass	0.0088
	paul the octopus is dead	Preguntar Al Pulpo Paul	0.0374
	actually so im guessing el	Pulpo Recipe	0.0189
	pulpo ra l too	Pulpo Gallego Recipe	0.0177
		Al Paul Car Wash	0.0023
		Bell Co51 Octopus Cup Holder	0.0035
		Make Your Own Coolie Cup	0.0039

Concept \mathcal{C}	Tweet	Topic Labels (top/bottom 3 tweets)	\mathcal{S} Score
egypt	another horrific attack on	Clashes Egypt	0.0894
	a woman in cairo	Egypt Virginity Test	0.0752
	http://on.cnn.com/lw2hbq	Egypt Soccer Game Deaths	0.0719
	#egypt #tahrir	Quiz On Middle East	0.0043
		Soccer Game Cup	0.0086
		Greek Gods	0.0114
	#egypt ex-oil min sameh	Soccer Game Cup	0.0082
	fahmy + hussein salem get	70 Dead Soccer	0.0072
	15 yrs: 'squandering public	Pyramid	0.0071
	funds' in #israel gas deal	Egypt God Horus	0.0010
	http://tinyurl.com/6wdd8sq	Proof of Virginity	0.0011
	- , , • • ,	Map Africa	0.0011
	christians nervous under	Clashes Egypt	0.0745
	new president in egypt.	Egyptian Soccer Riot	0.0526
	http://bit.ly/lvwza0	Egypt Soccer Game Deaths	0.0485
		Quiz On Middle East	0.0048
		Soccer Game Cup	0.0087
		Greek Gods	0.0088
tigerblood	charlie sheen calls tmz	Tiger Blood Quote	0.0569
. 0	to address hotel lies about	Charlie Sheen Drinking Tiger Blood	0.0550
	him partving okay, we	Charlie Sheen Tiger Blood Interview	0.0528
	believe vou charlie.	Paula Deen Riding a Bunchie	0.0061
	http://ow.lv/bsppi	Tiger Blood Snow Cone	0.0066
	#tigerblood	Alex Pardee T-Shirts	0.0078
	i know charlie sheen aint	Tiger Blood Intern	0.0258
	cool anymore but i still	I Got Tiger Blood	0.0244
	got $\#$ tigerblood and im	Charlie Sheen Tiger Blood Video	0.0226
	still #winning	Tiger Blood Snow Cone	0.0029
	" 0	Tiger Blood Snow Cone Syrup	0.0033
		Tiger Pharmacy Steroids	0.0050
	power - kanye west is such	Tiger Blood Quote	0.0224
	a good song omg	Charlie Sheen Tiger Blood Interview	0.0222
	0 0 0	Charlie Sheen Tiger Blood Comment	0.0211
		Charlie Sheen Tiger Blood Shirt	0.0033
		Tiger Blood Snow Cone	0.0052
		Paula Deen Riding a Bunchie	0.0057
threewordstoliveby	#threewordstoliveby love	Great Quotes to Live By	0.0236
	vour life (:	Quotes to Live by Tumblr	0.0226
		Great Words to Live By	0.0213
		Lyrics2liveby	0.0014
		Lyrics 2	0.0038
		Lyrics to Live By	0.0040
	#threewordstoliveby	Great Quotes to Live By	0.0289
	lovalty is everything	Best Words to Live By	0.0254
		Shook Ones Part 2 Lyrics	0.0250
		Lyrics2liveby	0.0018
		Lyrics to Live By	0.0038
		Tumblr Lyrics to Live By	0.0050
	#threewordstoliveby faith	Great Quotes to Live By	0.0304
	, love, hope	Great Words to Live By	0.0273
	, , ,	Morning Quotes to Live By	0.0259
		Lyrics2liveby	0.0013
		Lyrics 2	0.0039
		Lyrics to Live By	0.0045

Table 2: Tweets and their assigned topic labels obtained by using top hash tags reported for 2011.

Concept \mathcal{C}	Tweet	Topic Labels (top/bottom 3 tweets)	\mathcal{S} Score
japan	mexico s olympic squad to	World Cup Football Japan	0.0327
-	play friendly v le n on	USA Japan Game	0.0304
	july $5 +$ will face the	Japan US Women Soccer	0.0290
	england, spain and japan	Soft On Demand Sod	0.0038
	olympic squads prior to	SOD Create	0.0040
	london olympics.	Princess of China Lyrics	0.0052
	the japan night life!	Population of Tokyo	0.0250
	all of the lights	Population of Japan	0.0228
	http://instagr.am/p/maxfdcyda6/	USA Japan Game	0.0210
		Soft On Demand Sod	0.0044
		China Anne McClain	0.0046
		Princess of China Lyrics	0.0064
	kim soo hyun to head for	Japan Earthquake Anniversary	0.0325
	japan to promote moon	2011 Japan Earthquake	0.0312
	that embraces the sun!	Earthquake Japan 2012	0.0308
	http://bit.ly/kfrocr	Princess of China Lyrics	0.0043
		China Anne McClain	0.0047
		Soft On Demand Sod	0.0056
superbowl	jets fans this man has been	Super Bowl Odds	0.0356
	working out. look at those	Super Bowl 44 Odds	0.0320
	arms. with him and sanchez	Super Bowl Scores 2012	0.0308
	u heard it here first	CBS Local Chicago	0.0023
	superbowl	2012 Calendar	0.0069
	http://pic.twitter.com/c4xynzmi	2012 Predictions	0.0136
	the supreme court are	Super Bowl 2012 New Orleans	0.0216
	those dudes who did	2012 Predictions	0.0213
	"superbowl shuffle",	Super Bowl 2014	0.0205
	right?	Super Bowl 43	0.0058
		CBS Local Chicago	0.0062
		superbowl	0.0073
	breaking: cnn reports the	Super Bowl 2014	0.0121
	indianapolis colts have	Halftime Show Super Bowl 2012	0.0109
	won the super bowl.	Where Is Super Bowl 2016	0.0106
		CBS Local Chicago	0.0009
		Super Bowl 44 Logo	0.0018
		Prince Halftime Show Super Bowl	0.0024
jan25	martyr: ahmed hashim el-sayyed	Egyptian Revolution of 1952	0.0320
	age 25 died in $\#$ alex on	Day of Rage Egypt	0.0310
	28jan #egypt #jan25	Revolution Egyptian	0.0301
		DirecTV Revolution 2012	0.0074
		Egyptian Revolution 2011 Photos	0.0083
		Lending in Bank	0.0086
	martyr: omar fathi nour	Egyptian Revolution of 1952	0.0435
	al-barbari died in maadi	Day of Rage Egypt	0.0422
	on jan28 by family's received	Revolution Egyptian	0.0408
	his body(more)	DirecTV Revolution 2012	0.0070
	http://bit.ly/lre59j	Lending in Bank	0.0083
	#egypt #jan25	Egyptian Revolution 2011 Photos	0.0087
	martyr: aly elnabawy age	Day of Rage Egypt	0.0681
	55 died in ismailia by	Egyptian Revolution of 1952	0.0628
	gunshots, fisher	Revolution Egyptian	0.0621
	#egypt #jan25	Egyptian Revolution 2011 Photos	0.0151
		Lending in Bank	0.0158
		25-Jan	0.0159