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Abstract

Searching bio-chemical structures is becoming an
important application domain of information re-
trieval. This paper introduces a protein structure
matching problem and formulates it as an infor-
mation retrieval problem. We first present a novel
vector representation for protein structures, in which
a protein structural region, formed by the vectors
within the region, is defined as a patch and indexed
by its patch signature. For a k-sized patch, its patch
signature consists of 7k − 10 inter-atom distances
which uniquely determine the patch’s spatial struc-
ture. A patch matching function is then defined.
As structures for proteins are large and complex,
it is computationally expensive to identify possible
matching patches for a given protein against a large
protein database. We propose to apply dimensional-
ity reduction to the patch signatures and show how
the two problems are adapted to fit each other. The
Locality Preservation Projection (LPP) and Singular
Value Decomposition (SVD) are chosen and tested
for this purpose. Experimental results show that
the dimensionality reduction improves the searching
speed while maintaining acceptable precision and
recall. From a more general point of view, this paper
demonstrates that information retrieval techniques
can play a crucial role in solving this biologically
critical but computationally expensive problem.

Keywords: Protein Structure Matching, Similarity
Measure, Dimensionality Reduction

1 Introduction

Information science has been applied to computa-
tional biology, resulting in a new field called Bioinfor-
matics, which investigates “the collection, archiving,
organization and interpretation of biological data”
(Orengo, Jones & Thornton 2003).

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

Discovering functional relationships between pro-
teins is recognized as a central task of modern bioin-
formatics. The problem of comparing amino acid se-
quences in proteins has been investigated extensively
in the past. The research focus has now been shifted
towards higher level biological structures and func-
tions. It has been found that it is common for pro-
teins that do not share significant sequence similarity
to have significant structural similarity (thus poten-
tially functional similarity) (Mount 2001). When the
sequence similarity is below a certain percentage, say
20%, only structure analysis can reveal the poten-
tial relationship which may be hidden at the sequence
level(Bourne & Weissig 2003). It is known that the
protein’s unique three-dimensional structure often de-
termines its properties. Finding proteins with simi-
larly substructures is an important problem, as cer-
tain structural regions of a protein often perform some
specific functions, and having one or more similar 3D
substructures has been considered as an essential con-
dition for potential protein interaction.

As 3D protein structures are large and complex, it
is computationally expensive to identify possible loca-
tions and sizes of the matching structural regions for
a given protein against a large protein database. A
commonly used structure representation is the inter-
atom distance matrix. As the complexity of the dis-
tance matrix representation is quadratic to the num-
ber of atoms, it is very expensive for processing a
large number of proteins.

To alleviate this problem, we introduce a patch sig-
nature model which has been recently proposed based
on a vector representation for protein structures. A
structural region is defined as a patch formed by the
vectors within the region. The patch signature is
used to characterizes a patch. Compared to the tradi-
tional distance matrix representation, patch signature
is more compact and linear to the number of atoms.
The matching function between two patches is then
defined as pair-wise comparisons between their patch
signatures.

However, the matching stage can still be very ex-
pensive since the dimensionality of patch signature
data can be large when the size of patch is large.
A obvious solution to more efficient patch match-
ing is to reduce the dimensionality of patch signa-
tures while maximally preserve the matching func-
tion defined between two patches in the resultant
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Figure 1: A fragment of amino acid chain.

lower dimensional space. Dimensionality reduction
has been extensively applied in information retrieval.
The goal is to find an “intrinsic” subspace, which is
the best lower dimensional approximation of the orig-
inal space depending on the objective function a di-
mensionality reduction algorithm tries to preserve. A
well known approach is Singular Value Decomposi-
tion (SVD), which best preserves inner product in
an Euclidean space and is the basis of the Latent
Semantic Indexing (LSI)(Deerwester, Dumais, Lan-
dauer, Furnas & Harshman 1990)(Landauer, Foltz
& Laham 1998). Recently, a novel Locality Pre-
serving Projection (LPP) algorithm (He, Cai, Liu &
Ma 2004) has been introduced to document indexing
and demonstrated a better performance. Unlike SVD,
LPP aims to preserve local geometrical structure in a
manifold in terms of L2 distance between data points.
In this paper, we will address how the LPP and SVD
can be applied to patch matching and demonstrate
that they can largely improve efficiency (measured by
CPU time) while maintaining an acceptable precision
and recall.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief introduction to protein structure
and its 3D representations. We present a patch sig-
nature model and its similarity measure in Section
3. Two typical dimensionality reduction approaches,
SVD and LPP, and their application in patch signa-
ture matching are studied in Section 4. Section 5
reports the experimental results. The related work
are described in section 6. Section 7 finally concludes
the paper and highlights the future work.

2 Preliminaries

A protein is a large molecule composed of one or more
chains of amino acids in a specific order. Twenty
standard amino acids have been identified in protein
structures. As illustrated in Fig. 1(a), each amino
acid contains a central atom Cα to which an amino
(N -H) group and a Carboxyl (C = O) group are at-
tached. The amino group, carboxyl group and Cα
atom construct the mainchain(or backbone) of an
amino acid. In addition, each amino acid (except
Gly) has a sidechain (or R group) attached to its cen-
tral atom Cα. It is the sidechain and sidechain alone
which distinguishes one amino acid from another and
furthermore confers the specific function to an amino
acid(Bourne & Weissig 2003). The sidechain is typi-
cally connected to Cα via another atom Cβ(Branden
& Tooze 1998). A protein is constructed by amino
acids that are linked by peptide bonds forming a
polypeptide chain.

The amino acid sequence of a protein’s polypep-
tide chain is called its primary structure, which can
be represented a linear string of amino acids, abbre-
viated with one-letter codes.

Protein structure can be folded into a three-
dimensional configuration as a set of points (atoms)

in 3D space. For example, PDB (Protein Data
Bank)(Protein data Bank n.d.) arranges a protein on
an imaginary Cartesian coordinate frame and assigns
(x,y,z) coordinates to each atom. This representation
serves as a basis of different higher level representa-
tions. Different regions on the amino acid sequence
form regular secondary structures, including the α he-
lices and β sheets in the three-dimensional space. A
3D protein structure can usually be characterized by
its mainchain (via Cα atoms) and/or sidechains (via
Cβ atoms).

For example, in the DALI(Holm & Sander
1993)(Holm & Sander 1996) system, a distance ma-
trix containing all pairwise distances between Cα
atoms is built, where each Cα-Cα distance reflects
the relationship of two amino acids respectively cen-
tered by the two Cα atoms. If the distance between
two amino acids (Ai and Aj) of protein A is similar
to the distance between two amino acids (Bi and Bj)
of protein B, amino acids Ai and Aj could be mapped
to the amino acids Bi and Bj .

The VAST(Gibrat, Madej & Bryant 1996) and
SARF(Alexandrov & Fischer 1996) systems use sec-
ondary structural elements (SSE). Each SSE in a pro-
tein is represented by position, length, and direc-
tion of a vector determined by the position of the
Cα atoms along the SSE. It assumes that if two vec-
tors representing two secondary structures are simi-
lar, the internal structure within secondary structures
are similar.

The program SSAP(Orengo & Taylor
1996)(Orengo & Taylor 1989) represents 3D structure
of protein as structural environments for amino acids,
each of which is the set of vectors from the Cβ atom
to Cβ atoms of all other amino acids in the protein.

There are some other methods such as Torsion (di-
hedral) Angles (Bergeron 2003). However, all the
above methods are based on either mainchains (via
Cα) or sidechains (via Cβ) alone, thus they are in-
sufficient to model the orientation of sidechains. A
different way of representing a protein’s structure as
vectors of Cα-Cβ atoms. A pair of Cα-Cβ atoms in
the same amino acid constructs a vector, denoted−−−→
CαCβ , from its Cα end to Cβ end. More recently,
the vector representation model(Spriggs, Artymiuk &
Willett 2003, Huang, Zhou & Song 2005) has been op-
erationalized. For each residue, a vector from Cα to
Cβ can be constructed. This vector representation in-
volves not only the mainchain but also the sidechain
information. The position of Cβ atom is used to em-
phasize the functional part of the side-chain corre-
sponding to the vector. The vector representation
also offers a flexibility of generalizing the use of Cβ to
a psudo-atom (center of the sidechain). It has been
argued in (Artymiuk, Spriggs & Willett 2005)(Spriggs
et al. 2003):

“The vectorial representation is clearly an ex-
tremely simple description of the relative orientations
of the side-chains in a 3D protein structure. It does,
however, have the advantage that it does not overde-
fine the orientations of ends of side-chains, as could
occur if a more precise representation was to be used
that was based directly on the individual atomic co-
ordinates in the PDB. ”

There are currently over 30,000 proteins in the
PDB database, containing 3D coordinates of all atoms
in each protein. It is practical and relatively straight-
forward to build the vector model for each protein and
calculate Euclidean distances between atoms. For the
rest of this paper, a protein always means its vector
model. We adopt this approach as a basis of our
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Figure 2: (a)Spatial relationship between two vectors. Four
internal distances are denoted as dαα, dββ , dαβ , and dβα. (b)
An example of patch. Each vector represents an amino acid.
The diameter is ε. The dashed line shows the α-α distance
(dαα) between two vectors.

model, which is formulated in the next section.

3 Problem Formulation

This section presents a protein structure matching
problem, which has been first introduced in (Huang
et al. 2005). The problem essentially deals with the
identification of matching structural regions, called
“patches”, between two proteins.

3.1 Vector Representation of Protein Struc-
tures

A protein can be defined as a set P of three dimen-
sional vectors:

P = {vi|1 ≤ i ≤ N} (1)

where N = |P |.
Each vi denotes a vector of

−−−→
CαCβ for amino acid i

(Fig.1(b)). The length of a vector (i.e., the distance
between its α-end and β-end) is typically fixed at 1.5
Å (angstrom).

3.2 Characterizing Protein Structures via
patch Signatures

Since the proteins can be represented as geometric
objects. The structures of the geometric objects have
a direct influence on the proteins structure matching.
We propose that 3D protein structure comparison can
be performed by comparing the spatial relationship
among vectors between two proteins. In other words,
if two protein structures are similar, the spatial re-
lationship among vectors of one structure must be
similar to that of the other. The notion of charac-
terization of spatial relationship refers to constraints
which tie the vectors so that they have a fixed spatial
relationship. That is, they can only rotate or trans-
late globally as a whole without any internal change
of positions. As the distances between atoms play a
significant role in protein structure analysis, here we
consider a distance-based characterization of spatial
relationships between vectors. Since the PDB (Pro-
tein Data Bank) supplies coordinates of each atom
of proteins in three-dimensional space, it is easy to
calculate Euclidean distances between atoms.

The structural regions on a protein can be de-
scribed as patches(Huang et al. 2005) which are sub-
sets of vectors in the protein structure within a certain
distance cutoff.

Definition 1 (Patch). A patch is defined as a spher-
ical region of protein P, whose diameter is ε (ie. a
distance cut-off) (Fig.2)(b). More formally, M =
{v1, v2, ..., vQ} ⊆ P (Q > 2) is a patch if (∀vi, vj ∈

Cβi'

Cαi

(a) (c)

(d)

Cα1

Cα2 Cβ1

Cβ2

(e)

v1

v2

v1

v2

v2 v2

v1v1
vi

Cβi

(b)

v1

v2

Cα1

Cα2

Cβ2

Cβ1 Cβ1

Cβ1 Cβ1

Cα1 Cα1

Cα1

Cα2

Cα2Cα2

Cβ2

Cβ2 Cβ2

Cβi

Cβi Cβi

Figure 3: Patch Signature.

M, di,j
αα ≤ ς). In addition, M is called a non-

extendable patch if and only if (∀vi, vj ∈ M, di,j
αα ≤ ς)

∧ (∀vk ∈ M, ∀vl 6∈ M,dk,l
αα > ς).

We can observe from the above definition that a
non-extendable patch actually represents a maximal
structural region with respect to a distance cutoff ς
(15Å in this paper). Generally, a patch is a set of
vectors with particular constraints on spatial arrange-
ment.

Proposition 1. For a k-sized patch (k > 2), 7k −
10 internal distances are sufficient to characterize the
spatial relationship among the vectors.

A formal proof of this proposition can be found in
(Huang 2005). As an example, we can look at one way
of introducing the internal distances, as illustrated in
Fig.3 (the dashed lines as internal distances). The
first two vectors v1 and v2 form a stable triangular
pyramid with the internal distances among their ends
(Fig.3(a)). When the ith (i > 2) vector vi comes in,
it constructs two triangular pyramids for tying to the
original structure (i.e. v1 and v2), with four internal
distances dv1,vi

αα , dv1,vi

ββ , dv1,vi

αβ , dv1,vi

βα , and other three
distances dv2,vi

αα , dv2,vi

ββ and dv2,vi

αβ (Fig.3(e)). There-
fore, for k vectors, the total number of internal dis-
tances is 4 + (k − 2)× 4 + (k − 2)× 3 = 7k − 10.

Proof. Proof omitted. Refer to (Huang 2005) for de-
tails.

For a k-sized patch (k > 2), the set of 7k − 10
internal distances is called its patch signature, which
identifies the spatial relationship between vectors in
the patch. Proposition 1 proves that O(k) distances
are required. It is of significance because the patch
matching algorithms presented later are based on a
number of internal distances linear to k. The fewer
distances involved, the faster in patch comparison.

A k-sized patch is an unordered collection of k vec-
tors and in theory it has k! representations of 7k− 10
distances. Ordering the vectors is necessary for gen-
erating a unique representation of the patch.

To generate an ordering of vectors in a patch,
a basevector vib

needs to be selected as a starting
point, based on which an ordering function φib

: q →
q′|q, q′ = 1..k is defined. An detailed ordering algo-
rithm was given in (Huang 2005). Throughout the
rest of the paper, we assume that the vectors in any
k-sized patch S are already ordered, denoted as SC.
Now consider a k-sized patch SC = {vi1 , vi2 , ..., vik

}.
According to Proposition 1, SC can be represented



uniquely by 7k−10 distances (dimensions) in the fol-
lowing order:
SC= < di1,i2

αα , di1,i3
αα , ..., di1,ik

αα , di2,i3
αα , ..., di2,ik

αα ,
di1,i2

ββ , di1,i3
ββ , ..., di1,ik

ββ , di2,i3
ββ , ..., di2,ik

ββ ,
di1,i2

αβ , di1,i3
αβ , ..., di1,ik

αβ ,
di1,i2

βα , di1,i3
βα , ..., di1,ik

βα >
Recall that in Section 2 we have mentioned the

distance matrix approach, which would require three
matrices to store all the dαα, dββ , dαβ , and Cβα dis-
tances. The advantage of our patch signature model
lies in its linear representation, based on which we
shall develop more efficient patch comparison algo-
rithms.

3.3 Patch Matching

The following is the definition of a matching function
between two patch signatures.

Definition 2 (k-sized patch matching). Given
two k-sized patches, SC = {vi1 , vi2 , ..., vik

} and
S′C = {ui1 , ui2 , ..., uik

}, both represented by their
7k − 10 dimensional patch signatures, i.e. SC =<
s1, s2, ..., sn > and S′C =< s′1, s

′
2, ..., s

′
n >. They

match each other (denoted as SC ≈δ S′C or in short
SC ≈ S′C) if

s1 ≈ s′1 ∧ s2 ≈ s′2 ∧ ...sn ≈ s′n (2)

where “≈” means “equals to within a tolerance δ”.
Based on the k-sized patch matching, we can then

define the non-extendable patch and protein structure
matchings as follows.

Definition 3 (Non-extendable Patch Match-
ing). For two non-extendable patches M and M ′,
they match each other (M ≈δ M ′) if there exists a k-
sized patch S ⊆ M and another k-sized patch S′ ⊆ M ′
such that SC ≈δ S′C and 5 < k ≤ 20.

Definition 4 (Protein structure matching). For
two proteins P and P ′, they have a matching structure
if there exists non-extendable patches M ⊆ P and
M ′ ⊆ P ′ such that M ≈δ M ′.

In summary, given a query protein Q, the general
problem we investigate is to find all the proteins from
a protein database such that the resultant proteins
have a one or more matching non-extendable patches
with Q, and to identify all the maximum sized match-
ing patches. The maximum sized matching patches
are of interest and will be presented to the biologists
for post-processing and further investigation.

3.4 A Match-and-Expand Strategy

In this subsection, we introduce a match-and-expand
strategy for fast protein structure matching.

If two non-extendable patches M and M ′ have a
maximal matching patch of K vectors, they must also
have matching sub-patches of 1, 2, · · · , K − 1 vec-
tors. The match-and-expand strategy, similar to the
philosophy of BLAST system(Altschul, Gish, Miller,
Myers & Lipman 1990), first matches patches of the
size k(k ≤ K) to reduce the number of candidates. A
set of all patches of size k is pre-computed for all pro-
teins in the database. In order to check if M and
M ′ have a matching patch, the k-sized patches of
M and M ′ are checked first. If no k-sized match-
ing sub-patches are found, M and M ′ will not have

any matching sub-patches. Otherwise, M and M ′ will
be further checked in the expand step, starting from
their matching k-sized patches, until finding maxi-
mum K sized matching patches. Operationally the
expand stage can be accomplished by incrementally
expanding k-sized sub-patches S and S′ by one vec-
tor each time until maximum matching patches are
reached.

The choice of k is important. If it is too small, then
the match step may generate too many false hits; if it
is too large, then the cost of materializing all k-sized
patches can be very high. However, the choice of k is
beyond the scope of this paper. We will focus on the
match step.

We have defined the patch signature which is linear
with respect to the number of atoms within a patch.
The two k − sized patches can then be matched by
comparing their patch signatures. Though the di-
mensionality of this representation (7k − 10) is much
less than the traditional inter-atom distance matrix
(C2

2k), searching a large patch database is still expen-
sive when k is large. A obvious solution to the prob-
lem is to reduce the dimensionality of patch signatures
while maximally preserving the matching function be-
tween two patches in the lower-dimensional space. We
will study two powerful dimensionality reduction ap-
proaches in the next section and discuss how to apply
them on patch signature data.

4 Dimensionality Reduction on Patch Signa-
tures

Dimensionality reduction has been extensively ap-
plied in information retrieval. The goal is to find
an “intrinsic” subspace, which is an approximation
of the original space but with a lower dimensional-
ity. It has been demonstrated that there does exist
an intrinsic semantic sub-space where the dimensions
with lower eigenvalues carry redundant information
and therefore can be truncated(Ding 1999).

On the other hand, projecting the original data
to a lower dimensional space also helps discover some
embedded “latent semantics” - i.e., some implicit as-
sociations which are unseen in the original high di-
mensional space.

A well known dimensionality reduction approach
is the Singular Value Decomposition (SVD), which
is the basis of the Latent Semantic Indexing
(LSI)(Deerwester et al. 1990)(Landauer et al. 1998).

Recently, a Locality Preserving Projection (LPP)
algorithm (He et al. 2004) has been introduced for
document indexing and demonstrated better perfor-
mance than SVD. Unlike SVD, which preserves inner
product in an Euclidean space, the LPP aims to pre-
serve local geometrical structure of data manifold.

Note that our patch signature matching function,
defined in the last section, requires that the difference
between values of each dimension of two data points
should be within a tolerance. Neither SVD nor LPP
is designed to directly preserve such a matching func-
tion. Therefore, we propose to use the Euclidean dis-
tance based measure between two patch signatures as
an approximation of the previous pairwise matching
function. Since k-sized patches can be equivalently
treated as points in a 7k − 10 dimensional space, the
similarity between two patches can then be measured
by the Euclidean distance between them.

Definition 5 (Patch Similarity ∼δ′). Given two
k-sized patches SC =< s1, s2, ..., sn > and S′C =<
s′1, s

′
2, ..., s

′
n >. They are similar (denoted as SC ∼δ′



S′C or in short SC ∼ S′C) if d2(SC, S′C) < δ′, where

d2(SC, S′C) =

√√√√
n∑

i=1

|si − s′i|2 (3)

Next, we will show theoretically how the Eu-
clidean distance based similarity measure can return
a super-set of the resultant matches from the pair-
wise matching and thus guarantees the recall of
matching results.

Proposition 2. If SC ≈δ S′C, then d2(SC, S′C) <√
nδ

Proof. This proposition can be proven trivially ac-
cording to definition 3 and definition 6.

The next two subsections will describe SVD and
LPP algorithms respectively and give details in how
they can be applied to the patch signature data.

4.1 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a powerful
technique from linear algebra. Given m×n patch sig-
nature matrix X with rank r, where m is the number
of k-sized patches and n is the number (i.e., 7k − 10)
of dimensions, X can be decomposed to:

X = UΣV T (4)

where U and V are orthogonal m× r and n× r ma-
trices respectively and Σ is an r × r diagonal matrix
whose values are monotonically increasing non-zero
singular values of X. The columns of U and V are
the eigenvectors of XXT and XT X respectively.

Dimensional reduction is performed by taking only
the first p eigen vectors and singular values to form:

Xp = UpΣpV
T
p (5)

where Up and Vp are m× p and n× p matrices com-
posed of the first p columns of U and V respectively.
According to the Eckart-Young theorem, Xp is the
closest rank-p approximation by least square method
to X in sense of both matrix Frobenius norm and
2-norm, i.e.

Xp = min
rank(B)=p

||X −B||2 (6)

Xp = min
rank(B)=p

||X −B||F (7)

Via SVD, the j−th patch signature vector SCj can
be projected to a p-dimensional vector on the feature
space of span V T

p . The projected vector is actually
recorded as the j-th row of Up.

For a general exposition of the theory of SVD the
reader is directed to (Golub & Van Loan 1996). The
major difficulty of LSA is the choice of a suitable value
for p. Tough the choice of optimal p can be theoreti-
cal, for example the work by Ding (Ding 1999), exper-
imental approach is more widely used in information
retrieval community, where an optimal p is derived by
reference to some experiment. In our experiments we
also adopt the experimental way.

4.2 Locality Preserving Projection

Locality Preserving Projection (LPP) (He & Niyogi
2003)(He et al. 2004) aims to preserve the intrinsic
geometric structure in term of local neighborhood in-
formation of the data on a manifold.

Suppose a set of n-dimensional patches
x1, x2, ..., xm in space <n form a m × n data
matrix X. The core LPP algorithm includes the
following steps:

1. Construct an adjacency graph with each data
point (i.e., patch) as a node and put an edge between
two point xi and xj if they are close enough. The
closeness between xi and xj can be measured by their
distance ||xi − xj ||2. A simple but effective way of
connecting two nodes is based on q nearest neighbors,
i.e., xi and xj are the q nearest neighboring points;

2. A m×m adjacency matrix W is built whereby
W (i, j) = 1 if xi and xj are connected; otherwise
W (i, j) = 0.

There are some other options to the adjacency
graph construction and adjacency matrix weighting.
We do not compare these different options in this pa-
per and will leave it as one of our future work.

3. Compute Eigenmaps by solving the following
generalized eigenvector problem:

XLXT al = λlXDXT al (8)

where D is m × m diagonal matrix with Dii =∑
j Wji, L = D − W is the Laplacian matrix, λl

is the l-th eigenvalue and al is the l-th eigenvector.
The transformation matrix A = [a1, a2, ..., ap] can be
formed, ordered by the eigenvalues λ1 < λ2 < ... < λp
where p << n.

4. Project the points to p-dimensional space <p:

xi → x′i = AT xi (9)

Note that LPP is a linear approximation of Lapla-
cian Eigenmaps (Belkin & Niyogi 2001). They both
try to preserve locality via the following objective
function:

min
∑

ij

(x′i − x′j)
2Wij (10)

They are the same in the first two steps. The step 3
of the latter is to compute the generalized eigenvector
for:

Lal = λlDal (11)

The rows of resultant m× p matrix A can be used
as approximation of the original data in the lower
dimensional space <p:

x′i = (a1(i), a2(i), ..., ap(i)) (12)

The justification for their ability of preserving ge-
ometric structure on manifold is based on the Lapla-
cian matrix L which is an approximation to the
Laplace-Beltrami operator defined on the manifold
(Belkin & Niyogi 2001).

5 Experiments

In this section, we set up the experiments and re-
port the results of an extensive performance study
conducted to evaluate the proposed representation
model and the dimensionality reduction on protein
patch data.



Table 1: Statistics of test data
Total number of proteins 811
Total number of vectors 190,669

Average number of vectors per protein 216
Average number of 16-sized

patches per protein
5308

5.1 Experimental setup

5.1.1 Test Data

A total number of 811 sample proteins are
selected for our initial experiments according
to the PDB LIST 20040601 (R-factor<0.2 and
Resolution<1.9) in the WHATIF relational database.
The PDB structures stored in the WHAT IF rela-
tional database are a representative set of sequence-
unique (a sequence identity percentage cutoff of 30%)
structures(WHATIF relational database n.d.). After
pre-processing, the data statistics are shown in Table
1.

5.1.2 Query proteins

Ten different sized proteins are selected as queries.
The average number of vectors per query is 238.

5.1.3 Baseline

To choose a baseline for comparison with our method,
we perform pairwise matching of all distances between
two patch signatures. The baseline matching results
are assumed “correct matches”.

The models we test in our experiments are the
Euclidean distance based similarity search based on

- Dimensionality Reduction via SVD

- Dimensionality Reduction via LPP

5.1.4 Performance Indicators

Our programs are written in C++ and running on
Pentium 4 CPU (2.8GHZ) with 1G RAM. The major
performance indicators we used are:

- CPU time (in seconds) to complete a query

- Precision: percentage of returned patches being
correct

- Recall: percentage of correct matching patches
being returned

- F-measure: 2∗Precision∗Recall
Precision+Recall

Note that all the experimental results reported
later will be averaged for one query protein matches
against one protein in the database.

5.1.5 Parameter settings

There are several parameters need to be set for our
model and search method, four of which are fixed in
our experiments:

- Distance cutoff (ς): 15Å

- Pair-wise matching tolerance (δ): 4Å

- Size of patches to match (k): 16 (leading to a
total dimensionality 102 for patch signatures)

- Number of nearest neighbors in LPP (q): 10

Two other parameters are variables. We will test how
the different settings of them affect the performance.

- Euclidean distance based similarity threshold δ′:
1Å, 1.2Å, 1.5Å

- Size of reduced dimensionality p: 5, 10, 20, 30,
40, 50, 102

5.2 Experimental results

Table 2, 3, Fig.4, and Fig.5 summarize the experi-
mental results. In addition, the CPU time for the
baseline is 3.1 seconds. We can make the following
observations:

Dimensionality reduction by both SVD and LPP un-
der all the different parameter settings saves CPU
time by from 3.2% up to 84%. This suggests that it
does largely improve the efficiency for patch match-
ing.

Larger threshold value δ′ lead to increasing CPU time
and recall, and decreasing precision. This co-relates
our intuition. According to proposition 3, a threshold
δ′ =

√
nδ = 40Å guarantees 100% recall. The cost is

losing precision. In the rest of our analysis, we take
the F-measure as the main effectiveness indicator, as
it represents the trade-off between precision and re-
call. We can observe that a much lower threshold like
1.2Å is enough to obtain reasonable F-value.

The “intrinsic” dimensionality for either LPP or SVD
is quite low (20 for SVD and 10-20 for LPP). In
Fig.5, for each model the F-value grows rapidly until
it reaches the peak, where the corresponding dimen-
sionality is the intrinsic dimensionality. After this
certain point, the F-value decreases while the dimen-
sionality increases. This suggests that a large number
of less significant dimensions carry no much meaning-
ful information. This also indicates the usefulness and
necessity of dimensionality reduction. It is also inter-
esting to note the difference between LPP and SVD.
The performance of SVD decreases more rapidly than
LPP when the dimensionality increases. More theo-
retical comparison between the two approaches will
be conducted in the future work.

6 Related Work

This paper deals with the problem of finding similar
substructures. The most related techniques to our
methods include protein structure modelling, such as
geometric hashing and graph theoretical approach,
and high-dimensional indexing for similarity search.

Geometric hashing (Wolfson 1997) was originally
developed in computer vision and now used in pro-
tein structure comparison. It defines a set of refer-
ence frames for a structure. The coordinates of all
points in the structure are re-calculated in a reference
frame, forming a reference frame system. Geometric
features of the structure are calculated based on the
reference frame systems and stored in a hash table.
This method ignores the sequential order of amino
acids and gives the result invariant to the translation
and rotation of the compared structures(Nussinov &
Wolfson 1991) and thus is useful to discover match-
ing substructures. However, we do not adopt this ap-
proach as it is computationally expensive. The num-
ber of reference frame systems to be constructed and
the number of frame system comparisons are both



Table 2: Summary of SVD performance
p δ′ CPU Time %ofbaselineCPUtime Precision Recall F-Measure

1 0.4 13% 0.21 0.79 0.33
5 1.2 0.4 13% 0.17 0.90 0.29

1.5 0.9 29% 0.05 0.99 0.10
1 0.5 16% 0.7 0.23 0.30

10 1.2 0.5 16% 0.16 0.75 0.26
1.5 0.8 26% 0.04 0.99 0.08
1 0.52 17% 0.92 0.42 0.21

20 1.2 0.57 18% 0.28 0.46 0.35
1.5 1.2 80% 0.01 0.99 0.02
1 0.6 19% 0.85 0.39 0.07

30 1.2 0.6 19% 0.24 0.26 0.25
1.5 1 32% 0.02 0.99 0.04
1 0.8 26% 0.22 0.003 0.06

40 1.2 0.8 26% 0.31 0.12 0.17
1.5 2 64% 0.02 0.98 0.04
1 0.8 26% 0.3 0.002 0.004

50 1.2 0.9 29% 0.23 0.05 0.08
1.5 1.5 48% 0.03 0.98 0.06
1 1.1 35% 0 0 N/A

102 1.2 1.3 42% 0.14 0.001 0.002
1.5 2.5 81% 0.08 0.98 0.15

Table 3: Summary of LPP performance
p δ′ CPU Time %ofbaselineCPUtime Precision Recall F-Measure

1 0.5 16% 0.14 0.74 0.24
5 1.2 0.5 16% 0.07 0.77 0.13

1.5 0.6 19% 0.02 0.96 0.04
1 0.5 16% 0.25 0.47 0.33

10 1.2 0.5 16% 0.20 0.52 0.29
1.5 0.8 26% 0.01 0.96 0.02
1 0.8 26% 0.37 0.25 0.30

20 1.2 0.8 26% 0.32 0.34 0.33
1.5 1 32% 0.02 0.94 0.04
1 0.6 19% 0.51 0.16 0.24

30 1.2 0.7 23% 0.43 0.21 0.28
1.5 2.1 68% 0.02 0.97 0.04
1 0.7 23% 0.62 0.11 0.19

40 1.2 0.7 23% 0.57 0.18 0.27
1.5 1.3 42% 0.02 0.98 0.04
1 0.7 23% 0.67 0.09 0.16

50 1.2 1 32% 0.53 0.15 0.23
1.5 1.1 35% 0.02 0.96 0.04
1 1 32% 0.78 0.05 0.09

102 1.2 1 32% 0.65 0.09 0.16
1.5 2.1 68% 0.02 0.96 0.04

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Reduced Dimenionality (p)

F-
M

ea
su

re

(a) SVD performance (b) LPP performance

δ'=1

δ'=1.2 δ'=1.5

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Reduced Dimensionality (p)

F-
M

ea
su

re

δ'=1

δ'=1.5

δ'=1.2

Figure 4: F-Measure.
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combinatorial. Moreover, recalculation of the coordi-
nates of points in a new reference frame via rotation
and translation is also expensive.

The graph theoretical approach is used in sys-
tems, such as ASSAM(Spriggs et al. 2003, Grindley,
Artymiuk, Rice & Willett 1993) and VAST(Gibrat
et al. 1996), to find the maximal common substruc-
ture. The problem is often transformed to the
clique problem. Vector representation is also used
in ASSAM(Spriggs et al. 2003) which is developed
to search for patterns of amino acid side chains in
the 3D structures. A substructure is characterized
by the distances among all pairs of vectors. This is
therefore different from our model, where the over-
all spatial relationship of all the vectors in the sub-
structure is characterized by its patch signature to
make a more compact representation. ASSAM then
detects cliques using a maximal common subgraph
isomorphism algorithm borrowed from graph the-
ory (Bron & Kerbosch 1973). As the clique de-
tection problem is NP-Complete, many heuristic al-
gorithms are developed. The most existing heuris-
tic algorithms for the clique problem are partially
enumerative and branch-and-bound based (Gardiner,
Artymiuk & Willett 1997). However, they are insuffi-
cient to handle large scale data. For example, the test
queries used for the experiments reported in (Spriggs
et al. 2003) were all triad residues. In other words,
the maximum size of cliques was three. A protein
was “hit” once a matching substructure of size 3 was
found. In our work, a query is a whole protein and
we aim to find from the database all the matching
substructures in any size. Therefore, we do not use
the clique detection algorithms in our work. Instead,
we developed a more scalable IR and database solu-
tion featured by a highly efficient query processing
strategy.

7 Conclusions and Future Work

This paper presents a protein structure matching
problem and formulates it as an information retrieval
problem. A patch signature model is addressed based
on a vector representation of protein structure. A pro-
tein structural region is defined as a patch, formed by
a set of vectors within the region. A k-sized patch
is then indexed by the 7k − 10 internal inter-atom
distances constituting its patch signature. A match-
ing function is defined to compare two patches based
on their patch signatures. Though the dimensional-
ity of this representation (7k − 10) is much less than
the traditional inter-atom distance matrix (C2

2k) ap-
proach, searching a large patch database is still ex-

pensive when k is large. We propose to apply dimen-
sionality reduction to patch signatures and show how
the two problems are adapted to fit each other. The
Locality Preservation Projection (LPP) and Singular
Value Decomposition (SVD)are chosen and tested for
this purpose. Experimental results show that the di-
mensionality reduction improves the searching speed
with acceptable precision and recall. From a more
general point of view, this paper demonstrates that
information retrieval techniques can play a crucial
role in solving this biologically critical but previously
computationally prohibitive problem. It is our hope
that the marriage between information retrieval and
bio-informatics will extend the boundaries of both ar-
eas.

From the experimental results, we can observe that
there is still some room for further performance im-
provement in dimensionality reduction via both LPP
and SVD (The best F-values are separately 33% and
35%). We will investigate other possibly more effec-
tive approximations to the pairwise patch matching
function, other than the Euclidean distance used in
this paper. On the other hand, more dimensionality
reduction algorithms will be studied. At this stage,
we focus on matching same sized patches. In the fu-
ture, we plan to develop an efficient indexing mech-
anism for different sized patches. In this paper, we
did not compare our approach to other protein struc-
ture matching algorithms. As a future work, we will
also consider testing our approach on a collection of
”homologs” produced from the SCOP database.
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