
Dynamic Visualisation of Software State

James Ashford Neville Churcher Warwick Irwin

Department of Computer Science and Software Engineering
University of Canterbury,

Private Bag 4800, Christchurch 8140, New Zealand,
Email: jra82@uclive.ac.nz, neville.churcher@canterbury.ac.nz

warwick.irwin@canterbury.ac.nz

Abstract

The size and complexity of software systems presents
many challenges to developers. Software visualisa-
tion techniques can help make more manageable tasks
across the development cycle. In this paper we fo-
cus on the dynamic visualisation of software state—
an important element in supporting activities such
as debugging. We propose Pseudo-Breakpoints as a
means of collecting data and making it available to
specialised visualisation components. We describe the
implementation of this concept in Eclipse and present
some example visualisations.

Keywords: Software visualisation, information visu-
alisation, debugging.

1 Introduction

Software engineering, described by Parnas as the
“multi-person construction of multi-version pro-
grams,” (Parnas 1975) is a dynamic and challenging
discipline.

Despite numerous advances in areas such as pro-
gramming languages, design techniques, tool support
and process models developers have struggled to keep
pace with the ever-increasing size and complexity of
software systems.

The consequences are reflected in the figures for
the number of software projects which either fail or
are significantly compromised.

Although software engineering is a collaborative
undertaking in which individuals play a variety of
rôles, the bulk of the “real” work continues to be car-
ried out by individual developers. These people will
typically be using individual tools, with IDEs such as
Eclipse (http://www.eclipse.org) being the norm,
and collaboration being managed at the resource level
by version control tools such as subversion (http://
subversion.apache.org).

Development ultimately consists of individuals pit-
ting themselves against a range of tasks including
elements of design, comprehension, implementation,
fault diagnosis and repair, and testing.

Many of the techniques used by individual soft-
ware engineers (such as UML, OO design patterns,
code smells, complexity metrics, . . . ) are essentially
static. They are applied in the context of a snapshot

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 32nd Australasian Computer Science Con-
ference (ACSC 2011), Perth, Australia, January 2011. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 113, Mark Reynolds, Ed. Reproduction for aca-
demic, not-for-profit purposes permitted provided this text is
included.

of the evolving software artifacts. Such techniques are
among the most effective available.

However, there are a number of vital development
activities where dynamic techniques have much to
offer—either on their own or in combination with
static techniques. Examples include:

algorithm visualisation: Understanding and com-
municating algorithms by enacting them in a
way which highlights visually the relevant ele-
ments has a long history, dating from systems
such as Balsa (Brown & Sedgewick 1984) and
Tango (Stasko 1990).

profiling: Implementing a “clean” design and subse-
quently observing and gathering data about per-
formance issues is likely to direct refactoring ef-
fort to productive areas.

debugging: The ability to suspend a running pro-
gram at “interesting” places and examine its
evolving state is a powerful tool for identifying
faults.

testing: Intrinsically dynamic activities such as en-
acting scenarios, use cases or performing accep-
tance tests occur in software processes.

Information visualisation (Spence 2001, Ware
2004) involves the display of information via com-
puted geometry (a simple example is the represen-
tation of a class by a rectangular glyph in UML).
Unlike scientific visualisation (electric field strength,
temperature profiles, . . . ), there is no “real” geome-
try. The computed geometry provides an anchor or
metaphor for the user. Software visualisation is the
application of information visualisation techniques to
problems in the software engineering domain and has
been used to address a wide range of issues in soft-
ware engineering (Eades & Zhang 1996, Stasko et al.
1998).

Effective software visualisation design involves
the identification of tasks in the problem domain,
the selection of relevant domain data items, and
the processing and presentation of derived informa-
tion (Churcher & Irwin 2005). In our previous work,
we have applied this approach primarily to visualisa-
tions of static software properties (Irwin & Churcher
2003, Churcher et al. 2003, 2007, Irwin et al. 2005,
Neate et al. 2006, Harward et al. 2010).

In this paper, we explore the extension of our
ideas to the visualisation of dynamic software state.
There are two main contributions. Firstly, we pro-
pose Pseudo-Breakpoints. The breakpoint is a fa-
miliar concept in debuggers: a user-specified point
at which execution may be suspended while the user
gathers data by exploring the current program state.
The Pseudo-Breakpoint is essentially similar, with the



exception that execution need not be interrupted—
instead the specified information is included in a
range of visualisations. Secondly, we propose a range
of visualisations which will assist developers with
tasks requiring comprehension of dynamic software
state. We have implemented Pseudo-Breakpoints and
a number of visualisations in Eclipse.

The remainder of the paper is structured as fol-
lows. In the next section, we discuss tasks which de-
velopers must perform and their information needs.
In section 3 we present the Pseudo-Breakpoint con-
cept and describe its implementation in Eclipse. Sec-
tion 4 includes a number of visualisations and exam-
ples of their application. Finally, we present our con-
clusions and discuss ongoing work.

2 Tasks and issues

For simplicity, we will use the term “debugging” to re-
fer to a wide range of activities which require a devel-
oper to acquire, comprehend, maintain, analyse and
react to information about the state and behaviour of
a running program.

Debugging is challenging, and remains so despite
the advent of modern OO languages (Java, C++, C#,
. . . ) and IDEs (Eclipse, Visual Studio, . . . ). Multi-
threaded software, distributed applications and huge
APIs are just three of a range of complicating factors
which were not commonly faced by C programmers in
the 1980s but which have become major issues today.

Carrying out activities such as those mentioned
above requires a developer to cope with potentially
very large data sets. There are likely not only to be
a large number of data items involved but also to be
complex interrelationships. This leads to the problem
of information overload—which information visuali-
sation aims to address by employing mechanisms for
structuring and exploring related data items.

The tools we use are themselves very complex
and have the potential to contribute to the informa-
tion overload experienced during debugging. Figure 1
shows the debug perspective of Eclipse in use. Like its
analogues in other IDEs, the display features numer-
ous components, each with a specific purpose. Some
relate to threads, some to the location of breakpoints,
some to the state at the current execution point, some
to corresponding source code and so on. It is common
for holophrasting mechanisms to be employed to al-
low data structures to be expanded as desired. While
this is an effective technique, one can have too much
of a good thing—the state of the interface in Figure 1
shows several structures expanded in this way. The
user can be given the feeling of ”You are in a maze of
twisty little passages, all alike” in such cases.

In order to solve a problem or complete a task, the
developer needs access to a (potentially very large)
set of data. However, at the same time, it is also
necessary to have a “holistic” overview of the larger-
scale situation. This is known as the focus+detail
problem in information visualisation (Spence 2001,
Ware 2004).

Ways of addressing this problem include
distortion-oriented (fisheye view) techniques (Furnas
1986, Sarkar & Brown 1994, Leung & Apperley 1994)
in which the degree of interest (DOI) of each data
item is determined and used to determine quantities
such as the amount of the display or degree of
highlighting with which to is presented to the user.
We explore the application of this idea in our present
work.

The mechanics of debugging have not changed sub-
stantially for decades, though the tools themselves

are much more sophisticated. Users set breakpoints
at “interesting” locations. When program execution
is suspended at a breakpoint, information about the
program state is gathered: this may involve examin-
ing the contents of heap and stack in varying degrees
of detail.

Effective debugging involves developers selecting
appropriate strategies for isolating problems, identi-
fying their causes and taking corrective action. The
process is often initiated by a specific symptom such
as a NullPointerException. Isolating this may in-
volve activities such as stepping through nested con-
trol structures (in case the cause is an initialisation
error), following a call chain or considering concurrent
thread issues.

In order to support people engaged in such tasks
we need an understanding of the various activities
and sequences of steps together with their information
needs. To do this exhaustively would require exten-
sive empirical work (such as that of Vans et al (Vans
et al. 1999)) and the results would reflect a range of
individual styles and available technologies. There
is a considerable amount of experience-based ad-
vice (e.g. http://home.earthlink.net/~patricia_
shanahan/debug) about debugging strategies. There
are also interesting overlaps with more general areas
such as software comprehension as well as more spe-
cific ones such as debugging strategies—an example
is the work of Lawrance et al. (2007).

However, it is sufficient for our purposes to con-
sider the following (incomplete and unordered) list:

Location: Where am I? This question may be an-
swered in varying degrees of detail—including
at this breakpoint, in this scope/block, in this
method, at this node, in this collection. Loca-
tion also has an aspect of “When am I?” which
might be conveyed by an iteration number or re-
cursion depth.

History: Related questions include “How did I get
here?” and “Have I been here before?” Answer-
ing these may involve referring to branching (for
invocations or jumps) or to iteration controls. A
question like “Where have I been?” can be diffi-
cult for a conventional debugger to answer fully.

Activity: What’s happening? This might involve
the most recent change to a variable in scope,
relative frequency of changes to individual vari-
ables, activity within collections and so on.

Analysis: Where is the time going? What patterns
are evident in the updates to this collection? Ad-
dressing questions such as these may require mul-
tiple information sources and involve exploration
of various parts of the software state and history.

Conventional breakpoints answer some of these
(such as corresponding source code location) precisely
and associated debugger features such as watch lists
indicate aspects of activity. Others are much less ac-
cessible via conventional displays.

Additionally, using conventional breakpoints can
lead to a somewhat “stop-start” mode of operation.
The user is required to make significant cognitive
jumps as the context changes from one breakpoint
to another, or even to another occurrence of the same
breakpoint.

Our approach is based on the concept of using vi-
sualisation to obtain a more holistic view of the soft-
ware state and then to support a focus on more spe-
cific elements or information. Our system comple-
ments the conventional breakpoint approach and can
be used alongside it as desired.



Figure 1: Eclipse debugger perspective

3 PseudoBreakpoints

Much work has been done on support for debug-
ging and other activities requiring access to dynamic
software state information and there is a consider-
able body of research literature on adding visual el-
ements. However, some of these are stand-alone re-
search prototypes, teaching tools or constrained in
some way. We have chosen to implement our system
as an Eclipse plug-in because we believe it is essen-
tial to be able to study the resulting tools in “real”
user environments. Similarly, visualisation sometimes
appears to be an after-thought—being provided as
something to do with the data rather than being an
integral element in the overall system design. Our ap-
proach involves identifying tasks, together their infor-
mation needs, and designing visualisations, together
with appropriate data capture facilities, to support
them.

Mehner (2002) developed a UML-based visualisa-
tion similar to the augmented UML class diagrams
we have created. It runs as a separate application
outside of any IDE and appears to be designed more
as a teaching tool than a tools for practitioners. An-
other stand-alone application sitting outside an IDE
is an extensible sequence diagram generator based on
execution traces (McGavin et al. 2006).

Lnnberg et al. (2004) developed a prototype de-
bugging tool (MVT) which allows for the visual de-
bugging of software. MVT uses the JDI (Java Debug
Interface) — again as a stand-alone application.

Jacobs & Musial (2003) make use of the DOI con-
cept in order to increase significantly the number of
classes which can be displayed in their UML-based
visual debugging application.

Czyz & Jayaraman (2007) is another system which
uses the Eclipse interface to generate UML diagrams
within the IDE. While their work involves recording

some state information, it does not address the range
of aggregation and integrated visualisation techniques
that we attempt.

In order to fulfil our visualisation goals we need
a means of obtaining relevant data and directing it
to appropriate GUI elements. Our initial vision was
essentially a “watch list” including the entire system
but this would be impracticable on systems of realistic
size.

The Pseudo-Breakpoint concept represents what
seems to us to be the best of both worlds: it allows
specific locations to be selected and de-selected in the
same way as conventional breakpoints but does not
require execution to be suspended in order to obtain
information.

Using Eclipse extensions, we have created a new
breakpoint type, PseudoBreakpoint, which extends
IBreakpoint in the Eclipse breakpoint model. The
standard Eclipse editor has been extended to include
a new annotation (the red dot to indicate where a
pseudo breakpoint is located) and menu item to al-
low the user to toggle the new breakpoint on and off.
In this way, Pseudo-Breakpoints appear to the user
in a natural manner for Eclipse users.

When a new Pseudo-Breakpoint is added, the
PseudoBreakpointCreator class determines which
breakpoint should be created. Two types, Pseu-
doBreakpointJava and PseudoBreakpointPython, are
defined in the example shown in Figure 2. Each
class contains language-specific breakpoint code
(PseudoBreakpointJava actually extends the normal
JavaBreakpoint to provide this functionality).

Data collection occurs when the program is run in
debug mode. Our Pseudo-Breakpoints are inserted
into the virtual machine in exactly the same way as
ordinary breakpoints.

We have created an event handler to capture every
Eclipse Debug event — including whenever a break-



Figure 2: Pseudo-Breakpoint structure

Figure 3: Managing Pseudo-Breakpoints

point is hit (i.e. the corresponding statement is about
to be executed). The process is shown schematically
in Figure 4. Whenever a breakpoint has been hit,
the handler first determines if it was a pseudo break-
point. If so, then it will walk the object tree, taking a
copy of all variables it encounters. It will also record
the time the breakpoint was hit and the name of the
executing thread. Each variable has a unique object
ID allowing individual objects, and the relationships
between them, to be identified.

Any necessary comparisons between objects (to
determine whether/how the variables have changed)
occurs during the generation of the visualisation
rather than during the program runtime.

The model design is very simple, and contains two
main elements: BreakpointEvent and Variable. Each
execution of a program will result in a list of Break-
pointEvents (one for each time a PseudoBreakpoint
is hit), and each BreakpointEvent will contain a set
of Variables — all the variables that were in-scope at
the breakpoint event (including local, global, and in-
stance variables). Each variable contains a set of all
references it contains (if it is an object), or the value
(if it’s a primitive). This is done recursively to ensure
that all variables and sub-variables are recorded.

Our system is intended to be extensible, so that
new visualisations may be added as required. Adding
a new visualisation requires development of two main
components: a VisualisationDisplayType and a Visu-
alisation (see Figure 5). A VisualisationDisplayType
contains all the code to display an Eclipse ViewType.
A ViewType is an Eclipse-specific view which is used
within the IDE to create a new panel (similar to AWT
Panel or Swing JPanel). To create your own custom
visualisation, you must extend the VisualisationDis-

Figure 4: Handling Pseudo-Breakpoint



(a)

(b)

Figure 5: Visualisation structure

Figure 6: Tag cloud corresponding to state shown in
Figure 7

playType class, and implement the createPartControl
method to generate the ViewType’s content.

A Visualisation class contains the code to process
the breakpoint and variable information for a Visual-
isationDisplayType to use.

This means that a given VisualisationDisplayType
can have multiple Visualisations, and multiple Visual-
isations can use different VisualisationDisplayTypes.

Currently, each Visualisation and Visualisa-
tionDisplay must be integrated manually within the
plug-in via the VisualisationHandler class. It is in-
tended that future versions will support the use of
an XML configuration file to allow new visualisations
to be added without the need to manually alter the
code.

To date, we have created a number of visuali-
sations using this framework. An example is our
LineGraph (see Section 4.6. We created a generic
LineGraph DisplayType using JFreeChart (http://
www.jfree.org/jfreechart) that was able to gen-
erate a ViewPoint to display a number of points on

a Line Graph. A number of visualisation variants
are then able to supply data to be plotted on the
LineGraphs (such as number of variable changes per
breakpoint and time between breakpoint hits). The
ability to make use of existing visualisation tools such
as JFreeChart, while supporting the development of
specialised extensions, makes it relatively straightfor-
ward to generate simple, yet useful, visualisations.

Performance has not been the primary focus of our
work to date but our experience thus far has been
encouraging. Any debugging or monitoring environ-
ment will inevitably experience some overheads when
compared to the production environment.

In our case, there are two potential sources.
Firstly, the number of Pseudo-Breakpoints, the num-
ber of times each is activated, and the number of
variables to be monitored will contribute to the data
collection costs. The cost of processing the data
for visualisation is the other potential source of per-
formance issues. We have not found either to be
problematic. We ran our system on a typical Java
project with 200 Pseudo-Breakpoint activations we
found µ = 125ms, σ = 26ms for the time cost of data
collection — well within acceptable limits,

This cost depends on the number and complexity
of in-scope variables, since these are copied when a
Pseudo-Breakpoint is hit, so having sufficient client
memory available will be important as scope size and
activation count increase.

Ongoing and future work includes improving the
overhead required with the data collection process
and the potential for serialising large data sets for
subsequent analysis and replay.

One way to manage the volume of information is
to filter out “uninteresting” data. Basic filtering has
been implemented. Users can remove primitives from
data collections and limit the variable depth. String
objects are converted to a primitive type (rather than
having all their internals shown) to save space on any
visualisations.

Future work would include more extensive and
finely-controllable (class and variable based) filtering
to help suppress irrelevant information and decrease



Figure 7: Eclipse debug perspective with visualisations



memory usage.

4 Visualisations

In this section we present a range of visualisations
which illustrate the application of our approach. Hav-
ing considered the range of tasks to be supported, we
have identified a number of common themes and de-
signed individual visualisations around them. Exam-
ples include drilling down through hierarchical struc-
tures to reveal more detail and determining the dif-
ferences between the state at successive breakpoint
visits.

Figure 7 shows Eclipse in action with a selection of
our visualisations in use. Note the significant contrast
with Figure 1. Figures 1 and 7 represent two extremes
and the user is free to customise the interface as her
information needs evolve.

4.1 Tag clouds for context

Tag clouds have become commonplace on blogs and
in information retrieval contexts where the holistic
contextual overview of the content of a document or
document collection is of interest. A recent example is
the analysis of Barack Obama’s inauguration speech
(http://www.telegraph.co.uk/news/worldnews/
northamerica/usa/barackobama/4299886/Barack-
Obamas-inauguration-speech-as-a-tag-cloud.
html) In their simplest form, tag clouds consist of
a number of words which are terms in a document.
The font size used to display each word indicates
the frequency with which it occurs in the document.
We have extended the concept for use in software
visualisation (Deaker et al. 2010). In our approach,
visual attributes such as the size, font family, colour
and transparency of individual words may each be
used to display a variable of interest.

This approach has potential benefits in compre-
hension of the evolving state of a running program.
The tag text is directly mapped to identifiers in the
program so no separate translation is required. Prop-
erties such as size and colour can be mapped to quan-
tities such as number of invocations or time in scope.

Figure 6 shows an example: it corresponds to the
state shown in Figure 7 and indicated by a number
of other visualisations there. The font size for each
identifier indicates the number of assignments to the
corresponding variable. This allows the user to iden-
tify rapidly the most active data items which can then
be scrutinised more closely.

4.2 Treemaps for hierarchy

Hierarchical structures are common in software en-
gineering. Static examples in Java include the in-
heritance relationships of classes and the nesting of
packages.

In the dynamic context, activities such as follow-
ing nested scopes, call graphs or drilling into data
structures involve navigation and comprehension of
hierarchical structures.

In practice, “nearly hierarchical” structures are
also common: adding interface implementation to
pure inheritance breaks the strict hierarchy and real
call graphs aren’t necessarily trees. However, repre-
senting such situations with visualisations designed
primarily for hierarchical contexts is often satisfac-
tory.

Displaying large trees can be awkward. One ap-
pealing solution is treemaps, a space-saving represen-
tation which can fit neatly within the constraints of a

pane in a GUI component (Johnson & Shneiderman
1991).

We have made use of treemaps in previous
work (Churcher et al. 1999, Irwin & Churcher 2002)
and they are widely-used in information visualisation
applications.

A treemap is visible at the lower right of Figure 7.
The rectangular nodes correspond to data items in
the scope. The rectangle size indicates the number
of children: in this case the larger node (messages)
at left is an array while the other two are primitive
types. The colour of the rectangle is currently con-
figured to indicate the number of updates which have
occurred to the children. Expanding and collapsing
the nodes allows the user to explore potentially com-
plex structures without encroaching onto the screen
real estate for other concurrent visualisations.

4.3 Augmentation

A common strategy is to implement individual visual-
isations separately: each has its own primary purpose
and is located in a well-defined dedicated part of the
IDEs interface. Rather than providing a separate vi-
sualisation is it sometimes helpful to “piggyback” by
overlaying additional information onto existing dis-
play elements.

This approach can be effective when it can take
advantage of a diagram or other structure which is
familiar to users. UML is arguably the lingua franca
of software engineering and our users are likely to
be familiar with object diagrams, class and sequence
diagrams.

Visual attributes such as border thickness and
colour can be used to show the quantities such as
the number of updates at a particular breakpoint.

The lower left pane visible in Figure 7 shows an
augmented UML object diagram. Colour is used to
indicate “freshness” (e.g. blue for an object seen for
the first time)

4.4 DOI & focus+context

The Degree of Interest of a point (i.e. data item) x,
given a focus at xf is given by

DOI(x|. = xf ) = API(x)−D(x, xf ) (1)

API is the a priori interest of x. For example
we might consider that methods are more important
than fields, and that concrete elements are more im-
portant than abstract ones. D represents a (concep-
tual) distance between x and xf . Thus we might con-
sider length of a call chain or number of generations
of inheritance to indicate relative distance between
elements.

The Functional form is application-dependent and
we are free to allow this to be configurable by users
to better support specific tasks.

The augmented object diagram at the lower left
of Figure 7 also illustrates the use of DOI-based vi-
sualisation. The font size indicates the “distance” of
the corresponding identifier from the neighbourhood
of the visualisation’s focus.

4.5 Augmented tree view

Another effective visualisation technique involves
overlaying additional information in situ to augment
an existing display without diverting the user’s focus
of attention (Harward et al. 2010).

Figure 8 shows colour being used to augment a
breakpoint tree view with information about activity



Figure 8: In situ augmentation

in the scopes corresponding to children. Expanding
the nodes in the usual way reveals finer grained detail.

4.6 Conventional elements

Effective visualisation need not involve “fancy”
graphics or 3D effects. Our system supports such
conventional diagrams as line graphs. The line graph
at the upper right of Figure 7 shows the time in-
tervals between successive activations of a Pseudo-
Breakpoint. In this case, the peak corresponds to the
creation of an object which caused network authenti-
cation to occur, leading to a slight delay.

5 Conclusions

We have proposed Pseudo-Breakpoints as a mech-
anism for supporting visualisation-driven debugging
an other activities requiring understanding of dy-
namic software state. We have implemented Pseudo-
Breakpoints and a range of visualisations in Eclipse
and these are available in the form of a plug-in.

Our approach allows visualisations to be inte-
grated into the GUI of an industrial strength IDE and
for users to use them alongside conventional break-
points and their interface in a natural way.

We are encouraged by our results thus far and this
work is continuing.

One important activity is the evaluation of the ef-
fectiveness of our approach. To date, this has con-
sisted of some anecdotal feedback and “eating our
own dog food.” Our intention is to conduct a heuristic
evaluation (Nielsen 1992) to guide the ongoing devel-
opment of the system. A parallel project is gathering
usage data and we hope that this will shed light on
debugging practices among our target users.

Another possible direction is the ability to record
and play back dynamic state information as this is
useful in a range of contexts.

References

Brown, M. H. & Sedgewick, R. (1984), ‘A system
for algorithm animation’, SIGGRAPH Comput.
Graph. 18(3), 177–186.

Churcher, N. & Irwin, W. (2005), Informing the de-
sign of pipeline-based software visualisations, in S.-
H. Hong, ed., ‘APVIS2005: Asia-Pacific Sympo-
sium on Information Visualisation’, Vol. 45 of Con-
ferences in Research and Practice in Information
Technology, ACS, Sydney, Australia, pp. 59–68.

Churcher, N., Frater, S., Huynh, C. P. & Irwin,
W. (2007), Supporting OO design heuristics, in
J. Grundy & J. Han, eds, ‘ASWEC2007: Aus-
tralian Software Engineering Conference’, IEEE,
Melbourne, Australia, pp. 101–110.

Churcher, N., Irwin, W. & Kriz, R. (2003), Visualis-
ing class cohesion with virtual worlds, in T. Pat-
tison & B. Thomas, eds, ‘Australasian Symposium
on Information Visualisation, (invis.au’03)’, Vol. 24
of Conferences in Research and Practice in In-
formation Technology, ACS, Adelaide, Australia,
pp. 89–97.

Churcher, N., Keown, L. & Irwin, W. (1999), Virtual
worlds for software visualisation, in A. Quigley, ed.,
‘SoftVis99 Software Visualisation Workshop’, Uni-
versity of Technology, Sydney, Australia, pp. 9–16.

Czyz, J. & Jayaraman, B. (2007), Declarative and vi-
sual debugging in Eclipse, in ‘Proceedings of the
2007 OOPSLA workshop on eclipse technology eX-
change’, ACM, pp. 31–35.

Deaker, C., Pettigrew, L., Churcher, N. & Irwin, W.
(2010), Software visualisation with tag clouds, in
J. Hosking & B. Long, eds, ‘ASWEC 2010 Indus-
try Track Proceedings’, Auckland, New Zealand,
pp. 129–133.

Eades, P. & Zhang, K., eds (1996), Software Visu-
alisation, Vol. 7 of Series on Software Engineering
and Knowledge Engineering, World Scientific.

Furnas, G. (1986), Generalised fisheye views, in ‘Proc
ACM SIGCHI ’86 Conference on Human Factors in
Computing Systems’, pp. 16–23.

Harward, M., Irwin, W. & Churcher, N. (2010),
In situ software visualisation, in J. Noble &
C. Fidge, eds, ‘ASWEC 2010’, IEEE, Auckland,
New Zealand, pp. 171–180.

Irwin, W. & Churcher, N. (2002), XML in the visual-
isation pipeline, in D. D. Feng, J. Jin, P. Eades &
H. Yan, eds, ‘Visualisation 2001’, Vol. 11 of Con-
ferences in Research and Practice in Information
Technology, ACS, Sydney, Australia, pp. 59–68. Se-
lected papers from 2001 Pan-Sydney Workshop on
Visual Information Processing.

Irwin, W. & Churcher, N. (2003), Object oriented
metrics: Precision tools and configurable visualisa-
tions, in ‘METRICS2003: 9th IEEE Symposium on
Software Metrics’, IEEE Press, Sydney, Australia,
pp. 112–123.

Irwin, W., Cook, C. & Churcher, N. (2005), Pars-
ing and semantic modelling for software engineering
applications, in P. Strooper, ed., ‘Australian Soft-
ware Engineering Conference’, IEEE Press, Bris-
bane, Australia, pp. 180–189.

Jacobs, T. & Musial, B. (2003), Interactive visual de-
bugging with uml, in ‘Proceedings of the 2003 ACM
symposium on Software visualization’, ACM, San
Diego, California, pp. 115–122.



Johnson, B. & Shneiderman, B. (1991), Tree-maps:
A space-filling approach to the visualization of hi-
erarchical information structures, in G. Nielson
& L. Rosenblum, eds, ‘proc. Visialization ’91’,
IEEE Computer Society Press, Los Alamitos, CA,
pp. 284–291.

Lawrance, J., Bellamy, R. & Burnett, M. (2007),
Scents in programs:does information foraging the-
ory apply to program maintenance?, in ‘Visual
Languages and Human-Centric Computing, 2007.
VL/HCC 2007. IEEE Symposium on’, pp. 15 –22.

Leung, Y. K. & Apperley, M. D. (1994), ‘A review and
taxonomy of distortion-oriented presentation tech-
niques’, ACM Transactions on Computer-Human
Interaction 1(2), 126–160.

Lnnberg, J., Korhonen, A. & Malmi, L. (2004), Mvt:
a system for visual testing of software, in ‘Proceed-
ings of the working conference on Advanced visual
interfaces’, ACM, Gallipoli, Italy, pp. 385–388.

McGavin, M., Wright, T. & Marshall, S. (2006), Vi-
sualisations of execution traces (vet): an interac-
tive plugin-based visualisation tool, in ‘Proceedings
of the 7th Australasian User interface conference
- Volume 50’, Australian Computer Society, Inc.,
Hobart, Australia, pp. 153–160.

Mehner, K. (2002), Javis: A uml-based visualization
and debugging environment for concurrent java
programs, in ‘Revised Lectures on Software Visu-
alization, International Seminar’, Springer-Verlag,
pp. 163–175–.

Neate, B., Irwin, W. & Churcher, N. (2006), Coder-
ank: A new family of software metrics, in J. Han
& M. Staples, eds, ‘ASWEC2006: Australian
Software Engineering Conference’, IEEE, Sydney,
pp. 369–378.

Nielsen, J. (1992), Finding usability problems
through heuristic evaluation, in ‘Proceedings of the
SIGCHI conference on Human factors in computing
systems’, ACM Press, pp. 373–380.

Parnas, D. L. (1975), Software engineering or meth-
ods for the multi-person construction of multi-
version programs, in C. E. Hackl, ed., ‘Program-
ming Methodology, 4th Informatik Symposium’,
Vol. 23 of Lecture Notes in Computer Science,
Springer-Verlag, Wildbad, Germany, pp. 225–235.

Sarkar, M. & Brown, M. (1994), ‘Graphical fisheye
views’, Communications of the ACM 37(12), 73–
84.

Spence, R. (2001), Information Visualisation,
Addison-Wesley.

Stasko, J. (1990), ‘Tango: a framework and system for
algorithm animation’, IEEE Computer 23(9), 27 –
39.

Stasko, J., Domingue, J., Brown, M. & Price, B., eds
(1998), Software Visualization: Programming as a
Multimedia Experience, MIT Press.

Vans, A. M., von Mayrhauser, A. & Somlo, G. (1999),
‘Program understanding behaviour during correc-
tive maintenance of large-scale software’, Int. J.
Human-Computer Studies 51(1), 37–70.

Ware, C. (2004), Information Visualization: Percep-
tion for Design, 2nd edn, Morgan Kaufman.


