
Developing a methodology for the use of COTS operating systems 
with safety-related software 

Simon Connelly Holger Becht 
Ansaldo STS, PO Box 1168, Brisbane 4009, Queensland 

{connelly.simon,becht.holger}@ansaldo-sts.com.au 

 

Abstract 
Conventional wisdom within the System Safety 
community has been that Commercial-Off-The-Shelf 
(COTS) Operating Systems (OS) with unknown pedigree 
are unsuitable for deployment in safety-related systems at 
anything other than the lowest integrity levels. Without 
assurance evidence for the OS it is difficult to gain 
confidence in safe behaviour of the functions provided. 
The typical solution therefore has been to either develop 
wholly embedded systems or use operating systems which 
have been certified to a particular standard.  

Regulatory and societal expectations on software 
assurance is continually increasing, however ever-
competitive market conditions are causing budgets to 
remain stable, if not decreased. As modern systems 
become more complex artefacts, the use of certified 
operating systems, or development of a bespoke 
embedded system, present challenges to system designers 
which are difficult to solve within these budgetary and 
schedule constraints. Consequently, the use of generic 
COTS OS is becoming more of a necessity. 

Standards poorly define how to manage OS as far as 
COTS is concerned, allowing for either excessively 
restrictive or permissive definitions of what is required. 
This paper proposes a methodology to isolate the safety-
related service or program from failures of the COTS OS 
through design and detection techniques. 

The model argument presented, within the framework 
of the SIL based standards, justifies the use of Microsoft 
Windows OS (or equivalent) to enable safety-related 
functionality up to SIL 2. 
Keywords:  COTS, software safety, windows operating 
system.  

1 Scope 
The scope of this paper discusses safety-related 
applications (i.e. up to SIL 2, SW Level C) only and is 
not applicable to safety-critical (i.e. vital, SIL 3/4, SW 
Level A/B); the reason for this is discussed further 
towards the end of this paper. This paper expands 
previous work to discuss a it’s applicability to a more 
complex example system, and the observed difficulties 
this presents. 

                                                           
 Copyright © 2011, Australian Computer Society, Inc. 
This paper appeared at the Australian System Safety 
Conference (ASSC 2011), held in Melbourne 25-27 May, 
2011. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 133, Ed. Tony 
Cant. Reproduction for academic, not-for profit purposes 
permitted provided this text is included. 

2 Introduction 
The use of COTS software components within safety-
related applications is a reality and has become 
increasingly more a necessity for service providers to 
remain competitive in a market that is driven by cost 
savings due to recent economic downturns. COTS 
software artefacts are continuing to increase in 
complexity, making the development of an assurance 
argument about systems utilising them increasingly 
difficult in the context of existing safety standards. 
Understanding the impact of COTS software failures with 
respect to system safety is a crucial and difficult step but 
key to the safety assurance of the overall system. 

The term COTS, in this paper refers to software 
components which are readily available from commercial 
sources, for general application and not easily modified. 
Access to source code and development process is 
denied, or heavily restricted. Typical characteristics of 
COTS components are that a number of different 
configurations may be available, more functions than 
required are available, and upgrades may occur either 
during system development or while it is in service. 

This paper is organized into the following sections. 
1. A literature survey of software safety standards 

and how they address COTS. 
2. Previous use of and assessment of COTS 

Operating Systems within safety-related 
applications. 

3. Taking into consideration the literature survey 
and previous assessment, our approach to 
providing safety assurance for the use of COTS 
operating systems to enable a safety-related 
application up to SIL 2.  

4. An example of this approach implemented as 
part of a train movement authority management 
system. This section expands on previous work 
[Connelly10] to discuss a more complex system. 

3 Literature Survey 
Most current safety standards require that a Safety Case 
(or similar) be developed to provide assurance evidence 
that the system is safe to operate and maintain. Assurance 
evidence for software components which perform one or 
more safety functions is required to demonstrate that 
sufficient rigour has been applied to the development 
process to meet the safety obligation. Generally this is 
executed through demonstration of compliance / 
achievement of a Safety Integrity Level (or something 
similar). The assurance evidence for software safety that 
is then required relies on a rigorous development process 
where the level of rigour and independence between 
teams is proportional to the SIL associated with the 

Proc.  of the Australian System Safey Conference (ASSC 2011)

Page 27



functions provided by that software component. Because 
the provision of assurance evidence for software safety is 
through demonstration of compliance to a specific 
development process, this approach cannot be applied for 
COTS components as this information is generally not 
available. As such most safety standards provide 
guidance on how to manage COTS, with varying degrees 
of expected effort. 
 

3.1 IEC61508  
Requires a proven-in-use argument, and a previously 
developed subsystem shall only be regarded as proven in 
use when it has a clearly restricted functionality and when 
there is adequate documentary evidence, based on the 
previous use of a specific configuration of the subsystem 
(during which time all failures have been formally 
recorded), and which takes into account any additional 
analysis or testing, as required. A component or software 
module can be sufficiently trusted if it is already verified 
to the required safety integrity level, or if it fulfils the 
following criteria: unchanged specification; systems in 
different applications; at least one year of service history; 
- operating time according to the safety integrity level, 
e.g. 100,000 hours for SIL 2. 

3.2 DO-178B 
Requires a proven-in-use argument. That is if equivalent 
safety for the software can be demonstrated by the use of 
the software's product service history, some certification 
credit may be granted. The acceptability of this method is 
dependent on: Configuration management of the 
software; Effectiveness of problem reporting activity; 
Stability and maturity of the software; Relevance of 
product service history environment; Actual error rates 
and product service history; and Impact of modifications.  

3.3 CENELEC EN50128 
The use of COTS software shall be subject to the 
following restrictions for SIL  1 or 2; it shall be included 
in the software validation process.  

3.4 Def(Aust) 5679 
Allows for cross-standards acceptance up to SIL 2 only. It 
also requires that all the prescribed System modelling and 
verification activities are required for the COTS 
components. 

3.5 UK DefStan 00-56 
Requires a Safety Case for the COTS components, and 
requires “sufficient” evidence to be provided to argue for 
the safety of the component. 

4 Use of COTS Operating Systems 
HSE conducted a study to assess the safety and integrity 
of the Linux operating system [Pierce02]. The overall 
conclusion of the study was that Linux would be, in broad 
terms, suitable for use in many safety related applications 
with SIL 1 and SIL 2 integrity requirements, and that its 
certification to SIL 3 might be possible. However, it is 
not likely to be either suitable or certifiable for SIL 4 
applications. 

It was argued by Pierce that for an OS (or indeed any 
pre-existing software) to be suitable for use in safety 
related system, it must satisfy the following criteria with 
an argument provided in the Safety Case. 

C1. The behaviour must be known with sufficient 
exactness, in all relevant domains of behaviour, 
to provide adequate confidence that hazardous 
behaviour of the safety related application does 
not arise because of a mismatch between the 
belief of the application designer and the true 
behaviour of the operating system; 

C2. The behaviour must be appropriate for the 
characteristics of the safety related application, 
in all relevant domains of behaviour; and  

C3. It must be sufficiently reliable to allow the safety 
integrity requirements of the application to be 
met (when taken together with other system 
features). In other words, the likelihood of 
failures must be sufficiently low. 

C4. An analysis has been carried out to show that the 
OS is suitable for that application, and that 
suitable mitigation is in place for any hazards 
arising from OS failure. 

As part of the analysis for C4, the following OS features 
were identified by Pierce which should be used as a 
minimum to assess the sufficiency or completeness of the 
safety requirements set on the OS: 

1. Executive and scheduling – the process 
switching time and the employed scheduling 
policy of the operating system must meet all 
time-related application requirements; 

2. Resource management (both internal to the 
operating system and provided to the application 
software) – the operating system’s own internal 
use of resources must be predictable and 
bounded; 

3. Internal communication – the operating system 
inter-process communication mechanisms must 
be robust and the risk of a corrupt message 
affecting safety adequately low; 

4. External communication – the operating system 
communication mechanisms used for 
communication with either other computers in 
the network or some external system must be 
robust and the risk of a corrupt message 
affecting safety adequately low; 

5. Internal liveness failures –the operating system 
must allow the application to meet its 
availability requirements; 

6. Partitioning – if the operating system is used to 
partition functions of differing SILs, functions of 
lower SIL should not interfere with the correct 
operation of higher SIL functions; 

7. Real-time – timing facilities and interrupt 
handling features must be sufficiently accurate 
to meet all application response time 
requirements; 

8. Security – only if the operating system is used in 
a secure application; 

CRPIT Vol 133 (ASSC 2011)

Page 28



9. User interface – when the operating system is 
used to provide a user interface, the risk of the 
interface corrupting the user input to the 
application or the output data of the application 
must be sufficiently low; 

10. Robustness – the operating system must be able 
to detect and respond appropriately to the failure 
of the application processes and external 
interfaces; 

11. Installation – installation procedures must 
include measures to protect against producing a 
faulty installation due to user error. 

The Certification Authorities Software Team (CAST) 
produced a paper to argue for the use of a COTS OS in 
safety-related application (i.e. up to SIL 2 or DO-178B 
level C) [CAST02]. This paper argues that the maximum 
integrity level that can be claimed for a COTS OS (when 
the source code and design information are not available) 
is SIL 1 (or Level D). It then goes on to argue that the 
COTS OS can be used with SIL 2 application if a 
protection and partitioning analysis is performed in 
conjunction with the system safety assessment. It is the 
opinion of the authors that the intent is equivalent to the 
approach suggested in the Linux paper [Pierce02]. 

5 Solution 
Guidance in standards is somewhat contradictory with 
widely varying requirements on assurance evidence for 
COTS. They offer little practical guidance on the 
development of safety assurance evidence for COTS 
software components. Research conducted into COTS OS 
has identified the broad requirements to achieve a 
satisfactory safety argument; however a specific strategy 
is not derived, nor is there evidence of this technique 
being applied. We therefore revert back to the 
fundamentals of safety assurance and focus on: 

1. Analysing failure modes of the COTS 
components and mitigating these to eliminate 
unspecified/unexpected behaviours. When the 
COTS component is an OS, the analysis 
performed must respect the criteria C1 to C4 
detailed above. 

2. Verifying and validating the safety of the 
required behaviour in the required operational 
context. 

3. Ensuring and maintaining safety during system 
upgrades and change. 

Our approach is to utilize the functionality of low 
integrity COTS components within a high integrity 
design by restricting the influence of the component on 
the rest of the system. The way to restrict the influence of 
COTS components is by isolating them using 
encapsulation mechanisms such as wrappers 
[O’Halloran99]. To achieve this, a hazard analysis is 
conducted, at a level of design commensurate with the 
SIL of the application, to identify how failures in the 
operating system can cause or contribute to hazardous 
failure modes of the system.  

To ensure the base platform remains invariant, the 
approach presented here assumes that OS upgrades will 
not be applied without conducting further analysis, and 

sufficient regression testing conducted. Additionally, the 
OS will be minimised as far as is practicable by disabling 
unnecessary system services and removal \ restriction of 
third party applications (such as anti-virus programs). 
Protection against virus infections is considered to be 
outside the scope of this approach. This is considered 
acceptable as the systems under discussion are generally 
not utilised on an open network, or exposed to external 
media (e.g. USB drives) which has not been previously 
determined to be uninfected. 

6 Putting it Into Practice 
Hereafter we will relate the theory above to a practical 
SIL 2 software application within the framework of the 
railway safety standard EN 50128. 

To comply with EN 50128 for SIL 2 one must at least 
demonstrate that the COTS products are included in the 
software validation process. System testing must be 
conducted in compliance with EN 50128 and requires that 
it be conducted on the system configured for its final 
application, including the hosting environment provided 
by the COTS OS, and all other COTS products. This 
testing will action only those features of the COTS 
products required to provide the functionality used for the 
product under development. Whilst the above approach 
satisfies the EN 50128 requirement for SIL 2 products, it 
is however acknowledged that conducting sufficient 
testing on the COTS products to ensure correct 
functionality in all circumstances is infeasible due to the 
complexity of these artefacts. As such additional 
precautions are required; guided by EN 50128 (as 
detailed above), specifically: 

1. The possible failures of the OS (e.g. data 
corruption), which may affect safe functioning 
of the product, will be identified and assessed, 
and mitigations will be designed within the 
developed SIL 2 software. 

2. System testing will test these mitigations as far 
as is practicable; and 

3. The OS will be minimised, and all un-necessary 
services and products either removed or 
disabled. 

Essentially, rather than assuring the COTS, we propose 
using the developed safety-related code to protect against 
failures which may impact upon the safety functions 
provided (the wrapper argument). In addition to providing 
protection to the safety functions, it is essential to protect 
safety-related input and output data to and from the SIL 2 
software, because this safety-related data must pass 
through the untrusted COTS OS. To overcome this, 
guidance is drawn from the CENELEC vital 
communications standard EN 50159-2. It must also be 
noted that special consideration needs to be given to the 
Human-Machine interface (HMI), as often it will rely 
heavily on interaction with many libraries and un-trusted 
screen elements from the COTS OS. This is demonstrated 
in the analysis below where specific constraints are 
placed on the interaction sequence. 

An added benefit of the wrapper / isolation approach is 
that, as the developed SIL 2 software code’s interface is 
to the OS only, with no direct interface to the hardware; 

Proc.  of the Australian System Safey Conference (ASSC 2011)

Page 29



this simplifies and limits the need to assess hardware 
interactions. 

6.1 Example: Train Order Management 
System 

The example train movement authority system examined 
in the previous work [Connelly10] represented a 
centralised train control system of signalled track, with 
limited modification to the trackside infrastructure, the 
only change was the addition of track blocking and 
detection resets. This model has been expanded to 
examine management of non-signalled or “dark territory” 
through the use of limited trackside infrastructure with a 
similar concept. The analysis has been updated to take 
into account this operational context, and demonstration 
provided that the same safety requirements are 
appropriate in this context. A high level diagram of the 
example train order system is provided in Figure 1, where 
a SIL 0 and SIL 2 component are being executed on the 
same COTS OS. The logical interactions are also 
provided to demonstrate that the SIL rated components 
have separate logical communication channels.                                     

The example system is configured as follows: 
1. Safety-critical interface to trackside 

infrastructure is a SIL 4 interlocking, which 
manages validation of authorities for issuance to 
rail traffic and ensures points are set 
appropriately prior to issuing the authority to 
TCS for delivery; the connected infrastructure is 
limited to overswitch track circuits and points 
machines; and 

2. An interface is provided to a central Train 
Control System (TCS), which allows the 
network controller to request an authority for a 
train, and receive a validated form for delivery 
to a train driver.  

3. A form is delivered to a train driver via a voice 
communication channel. The driver is required 
to record each form field on a local paper copy 
of the form. A form is only considered “issued” 
and valid for execution when the network 

controller confirms a correct readback from the 
train driver. 

4. The network controller confirms successful 
readback of the form via the TCS to the 
interlocking. The TCS runs on a Microsoft 
Windows XP PC. 

As identified in the previous analysis, traditional 
signalling systems rely on an interlocking design such 
that all controls from TCS are validated and confirmed as 
safe prior to modifying track status. Such is not possible 
in train order working, as whilst the interlocking is 
capable of validating an authority is safe for issuance, 
based on the safeworking rules, it cannot determine the 
current location of the train being issued an authority, or 
of any conflicting trains. Additionally the interlocking 
system cannot issue an authority directly to the train 
driver (as opposed to clearing signals along a route). The 
TCS is therefore required to allow for a network 
controller to confirm train location, and be provided with  
safeworking forms for issuance to the driver.  

Should the TCS corrupt location or form information 
the validation functions performed by the interlocking 
cannot be assured to prevent conflicting authorities. As a 
result the safety-related data is confirmed through the use 
of the forms display SWSIL 2 component. 

As there are many pre-existing TCS products in use in 
active railways, it is considered favourable from a user 
interaction point of view to unify the interface between 
control of train order and signalled area. As such 
providing the ability to a “safety kernel” to run on the 
TCS managing the safety-related issuance of authorities 
to trains allows network operators to leverage existing 
systems with minimal extra training or hardware 
requirements. As the validation of requests is managed by 
the SIL 4 interlocking, analysis has determined that the 
safety kernel is required to achieve SIL 2 or higher. We 
refer to this safety kernel as “Safety Display” in Figure 1. 

The safety functions provided by the kernel are limited 
to correct display of validated authority information, and 
return of network controller confirmation or rejection of 
the issuance to a train driver via voice. For the purposes 
of this paper, incorrect or unsafe requests can be 
considered mitigated by the interlocking design. As 

Figure 1: Train Movement Authority Management System 

TCS (SWSIL 0)

Computer Based 
Interlocking 

(SIL4)

Logical Architecture

Form Display 
(SWSIL 2)

Network Controller

TCS (SWSIL 
0)

Computer Based 
Interlocking 

(SIL4)

Network Controller
Train Driver

Physical Architecture

Form 
Display

(SWSIL 2)

TCS Hardware

CBI Hardware

CRPIT Vol 133 (ASSC 2011)

Page 30



railway signalling systems are not run in strict real time, 
it is possible to design these functions such that they can 
be requested via the existing SIL 0 interface, and 
confirmed through the safety kernel. The development of 
a physically separate SIL 2 interface to the interlocking 
was considered and rejected as unnecessarily obfuscating 
the Network Controller’s (NC) interaction workflows. 
Note that alarms require special consideration within the 
analysis, as they do have a timeliness component. A high 
level design of the sequence of interaction for each the 
safety function is shown in Figure 2. 

The fundamental strategy is that no change to the 
protection managed within the interlocking is allowed to 

progress without user confirmation through the “trusted” 
SIL 2 kernel, justifying that the remainder of the TCS 
does not need to achieve any integrity level.  

To demonstrate independence of the safety kernel 
from the SIL 0 TCS and OS the following activities were 
revisited in light of the modified context: perform hazard 
analysis on the safety functions provided by TCS, 
identifying the COTS causes for the hazards; and mitigate 
each cause in the safety kernel. Following the analysis, 
the hazards detailed in Table 1 were identified on the 
interface between SIL 0 and SIL 2 functionality (i.e. 
between TCS and the Forms Display). 

 
ID Description Cause(s) Safety Requirement(s) 
HAZ 1 Confirmation / Rejection is modified by TCS in 

transit to the interlocking 
COTS6 HMI1, HMI8 

HAZ 2 Safety Kernel SW fault corrupts message (unsafe) COTS1, COTS2, COTS3 HMI1, HMI2, HMI3, 
HMI4 

HAZ 3 Unrelated NC HMI interaction leads to inadvertent 
confirmation 

COTS4 HMI5, HMI7 

HAZ 4 TCS responds to confirmation request spuriously  COTS5, COTS7, COTS10 HMI8, HMI9 
HAZ 5 Multiple HMI failures (SIL 0 code) confirm dialog COTS4,  HMI6 

Table 1: Identified hazards 
 
 
 

TCS Safety Kernel Interlocking

Request authority or 
Track state change

Return Validated Request
For confirmation

Validate request 
complies with 
safeworking rules

Display validated request

Network
Operator

Pass on response

Mark confirmed / 
issued

Forward request

Request confirmation

Confirm request

Pass on response

alt

Pass on response

Remove stored 
protection

Reject request

Pass on response

Display track state change

No change

Figure 2: Sequence of Interaction 

Proc.  of the Australian System Safey Conference (ASSC 2011)

Page 31



Threat Interpretation Relevant failures from Table 3 
Repetition Previously correct message is resent out of context COTS5 
Deletion Message to or from Safety Kernel is deleted by SIL 0 components COTS8 and COTS9 
Insertion Message to Interlocking is generated by SIL 0 components COTS7 and COTS10 
Re-sequence Messages from Safety Kernel have been changed out of sequence 

by SIL 0 components 
COTS8 and COTS9 

Corruption Messages to or from Safety Kernel are corrupted by SIL 0 
components 

COTS1, and COTS6 

Delay Message is delayed, considered to be the same as deletion. COTS8 and COTS9 
Masquerade SIL 0 components attempt to perform functions which the 

Interlocking is expecting the Safety Kernel to perform. 
COTS4, COTS5, COTS7, and 
COTS10 

Table 2: Treatment of EN 50159-2 data transmission integrity threats 
Causes of these hazards were identified within the 

COTS products and addressed as shown in Table 3, the 
selection of probable failure modes was based upon the 
“operating system failure modes” detailed in [Pierce02]. 
When determining the possible COTS failures, 

consideration was given to the identified basic message 
errors, or threats, defined in Clause 5 of EN 50159-2, 
which deals with transmission systems (shown in Table 
2). 

 
ID SIL 0 / COTS Software Failure Possible Effect on SIL 2 

element 
Safety Requirement(s) 

COTS1 
Corruption of incoming message 
from interlocking  
(HAZ2) 

Displayed information may not 
precisely match information 
stored in interlocking. May 
lead to confirmation of unsafe 
state change. 

HMI1: Data correctness and integrity 
shall be confirmed through a 
sufficiently strong HASH / CRC of 
all data stored in the message. This 
shall be repeated during Safety 
Kernel processing, to detect 
intermediate memory interference. 

COTS2 

Corruption of message during 
processing within Safety Kernel 
as a result of inappropriate 
memory access by SIL 0 
elements. Could occur at any 
time, and may occur on volatile or 
non-volatile memory.  
(HAZ2) 

Displayed information may not 
precisely match information 
stored in interlocking. May 
lead to confirmation of unsafe 
state change. 

HMI1 
HMI2: The Safety Kernel is run as a 
separate process to the TCS, utilising 
Operating System Level memory and 
execution protection. 

COTS3 

SIL 0 Elements may interfere with 
rendering of data in Operating 
System level dialog display, 
causing function to fail in a 
manner which may modify 
displayed data. 
NB: This could occur as an OS 
level failure regardless of whether 
there was other SIL 0 code 
running or not 
(HAZ2) 

Displayed information may not 
precisely match information 
stored in interlocking. May 
lead to issue of incorrect 
information, or inability to 
detect operator error. 

HMI3: Prior to delivery to the OS 
dialog renderer the safety-related data 
shall be rastererised to images (e.g. 
bitmaps) from a verified library of 
individual character images. Any 
image level corruption will be 
visually detectable, or insufficient to 
modify the data meaning. 
HMI4: Design of rendered 
information shall be sufficient to 
mitigate undetectable modification of 
bitmap location i.e. data transposition 
/ removal. 

CRPIT Vol 133 (ASSC 2011)

Page 32



ID SIL 0 / COTS Software Failure Possible Effect on SIL 2 
element 

Safety Requirement(s) 

COTS4 

Required confirmation response to 
Safety Kernel may be triggered by 
SIL 0 elements, or by NC during 
unrelated interaction with HMI. 
NB: This could occur as an OS 
level failure regardless of whether 
there was other SIL 0 code 
running or not 
(HAZ3, HAZ5) 

Network Controller may not 
have sufficient time to 
interpret, or see all data. If 
state change is one which 
modifies track protection (e.g. 
logging train off, removal of 
track block) Network 
Controllers may make unsafe 
decisions. 

HMI5: The safety display is designed 
such that keyboard entry is disabled, 
meaning that should the window take 
focus during unrelated data entry, the 
NC can’t accidently cancel or confirm 
the state change. 
HMI6: The Safety Kernel 
interactions shall be such that at least 
three Windows events (related to the 
NC confirmation action) are received, 
in the correct sequence, prior to 
confirmation of state change. 
HMI7: Confirmation interactions for 
state changes shall be at least two 
discrete user interactions with the 
Safety Kernel dialog, geographically 
separated on the screen. 
NB: HMI6 and HMI7 are based on 
FTA not presented in this paper 

COTS5 

Message from Safety Kernel is 
cached by SIL 0 elements, and 
subsequently resent to the 
INTERLOCKING. Alternatively 
the SIL 0 elements may cause 
messages to be sent out of 
sequence. 
(HAZ4) 

Message may match 
outstanding response, and 
incorrectly confirm / cancel 
state change 

HMI8: NONCE is included in return 
message. Should this NONCE not 
match the expected number then 
message will be rejected by the 
interlocking 

COTS6 

Message from Safety Kernel is 
corrupted during transmission 
through TCS subsystem 
(HAZ1) 

Confirmation may be changed 
to rejection and vice versa 

HMI1 
HMI8 

COTS7 

Message generated to 
INTERLOCKING by SIL 0 
elements through some internal 
failure  
(HAZ4) 

Message may match 
outstanding response, and 
incorrectly confirm / cancel 
state change 

HMI9: Messages shall undergo 
endpoint authentication between the 
interlocking and the Safety Kernel 
subsystems. 
Message Authentication prevents 
messages from SIL 0 elements being 
treated as valid by either the 
interlocking or Safety Kernel. 

COTS8 
Failure of SIL 0 elements interacts 
with Safety Kernel 
(Fail safe, no hazard)  

Possible failure to send or 
receive Safety Kernel 
messages. Alternatively 
messages may be sent out of 
sequence. 

HMI8 
N/A: TCS Backend Failure: no 
messages will be sent to or from the 
Safety Kernel – Fail safe state. 

COTS9 

SIL 0 elements consume all TCS 
hardware resources (Safety Kernel 
process starvation) 
(Fail safe, no hazard) 

Safety Kernel may not receive 
or respond to messages. 
Alternatively messages may be 
sent out of sequence. 

N/A: Fail Safe state for the TCS 
hardware, as the interlocking does not 
modify  protection should 
confirmation not be received. 

Proc.  of the Australian System Safey Conference (ASSC 2011)

Page 33



ID SIL 0 / COTS Software Failure Possible Effect on SIL 2 
element 

Safety Requirement(s) 

COTS10 

SIL 0 element generates a 
message to Safety Kernel through 
some internal failure (although 
highly unlikely this is considered 
to be a credible failure mode) 
(HAZ4) 

Safety Kernel may respond to 
message, which is passed onto 
interlocking, and interpreted as 
valid. 
If state change is one which 
modifies track protection (e.g. 
reset of track detection, 
removal of track block) 
Network Controllers may make 
unsafe decisions. 

HMI9 

Table 3: Safety Kernel data integrity protection from SIL 0 failure

Based on the above analysis, the nine identified HMI 
safety requirements must be implemented in order to 
achieve SIL 2 for the safety kernel. With these safety 
requirements in place, and confirmation via a Fault Tree 
Analysis, an argument can be presented that the integrity 
of the identified safety kernel is commensurate with EN 
50128 SIL 2. 

7 Issues with Alarms 
Whilst the fundamental concept is that the system must 
be able to fail safe, in the example train order system 
discussed above, it was identified that the concept 
presented some issues with alarm management. In all 
cases where a network controller has requested a change 
of state, should the system fail to present confirmation; 
the railway will remain in a safe state. Where the 
interlocking needs to alert the network controller of a 
failed railway state however, this approach is not wholly 
appropriate. 

If a train is travelling on an existing authority, the 
points have been confirmed by the interlocking to be in 
an appropriate lie for that authority. Should the 
interlocking then either lose detection of those points, or 
detect them in the incorrect lie, the train cannot be 
protected through any means other than the network 
controller advising them of the situation. As such COTS1, 
COTS6, COTS8 and COTS9 need to be re-examined. To 
partially mitigate this risk a further Safety Requirement 
was identified. 

HMI10: The Safety Kernel shall display any safety 
related alarms with priority over all other messages 
from the interlocking 

Should the TCS be unavailable, this alarm fail to be 
delivered, or the alarm is corrupted such that it is rejected 
by the system, HMI10 is insufficient to ensure the train 
driver can be notified within sufficient time. To ensure 
appropriate protection, an external mitigation was 
identified: 

Application Condition: All time-sensitive safety 
alarms shall require acknowledgement within a 
specified time, should network controller confirmation 
not be provided, a control centre alarm shall be raised 
external to TCS to ensure rail traffic can be protected. 

This analysis highlights the importance of consideration 
of the whole of system safety argument when assessing 
COTS failures within a single subsystem. 

8 Further Limitations and Issues 
Further to the identified issues with presentation of time-
sensitive data, there are several further limitations to the 
applicability of the strategy. Specifically: 

1. Systems of this nature need to have a fail safe 
state, or have sufficient external mitigations (as 
for alarms above); 

2. Great reliance is placed on the human-in-the-
loop, both to detect system failure and to 
perform actions correctly; 

3. At higher integrity levels (SIL3 or 4),  
a. the required integrity from the 

operating system is not considered 
justifiable due to the partial reliance on 
process execution integrity and 
separation; 

b. higher integrity is required from the 
hardware, e.g. 2-out-of-2 processor 
architecture. 

4. Some integrity is assumed of the operating 
system. In particular that the SIL 2 binary code 
shall execute unperturbed by untrusted code, and 
that memory will remain unchanged during 
active execution The assumption on process 
protection is based on the lifetime of the 
Windows NT Kernel, and maturity of Windows 
XP; and 

5. Should rich data entry be required, further 
analysis of the COTS failure modes would need 
to be conducted. 

6. Any changes to the OS configuration (upgrades 
and patches) will need to be assessed to confirm 
that they do not impact on the safety kernel 
argument, as such may change the low level 
process execution behaviour of the OS. 

7. Anti-Virus protection systems present 
difficulties with the approach detailed in this 
paper, as by design they have low level access to 
programs under execution, and can impact on 
the operating system’s scheduling and interrupt 
executing processes. The current approach has 
been to forbid anti-virus protection systems as 
the product under development exists in a 
completely isolated and controlled network. It is 
not expected that this approach will be suitable 
for all applications, and as such analysis of the 

CRPIT Vol 133 (ASSC 2011)

Page 34



possible interactions with anti-virus products 
will need to be conducted for more general roll-
out.  

9 Conclusions 
This paper has presented further evidence of a practical 
approach to arguing for a COTS OS used to enable 
safety-related applications up to SIL 2. Two such systems 
are currently under development, and the approach 
determined sound by separate third party independent 
safety assessors. Therefore it is believed that when used 
within the stated limitations it is expected that the COTS 
OS approach described will result in a suitably safe 
system, whilst providing significant cost benefit to 
projects, and to customers in various industries. 

Further work is required to apply this approach to real-
time applications or ones requiring integrity greater than 
SIL 2. 

10 References 
R.H. Pierce, Preliminary assessment of Linux for safety 

related systems, 2002, UK HSE Research Report 011. 
C. Jones, R. Bloomfield, P. Froome & P. Bishop, 

Methods for assessing the safety integrity of safety-
related software of uncertain pedigree (SOUP), 2001, 
Contract Research Report 337. 

C. O’Halloran. Assessing Safety Critical COTS Systems. 
Journal of the System Safety Society, 35(2), 1999. 

Certification Authorities Software Team, Use of a Level 
D Commercial Off-the-Shelf Operating System in 
Systems with Other Software of Levels C and/or D, 
CAST-14, June 2002. 

United States of America Department of Defense. MIL-
STD-882: System Safety Program Requirements. 

United Kingdom Ministry of Defence. DEF STAN 00-56: 
Safety Management of Defence Systems. 2007. 

Defence Science Technology Organisation. Def (Aust) 
5679: The Procurement Of Computer-based Safety 
Critical Systems. DSTO, 1998. 

Radio Technical Commission for Aeronautics. DO178B: 
Software Considerations in Airborne Systems and 
Equipment Certification. 1992. 

International Electro-technical Commission. IEC61508: 
Functional Safety: Safety Related Systems. IEC, 1995. 

CENELEC. EN 50128: Railway applications - 
Communications, signalling and processing systems - 
Software for railway control and protection systems. 
2001. 

CENELEC EN 50159-2: Railway applications – 
Communication, signalling and processing systems – 
Part 2: Safety-related communication in open 
transmission systems. 2002. 

S. Connelly, H. Becht, Arguing for the use of COTS 
operating systems with safety-related software, ISSC 
28 2010. 

Proc.  of the Australian System Safey Conference (ASSC 2011)

Page 35




