
EP-based Robust Weighting Scheme for Fuzzy SVMs

Shaoyi Zhang
1
, Kotagiri Ramamohanarao

1
 and James C. Bezdek

2

1
Department of Computer Science and Software Engineering, University of Melbourne, VIC 3010, Australia

2
Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA

{shaoyi, rao}@csse.unimelb.edu.au; jbezdek@uwf.edu

Abstract

Support vector machine (SVM) classifiers represent one of

the most powerful and promising tools for solving

classification problems. In the past decade SVMs have

been shown to have excellent performance in the field of

data mining. The standard SVM classifier treats all

instances equally. However, in many applications we have

different levels of confidence in different instances that

belong to a particular class. Fuzzy SVMs have been used to

recognize the importance of each training instance.

Although these schemes are called fuzzy SVMs, they are

basically trained by weighted training instances. In this

paper we propose a new robust weighting scheme for the

class memberships for fuzzy SVM classifier. The

weighting scheme is a sophisticated and effective method

for weighting the training instances which makes use of

highly discriminating patterns called emerging patterns

(EPs). Our experiments show that this new weighting

method has excellent performance and noise tolerance

compared to the weighting scheme previously proposed.
 .

Keywords: Classification, data mining, support vector

machines, weighting schemes.

1 Introduction

The concept of support vector machines (SVMs) was

developed by Vapnik in the early 1990s, based on

statistical learning theory (SLT) and the principle of

structural risk minimization (SRM) [1]. SVMs have

gained wide acceptance due to their high generalization

ability and better performance than many traditional

learning methods over a wide range of applications. In

many applications the SVM provides better generalization

performance and less overfitting than other learning

techniques such as artificial neural networks (ANNs) [1].

For example, SVMs have been effectively applied in many

classification and recognition fields, such as isolated

handwritten digit recognition, object recognition, speech

recognition, and spatial data analysis [2].

In principal, the SVM uses a mappingφ that transforms

vectors from the original labeled 2-class input (object)

data into vectors in a high dimensional feature space. In

the new space it may be possible to construct a separating

hyperplane between the two (imaged) classes of labeled

training data. The hyperplane is then pulled back to the

input space via inverse image algebra, where it becomes a

Copyright © 2010, Australian Computer Society, Inc. This paper

appeared at the Twenty-First Australasian Database Conference

(ADC2010), Brisbane, Australia, January 2010. Conferences in

Research and Practice in Information Technology, Vol. 104.

Heng Tao Shen and Athman Bouguettaya, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is

included.

(usually) non-linear decision that separates the labeled

input data. Subsequent input data are classified by their

location in one of the two decision regions defined by the

non-linear boundary. In practice, the input data are not

mapped anywhere. Instead, inner products involving

hypothetical pairs of data in the feature space are replaced

by the value of a kernel function K on their “preimages”,

so that),())(),((
jiji

K xxxx =φφ . This device, universally

known as the “kernel trick”, is based on a very old theorem

due to Mercer [1], and renders the SVM idea feasible in

practice.

The standard SVM classifier assumes that each training

instance belongs unequivocally to only one class, and

further, that all instances are equally important for

classification. In addition, we usually assume that the class

labels are accurate. But real-world data do not always

belong unequivocally to one class (e.g., hybrids almost

always deserve partial membership in two or more

progenitor classes). Moreover, class labels are not always

correct because of noise or a lack of expert knowledge.

These two problems affect the optimal hyperplane

obtained by an SVM. This classifier depends on only a

small fraction of the instances (i.e., on the support vectors,

SVs). So, the SVM classifier can be unduly sensitive to

noise and mislabeled instances in the data [23].

In this paper, we propose a new weighting scheme for

fuzzy SVM classifier that allows each training data to

possess a different level of importance. We define

importance of an instance by how strongly it contributes in

decision making. For example, an instance that has

features that strongly determine a class is generally

considered more important than an instance that has weak

correlation with any of the classes. We find sub-weights

(class-memberships) for each training instance indicating

its relationship to the two input classes. The sub-weights

are then merged, becoming a single weight associated with

the instance. The training data are assigned different levels

of contribution towards the fuzzy SVM based on these

memberships. This modification is accomplished by

reformulating the constrained optimization problem upon

which the fuzzy SVM classifier is based. The usual

construction follows the Lagrangian to a solution for the

optimal hyperplane in the primal form, found in the dual

form.

We employ the recently introduced idea of emerging

patterns (EPs) to compute sub-weights for class

memberships. EPs are defined as itemsets whose supports

(probabilities) increase significantly from one class to

another [7, 8]. The discriminating power of EPs is in most

cases proportional to their growth rates [11]. The growth

rate of an EP is the ratio of its support in one class to that in

the other class. EPs have had a great impact in many

applications such as rare-class classification, and

expansion of training data [9, 13]. Although mining EPs

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

123

(like mining association rules) is a time consuming task in

data mining, they can capture significant changes between

datasets [10, 12]. Hence, EPs can be used to build robust,

accurate classifiers. We make use of EPs to determine the

importance of each instance before building a SVM

classifier. This type of SVM is as computationally

efficient as the standard SVM because EPs do not play a

role during decision-making.

The remainder of the paper is organized as follows.

Section 2 reviews the basic theory of the standard SVM

and fuzzy SVM classifiers. In section 3, we briefly review

EPs. Section 4 introduces our quality weighting model

based on EPs. Section 5 reports our experiments. In

section 6, we compare our method with other weighting

methods. Finally, we summarize our work and list some

ideas for future research in section 7.

2 Standard & Fuzzy SVM Classifiers

In this section, we briefly introduce the theory of standard

and fuzzy SVM classifiers.

2.1 Standard SVM Classifier

Suppose we are given a set of labeled training data

{ }1,1}...,,1:),{(−×ℜ⊂= N

ii
niyx (1)

Each input vector xi is considered to be a full member

of either of two classes (called, simply, + and –), its

membership indicated by the class label yi∈{–1, 1} for

i=1, …, n. We wish to find a hyperplane

0=+ b
i

T
xw (2)

defined by the pair (w, b), such that we can separate the

points xi by the function

�
�
�

−=−

=
=+=

.1,1

;1,1
)sign()(

i

i

i

T

i
yif

yif
bf xx w (3)

The set X={x1, …, xn}is said to be linearly separable if

there exists (w, b) such that the inequality

1)(≥+ by
i

T

i
xw (4)

is valid for all elements of X. When X is linearly separable,

we can find a unique optimal hyperplane (called the SVM)

for which the margin between the projections of the

training points from the two classes onto the hyperplane is

maximized. If the set is not linearly separable,

classification violations occur in the SVM formulation. To

deal with data that are not linearly separable, the previous

model is generalized by introducing n nonnegative (slack)

variables �i such that

ii

T

i
by ξ−≥+ 1)(xw (5)

where �i � 0 for those points which do not satisfy (4).

The optimal hyperplane is found as the solution to the

optimization problem:

minimize �
=

+=
n

i

i
C

1

2

2

1
),(ξξτ ww (6)

subject to
ii

T

i
by ξ−≥+ 1)(xw , i=1, …, n (7)

where constant C is regarded as a regularization parameter.

C is the only free parameter in the SVM classifier

formulation. Tuning this parameter balances margin

maximization against classifier error. We construct the

Lagrangian of τ:

i

n

i

iii

T

i

n

i

i

n

i

i
byCL ξβξαξ ���

===

−+−+−+=
111

2

)1)((
2

1
xww

(8)

Differentiating L with respect to w and b, and setting

the results equal to zero yields the first order necessary

conditions that solutions must satisfy:

0
1

=−=
∂

∂
�

=

i

n

i

ii
y

L
xαw

w
 (9)

0
1

=−=
∂

∂
�

=

n

i

ii
y

b

L
α (10)

0=−−=
∂

∂
ii

i

C
L

βα
ξ

 (11)

Solving these equations and back substituting into the

original optimization problem converts it into the dual

problem for data in the input space:

maximize
j

T

i

n

ji

jiji

n

i

i
yyQ xx��

==

−=
1,1 2

1
)(αααα (12)

subject to 0
1

=�
=

i

n

i

i
yα , 0 � �i � C, i = 1, …, n (13)

where � = (�1, …, �n) is the vector of nonnegative

Lagrange multipliers associated with the constraints. The

solution for this problem satisfies

0)1)((=+−+
ii

T

ii
by ξα xw (14)

0=
ii

ξβ (15)

If we cannot find a hyperplane that (linearly) separates

the X in the input space into its two labeled classes with

high classification accuracy, we consider the possibility of

transforming X to a higher dimensional feature space,

say)(XZ φ= . It is our hope that the extracted data Z are

linearly separable in)(Nℜφ . The property of the SVM

classifier that renders it feasible is that it is not necessary to

find the nonlinear mapping φ . Instead, we need only

choose a kernel function),(
ji

K xx that satisfies Mercer’s

theorem [1], for then dot products in feature space take

values),())(),((
jiji

K xxxx =φφ . When using a kernel

function, the dual problem (for vectors in feature space)

becomes

CRPIT Volume 104 - Database Technologies 2010

124

maximize),(
2

1
)(

1,1

ji

n

ji

jiji

n

i

i
KyyQ xx��

==

−= αααα (16)

subject to 0
1

=�
=

i

n

i

i
yα , 0 � �i � C, i = 1, …, n (17)

The solution also satisfies (14) and (15), and is

available via quadratic programming. Two kernels are

used to construct SVM and fuzzy SVM classifiers in this

paper.

Polynomial kernel:

d

j

T

iji
K)(),(θ+= xxxx (18)

Radial-basis function (RBF) kernel:

)
2

exp(),(
2

2

σ

ji

ji
K

xx

xx

−
−= (19)

2.2 Fuzzy SVM Classifier

The fuzzy SVM has proposed to extend SVM by G.C

Cawley et al [26], C. Lin et al. [4] and H. Huang et al. [5].

Their schemes are identical. These authors call their

models fuzzy SVMs because they determine the

importance of each training instance from fuzzy

membership values. However, their schemes still produce

crisp labels, i.e., they are still crisp classifiers. In this paper

we use the term “soft SVM” to avoid confusion with

earlier designs. Our classifier is also crisp, but we build the

fuzzy SVM classifier by replacing the fuzzy memberships

of each instance with a single weight based on EPs. There

are other classifiers called “fuzzy SVMs” by their authors

[3, 6, 20, 21, 22], but they are not based on instance

weights or fuzzy memberships. We do not discuss these

alternate designs in this article, but we do compare our

design to the fuzzy SVM of Lin et al. [4].

Similar to (1), suppose we are given a set of labeled

training data associated with weights

{ }]1,0[1,1}...,,1:),,{(×−×ℜ⊂= N

iii
niy µx (20)

where �i∈[0, 1] is a weight which indicates the importance

of (xi, yi) in the determination of a SVM classifier.

Normally �i is not less than �, which is a sufficiently small

positive number. We discuss in detail how to obtain

reliable weights for training data in section 4.

Analogous to the standard SVM classifier, the basic

idea of the fuzzy SVM classifier is to maximize the margin

of separation whilst minimizing the training error, in order

to achieve good generalization ability. On the other hand,

unlike the SVM classifier, a fuzzy SVM classifier uses a

function of the weights to reduce the effect of less

important data points (i.e., increase the effect of more

important points). The optimal hyperplane problem for

this case, using weighted training data is the solution of the

primal problem

minimize �
=

+=
n

i

ii
C

1

2

2

1
),,(ξµµξτ ww (21)

subject to
ii

T

i
by ξ−≥+ 1)(xw , i=1, …, n (22)

Note that a small �i reduces the effect of the parameter

�i in the optimization problem. This means that the

corresponding point (xi, yi) is regarded as less important

for building the optimal classifer than points with higher

weight values. The Lagrangian function becomes

i

n

i

iii

T

i

n

i

i

n

i

ii
byCL ξβξαξµ ���

===

−+−+−+=
111

2

)1)((
2

1
xww

(23)

By differentiating L with respect to w, b and �i, and

setting the results equal to zero, we obtain the first order

necessary conditions for a solution:

0
1

=−=
∂

∂
�

=

i

n

i

ii
y

L
xαw

w
 (24)

0
1

=−=
∂

∂
�

=

n

i

ii
y

b

L
α (25)

0=−−=
∂

∂
iii

i

C
L

βαµ
ξ

 (26)

Solving these and back substituting in the usual way

transform the primal optimization problem into its dual

maximize
j

T

i

n

ji

jiji

n

i

i
yyQ xx��

==

−=
1,1 2

1
)(αααα (27)

subject to 0
1

=�
=

i

n

i

i
yα , 0 � �i � �iC, i = 1, …, n (28)

and the solution satisfies (14) and (15).

It is clear that the only difference between the standard

SVM classifier and the fuzzy SVM classifier is the upper

bounds of Lagrange multipliers {�i} in the dual problem.

In the standard SVM classifier, the {�i} are bounded by a

single constant C, while in the weighted formulation they

are bounded by dynamical values that are functions of the

corresponding membership values in the fuzzy SVM

classifier. The lower the membership value of a data point

xi is to its own class, the narrower the feasible region is

along the �i axis.

A fuzzy SVM classifier may maximize the margin like

a standard SVM classifier, and correctly classify more

important points (with higher weights) while preventing

less important points (with lower weights, probably noise

or outliers) from making the margin narrower, whether or

not they are misclassified. So, different data points can

have different impacts during learning of the optimal

separating hyperplane. If every instance has the weight

�i=1, the fuzzy SVM classifier reduces to the standard

SVM classifier. With different values of �i, we can control

the tradeoff of the corresponding training point xi.

Consequently, the effectiveness of the fuzzy SVM

classifier depends on the choice of the weights {�i}. In

section 4 we show how to compute the {�i} based on

emerging patterns (EPs).

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

125

3 Emerging Patterns (EPs)
For a dataset D, an instance I in D is I = {(A1=a1), (A2=a2),

(A3=a3), …, (An =an)}, where a1, a2, a3, …, an are values

related to the attributes{A1, A2, A3, …, An}. We call each

pair (A, a) an item [8]. Let Z denote the set of all items in

an encoding dataset D. Itemsets are subsets of Z. We say

an instance Y contains an itemset X, if X ⊂ Y.

Definition 1. Given a dataset D and an itemset X, the

support of X in D, SuppD(X), is defined as

D

Xcount
XSupp D

D

)(
)(= (29)

where countD(X) is the number of instances in D

containing X.

EPs are itemsets whose supports change significantly

from one class to another [7, 13]. EPs capture sharp

differences between data classes, thus affording a

competitive alternative to other existing state-of-the-art

classifiers [24].

Definition 2. Given two different datasets D1 and D2,

where instances in Di belong to class Ci,

let)(XSupp
iD

denote the support of the itemset X in Di.

The growth rate of X from D1 to D2,)(
2 1

XGR
DD →

, is

defined as

�
�
�
�

�

��
�
�

�

�

≠

=
∞

=

=

=
→

.,
)(

)(

;0)(

0)(
,

;0)(

0)(
,0

)(

1

2

2

1

2

1

2 1

otherwise
XSupp

XSupp

XSuppand

XSuppif

XSuppand

XSuppif

XGR

D

D

D

D

D

D

DD
 (30)

When D1 is clear from the context, an EP e from D1 to

D2 is called an EP of D2; the support of e in D2,)(
2

eSupp
D

,

is simply denoted as the support of e, Supp(e); and its

growth rate from D1 to D2,)(
2 1

eGR
DD →

, is denoted as the

growth rate of e, GR(e).

Due to their high support in the home class and low

support in the contrasting class, EPs can be regarded as

strong signals that distinguish classes of data. Intuitively, a

good instance should provide strong EPs of the same class

– it should contain strong signals that are unique to this

class. A bad instance (i.e., noise or outlier), however, may

contain no EPs, or EPs of both contrasting classes with

approximately equal strength. Thus, EPs can be used to

help find the class memberships for training instances and

then to build the fuzzy SVM classifier. Section 4 presents

our method for constructing the fuzzy SVM.

4 A Weighting Method Based on EPs
We can train the fuzzy SVM classifier directly if the

training data already have associated weights {�i ∈[0, 1]}.

And in this case, the weights are sometimes regarded as

probabilities of the instances that represent their

importance or meaning confidence. However, data

collected in almost all real-world applications lacks

information about weights and noise. Without any, or with

little, prior information, it is very hard to generate a

reliable weighting model from data and to find the true

noise distribution. Therefore finding a good function to

calculate the weights from the data is a primary concern

when building a fuzzy SVM classifier. In this paper we

propose a model based on using EPs.

First, we calculate a sub-weight for each class and

instance, depending on the EPs contained, and then map

the sub-weights of each instance into a single weight

representing the importance of each point. Then we

normalize these values to determine a final weight for each

instance which reflects its relative importance for

determining the decision surface.

4.1 Using EPs to Calculate Sub-weights
We discretize continuous attributes in the training

instances so that we can extract EPs. (The fuzzy SVM

classifier will be built using the original training instances.)

Assume that after dicretization we have a set of training

instances, D = {I1, I2, I3, …, In}, and a set of classes, C =

{C1, C2, C3, …, Cm}. We partition D into m datasets, D1,

D2, … , Dm, where D = D1

�
D2

�
…

�
Dm. Ek is a set of

EPs extracted from the dataset related to class Ck such that

the EPs in Ek have significantly higher support in Dk than

in
k

D , which is the complementary set of Dk. The support

of an EP e∈Ek is)(eSupp
kD

and the growth rate of it

is)(eGR
kk DD →

. The strength of e in class Ck, Strengthk(e),

is defined as follows [8]:

)(
1)(

)(
)(eSupp

eGR

eGR
eStrength

k

kk

kk

D

DD

DD

k
×

+
=

→

→
 (29)

Strengthk(e) represents the contribution of e∈Ek in class

Ck. This contribution is proportional to both the growth

rate (discriminating power) of e,)(eGR
kk DD →

, and its

support in the home class (Ck),)(eSupp
kD

. An EP might

have a high growth rate and low support in its home class

and hence, its strength will be low. Alternatively, an EP

might have a low growth rate and high support in its home

class, again resulting in low strength. That is, in order for

an EP to be strong, it has to have both a high growth rate

and high support.

Getting all the EPs contained in an instance I∈D for

class Ck, we calculate the sub-weight SWk(I) of I for Ck,

which is found by aggregating the contributions of these

EPs.

�
∈⊆

=
kEeIe

kk
eStrengthISW

,

)()((32)

Now we get the sub-weights of each instance for every

class, no matter whether it is the instance’s home class or

not. The result of this, depicted schematically in Figure 1,

is that the crisp instances are converted to weighted ones.

4.2 Merging Sub-weights of Each Instance to A

Total-weight
For an m-class problem, we have m sub-weights for each

instance. We need a reliable way to combine them into a

CRPIT Volume 104 - Database Technologies 2010

126

 C1 C2 … Cm

I1 1 0 … 0

I2 0 1 … 0

… … … … …

In 0 0 … 1

 C1 C2 … Cm

I1 SW1(I1) SW2(I1) … SWm(I1)

I2 SW1(I2) SW2(I2) … SWm(I2)

… … … … …

In SW1(In) SW2(In) … SWm(In)

Fig. 1: Conversion of crisp instances to weighted ones.

single total-weight for each instance to build the fuzzy

SVM classifier. We can do this for each instance I in class

Ck by computing a total-weight using the sub-weights as

follows:

��
�

�
		

�

−

=
��

−

= +=

2

)()(

)("

1

1 1

m

ISWISW

ITW

m

p

m

pq

qp

 (33)

The function TW"(I) in (33) uses absolute values of

differences of sub-weight pairs. Although TW"(I)

indicates the difference between sub-weights very well, it

still has a problem, viz., the value of the total-weight for an

instance will be the same, no matter which home class it

belongs to. For example, two instances in class C1 with

sub-weight sets (9, 1) and (1, 9) will have the same

total-weight.

In real-world data there are usually noise and outliers,

and some data may be misclassified. The performance of

any classifier will improve if these problems are taken into

account. Our method of calculating the sub-weights of

classes usually results in the labeled class of a training

instance having the highest sub-weight value. However,

something on the order of 5%-15% of the instances in any

training data seem to have a higher sub-weight in a class

other than the marked class. We should not arbitrarily

move such instances into the class with the highest

sub-weight, but we can reduce weights of the instances

whose labeled class sub-weight is much lower than the

highest values. Consequently, for an instance I in home

class Ck, we modify (33) by introducing the sub-weight

SWk(I) into it:

��
�

�
		

�

−×

=
��

−

= +=

2

)()()(

)(

1

1 1

m

ISWISWISW

ITW

m

p

m

pq

qpk

 (34)

The square root is used to avoid “polarization” of the

values of TW (some are too large and others are too close

to 0).

Using this function, 5.81199 =−×=TW for

sub-weight set (9, 1) and 8.21191 =−×=TW for

sub-weight set (1, 9). Hence, TW distinguishes the two

cases from each other. Moreover, if an instance is labeled

as belonging to a class, and is associated with a low

sub-weight for the class, it will have a low total-weight.

Alternatively, we can introduce a method similar to

standard deviation (note it is not a standard deviation) to

compute the total-weight as

�
=

−×=
m

p

pk
ISWISW

m
ISWITW

1

2))()((
1

)()((35)

4.3 Weight Normalization
Now we have a single total-weight for each instance.

However, these weights cannot be directly used for

training instances to build a fuzzy SVM classifier, because

the number of EPs may differ significantly from one class

to another. As a result, the class with the largest number of

EPs will have the highest aggregated value.

To overcome this problem, the total-weights of

instances in a class are normalized by the value range of

the class. Having a total-weight TW(I) for training

instance i, we need a normalization function that maps

TW(I) from (–�, +�) to [0, 1]. Let TWmax and TWmin be

the maximum and the minimum total-weights for a given

class. We use the following mapping to get the normalized

weights:

minmax

min
)(

)(
TWTW

TWITW
IW

−

−
= (36)

where TW(I) is the final weight for training instance I. We

perform this mapping class by class, thereby obtaining a

normalized final weight for each instance. Figure 2 depicts

the architecture of our weight assignment scheme

underlying the fuzzy SVM.

5 Experimental Evaluation
In order to evaluate the effectiveness of our EP-based

weighting model, we carry out a number of experiments.

We used 25 benchmark datasets from the UCI Machine

Learning Repository [19]. Both polynomial and RBF

kernels were used. We used the WEKA [17] discretization

filter “weka.filters.supervised.attribute.Discretize -R first

-last” for continuous attributes [25], and modified the

WEKA SVM classifier to build our fuzzy SVM classifier.

Error estimates are obtained using stratified 10-fold

Cross-Validation (CV-10). Results reported are the mean

classification performance over the 10 folds. Here we use a

range of values for hyper-parameters C, d and �, and report

the best classification accuracy for each classifier.

5.1 EP-based Fuzzy SVM vs. Standard SVM
In Table 1 we compare the accuracy of the standard SVM

classifier to our fuzzy SVM classifier with EPs-based

weights calculated by (34). The comparison is effected by

calculating the percent improvement (%impr) in accuracy

(acc) as

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

127

Fig. 2: Procedure of building the EP-based fuzzy SVM.

100×
−−

=
acc_SVM

acc_SVMSVMacc_w
%impr (37)

Equation (37) will yield a negative % when the SVM

performs better than the fuzzy SVM; conversely, a

positive % indicates superior performance by the fuzzy

SVM. Table 1 shows that our EP-based method to assign

weights results in a fuzzy SVM classifier which almost

always outperforms the standard SVM classifier using

either kernel. The maximum improvement, 22.03%, is

realized for the dataset Breast-c, while the maximum

-%impr is -4.17% for colic-o. Put another way, SVM is

better than fuzzy SVM in only 9 out of 50 tries (18% of the

tries). The parameter sets are shown in Table 2.

Polynomial Kernel RBF Kernel
Dataset

SVM FSVM %impr SVM FSVM %impr

Anneal-o 90.20 98.89 9.63 90.87 98.23 8.10

Autos 78.05 81.51 4.43 78.54 81.85 4.21

Balance-s 99.36 98.76 –0.60 98.72 100 1.30

Breast-c 69.63 84.97 22.03 75.91 75.52 –0.51

Breast-w 97.00 99.42 2.49 97.14 99.08 2.00

Colic 82.61 90.07 9.03 84.51 85.05 0.64

Colic-o 78.26 75.00 –4.17 78.53 79.35 1.04

Credit-a 85.51 95.46 11.64 86.96 93.17 7.14

Credit-g 75.70 91.50 20.87 78.30 81.60 4.21

Diabetes 77.86 78.85 1.27 77.73 77.87 0.18

Glass 74.77 78.52 5.02 72.90 76.07 4.35

Heart-c 84.49 95.18 12.65 86.14 94.59 9.81

Heart-h 84.75 94.35 11.33 84.05 91.67 9.07

Heart-s 84.44 95.56 13.17 84.44 85.93 1.76

Hepatitis 85.17 93.96 10.32 86.46 94.43 9.22

Ionosphere 91.75 91.45 –0.33 94.89 94.59 –0.32

Iris 96.67 96.67 0 97.33 96.00 –1.37

Kr-vs-kp 99.66 99.66 0 99.72 99.56 –0.16

Labor 89.47 87.72 –1.96 92.98 87.72 –5.66

Lymph 86.49 87.84 1.56 86.49 87.84 1.56

Mushroom 100 100 0 100 100 0

Sick 96.66 96.66 0 97.03 97.03 0

Sonar 84.62 89.90 6.24 88.46 87.50 –1.09

Vote 96.55 97.24 0.71 96.55 96.09 –0.48

Weather-n 71.43 71.43 0 71.43 78.57 10.00

Average 86.44 90.82 5.70 87.44 89.57 2.98

Best 4 16 7 16

Wilcoxon Test (Win/Draw/Loss)

 Polynomial Kernel RBF Kernel

FSVM

vs. SVM
13/11/1 10/14/1

Table 1: %Accuracy and %improvement; SVM vs.

FSVM (eq.34)

We performed CV-10 Wilcoxon signed-rank tests (at

the 0.05 level) and found that our fuzzy SVM classifier

with polynomial kernels got 13 wins, 11 draws and 1 loss.

And with RBF kernels, fuzzy SVM got 10 wins, 14 draws

and 1 loss. By changing the constant C and CV

foldnumber, we get similar results with all of the datasets.

When we use the weighting function in (35) to build the

fuzzy SVM machine, the results (in Table 3) are also much

better than those attained by the standard SVM.

Comparing Tables 1 and 3, we see that the fuzzy SVM

with weights calculated by (34) is somewhat more

accurate than the fuzzy SVM machine based on (35). This

is because (35) does not indicate the differences of

sub-weights as well as (34). However, for some datasets

with a large number of classes, (35) may be slightly more

efficient than (34). Henceforth, we use only weighting

scheme (34).

5.2 Robustness of the EP-based Fuzzy SVM

Classifier
In the real world we must expect errors or noise in datasets.

Therefore, robustness (or noise tolerance) is an important

Yes

Continuous

attributes?

Original training dataset

Discrete dataset

Discretization

EPs for each class

Sub-weights for each class

Normalized weights for each instance

Training dataset with weights

Weighted dataset generation

EP-miner

Normalization

EP-

FSVM

No

Total-weights for each instance

CRPIT Volume 104 - Database Technologies 2010

128

Polynomial Kernel RBF Kernel

SVM FSVM SVM FSVM Dataset

C d C d C 2�
2
 C 2�

2

Anneal-o 5 2 10 3 1000 1 500 10

Autos 1 2 1 2 100 10 10 10

Balance-s 100 2 1000 2 1000 10 150 1

Breast-c 1 1 1 1 5 10 5 10

Breast-w 1 1 1 2 1 1 500 100

Colic 1 1 1 1 10 1000 500 1000

Colic-o 1 3 1 1 10 100 1000 1000

Credit-a 1 2 5 1 10 10 100 10

Credit-g 50 1 5 1 100 100 150 1000

Diabetes 100 1 10 1 1 1 10 1

Glass 500 3 50 2 500 1 1000 10

Heart-c 50 1 100 1 1000 100 1000 1000

Heart-h 10 1 10 1 50 10 1000 100

Heart-s 50 1 1 1 50 100 50 100

Hepatitis 1 1 1 1 100 100 150 1000

Ionosphere 10 2 1 2 10 10 10 1

Iris 5 1 500 3 100 100 5 1

Kr-vs-kp 1 3 1 3 100 10 100 10

Labor 1 2 10 1 5 10 500 10

Lymph 1 1 10 1 5 10 500 100

Mushroom 1 1 1 1 1 0.1 5 1

Sick 100 3 1000 1 150 1 1000 10

Sonar 1 3 5 1 5 1 10 1

Vote 5 1 10 1 5 10 500 100

Weather-n 10 1 1 2 5 1 5 10

Table 2: Parameter sets for models in table 1

feature of a classifier [16, 18]. Next, we investigate how

well these EP-based classifiers respond to increasing noise

in data, and compare the robustness of our fuzzy SVM

classifier to that of the standard SVM classifier. To

simulate the effect of noise, we replace the attribute values

of all training instances as follows:

)1(' λ×+×= ravav (38)

where av and av' are the original and new attribute values;

r is a random value in the range [–1, 1] and � is the

percentage of noise. We leave the testing data intact. Using

these training datasets with noise, we build the standard

SVM and fuzzy SVM classifiers and compare their

performance.

Here, we use model difference to evaluate the noise

tolerance of classifiers. The model difference between two

models M1 and M2, MD(M1, M2), is:

%100
_

),(_
),(21

21
×=

allIns

MMdIns
MMMD (39)

where Ins_d(M1, M2) is the number of instances models

M1 and M2 label differently, and Ins_all is the number of

instances in the test set. The model difference MD(M1, M2)

between models trained by noisy data and noise-free data

is one way to measure the robustness of a classifier. The

results on four datasets are reported in Table 4. (We

Polynomial Kernel RBF Kernel
Dataset

SVM FSVM %impr SVM FSVM %impr

Anneal-o 90.20 93.32 3.46 90.87 92.65 1.96

Autos 78.05 79.02 1.24 78.54 80.00 1.86

Balance-s 99.36 99.68 0.32 98.72 100 1.30

Breast-c 69.63 81.12 16.50 75.91 72.73 –4.19

Breast-w 97.00 99.42 2.49 97.14 99.08 2.00

Colic 82.61 90.07 9.03 84.51 86.96 2.90

Colic-o 78.26 75.00 –4.16 78.53 79.35 1.04

Credit-a 85.51 96.52 12.88 86.96 94.35 8.50

Credit-g 75.70 87.20 15.19 78.30 79.80 1.92

Diabetes 77.86 78.85 1.27 77.73 77.87 0.18

Glass 74.77 76.07 1.74 72.90 76.07 4.35

Heart-c 84.49 95.18 12.65 86.14 94.59 9.81

Heart-h 84.75 95.24 12.38 84.05 92.86 10.48

Heart-s 84.44 93.33 10.53 84.44 85.19 0.89

Hepatitis 85.17 89.68 5.30 86.46 90.96 5.20

Ionosphere 91.75 91.75 0 94.89 94.89 0

Iris 96.67 96.67 0 97.33 96.00 –1.37

Kr-vs-kp 99.66 99.66 0 99.72 99.56 –0.16

Labor 89.47 89.47 0 92.98 91.23 –1.88

Lymph 86.49 87.16 0.77 86.49 87.16 0.77

Mushroom 100 100 0 100 100 0

Sick 96.66 96.66 0 97.03 97.03 0

Sonar 84.62 86.54 2.27 88.46 88.94 0.54

Vote 96.55 97.24 0.71 96.55 96.09 –0.48

Weather-n 71.43 71.43 0 71.43 71.43 0

Average 86.44 89.85 3.94 87.44 88.99 1.77

Best 1 17 5 16

Wilcoxon Test (Win/Draw/Loss)

 Polynomial Kernel RBF Kernel

FSVM

vs. SVM
10/14/1 7/17/1

Table 3: %Accuracy and %improvement; SVM vs.

FSVM (eq.35)

Noise Percentage (%) 0 10 20 30 40

SVM 0 11.59 14.16 18.03 20.03
Breast-w

FSVM 0 8.44 13.02 15.74 17.02

SVM 0 9.35 17.29 21.50 26.64
Glass

FSVM 0 4.67 9.81 13.55 16.36

SVM 0 8.26 17.09 21.08 24.22
Ionosphere

FSVM 0 5.13 14.25 17.38 19.09

SVM 0 25.33 26.67 33.33 36.00
Iris

FSVM 0 21.33 22.00 26.00 28.67

Table 4: %Model difference; SVM vs. FSVM with

increasing noise

performed similar experiments on a large number of

datasets and observed similar behavior.)

The graphs in Figure 3 show that the model differences

of the fuzzy SVM classifier change less than those of the

standard SVM classifier in the presence of noise. For

example, on the “Glass” dataset, the model difference of

our fuzzy SVM classifier increases from 0% to 16.36%

when the noise level increases from 0% to 40%. Over the

same range, the standard SVM classifier increases to

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

129

Breast-w

�

�

��

��

��

� �� �� �� ��

Percentage of Noise (%)

M
o

de
l

D
if

fe
re

nc
e

(%
)

��

�	

�

	

���

� �� �� � ��

Percentage of Noise (%)

A
cc

u
ra

cy
 (

%
)

��� �������

Fig. 3: Effect of increasing noise on model differences

and accuracy for dataset “Breast-w”.

Glass

�

�

��

��

��

��

��

� �� �� �� ��

Percentage of Noise (%)

M
o

d
e
l

D
if

fe
re

n
c
e
 (

%
)

Glass

��

��

��

��

 �

� !� "� #� $�

Percentage of Noise (%)

A
c
cu

ra
cy

 (
%

)

%&' ()*+%&'

Fig. 4: Effect of increasing noise on model differences

and accuracy for dataset “Glass”.

26.64%, about 10% more than the fuzzy SVM design.

Figures 3 and 4 show that our fuzzy SVM classifier is

more tolerant to noise and more accurate than the standard

SVM classifier for these data sets, and for many others that

are not reported here.

Polynomial Kernel RBF Kernel

Dataset
SVM

DC

FSVM

EP

FSVM
SVM

DC

FSVM

EP

FSVM

Balance-s 99.36 96.59 98.76 98.72 97.20 100

Breast-w 97.00 95.97 99.42 97.14 95.97 99.08

Colic-o 78.26 75.00 75.00 78.53 78.70 79.35

Diabetes 77.86 76.94 78.85 77.73 77.61 77.87

Glass 74.77 75.65 78.52 72.90 73.58 76.07

Heart-s 84.44 93.50 95.56 84.44 85.33 85.93

Ionosphere 91.75 91.75 91.45 94.89 94.40 94.59

Iris 96.67 97.09 96.67 97.33 96.00 96.00

Sonar 84.62 86.13 89.90 88.46 87.50 87.50

Average 87.19 87.62 89.35 87.79 87.37 88.49

Best 2 1 5 3 0 6

Wilcoxon Test (Win/Draw/Loss)

 Polynomial Kernel RBF Kernel

EP FSVM
vs.SVM

4/4/1 3/6/0

EP FSVM
vs.

DC FSVM

5/4/0 4/5/0

Table 5: %Accuracy; numeric datasets in table 1;

SVM vs. (DC FSVM) vs. (EP FSVM);

6 Related Work
In this section we compare our EP based weighting

scheme with the weighting methods in [4, 15].

6.1 Data-center-based Weighting Method
In [4], the following weighting function based on data

centers (DC) is used.

�
�

�

�
�

�

�

−=
+−

−
−

=
+−

−
−

=

−

−

+

+

.1,
max

1

;1,
max

1

)('

i

I

I

i

I

I

yif

yif

IW

δ

δ

xx

xx

xx

xx

 (40)

where x+ and x– are the data centers of classes + and –

respectively, and � is a sufficiently small positive number

used to avoid the case W '(I)=0. This weighting scheme is

defined only for numeric feature vector data, whereas our

weighting function (34) can handle datasets with either

numeric or nominal attributes.

We calculate the weights based on data centers and use

them to build a DC fuzzy SVM classifier. Table 5

compares this design to our fuzzy SVM classifier using

EP-based weights (EP FSVM) for the numeric datasets in

our study library.

Table 5 shows that our EP-based model is superior to

the data-center-based scheme. The fuzzy SVM classifier

combining EPs-based model got 5 wins, 4 draws, no losses

(polynomial kernels), and 4 wins, 5 draws, no losses (RBF

kernels). And it increases the accuracy significantly for

most of the datasets. The best improvement is for dataset

Glass, which enjoys improvements of 3.79% and 3.38%.

CRPIT Volume 104 - Database Technologies 2010

130

6.2 Other EP-based Weighting Methods
Alhammady and Ramamohanarao [15] introduced the

following method for determining the sub-weights for

decision trees:

k

k

k
MedianSW

ISW
ISW

)(
)(' = ; (41)

�
=

=
m

p

p

k

k

ISW

ISW
ISW

1

)('

)('
)(" ; (42)

where MedianSWk is the median of the sub-weight values

in class Ck. SWk (I) is the initial value of sub-weight of

instance I for class Ck, and SWk"(I) is the final value. This

function normalizes the sum of all sub-weights of each

instance so that it is equal to 1. Using these sub-weights to

build weighted decision trees has shown good results [15].

But if we use SWk"(I) as the final-weight of instance I to

build the fuzzy SVM classifier, it poses a problem. For

example, if there are two instances in class C1 with

sub-weights (1, 0) and (10, 0), then the total-weights of

both instances are equal to 1. Consequently, these two

instances will exert equal influence during training

because they have the same total weight, even though the

instances are quite different. Our method overcomes this

problem.

In [14] the following weighting function is used by Fan

and Ramamohanarao:

�
≠

−=
kq

qk
ISWISWITW)()()(' (43)

This function, the sub-weight of the instance’s home

class minus the sum of all other sub-weights, can handle

some two-class problems. But for multi-class cases (43)

also poses a problem. For example, if there are two

instances in class C1 with sub-weights (5, 2, 2, 1) and (5, 5,

0, 0), then the total-weights of both are equal to 0 (5 – 2 – 2

– 1 = 0 and 5 – 5 – 0 – 0 = 0). Again, these two instances

will exert equal influence during training because they

have the same total weight, even though the instances are

quite different. Indeed, they may be ignored as noise with

such low total-weights. However, these two instances are

quite different and should not be treated as the same, or as

noise.

Using (34) with sub-weights (5, 2, 2, 1) and (5, 5, 0, 0),

the total-weights become 3.16 and 4.06 respectively. Thus

indicating the second set is more important than the first.

Further experiments have convinced us that our weighting

method is usually better than these EP-based weighting

methods.

7 Conclusions
In this paper we have defined and developed a new, robust

weighting method to build fuzzy SVM classifiers by

means of emerging patterns, or EPs. We use EPs to

discover class memberships for the training instances, and

combine the class membership weights of each instance

into a single weight which represents the instance’s

importance in building the classifier. Then we use the

weighted training instances rather than the original crisp

ones to construct the fuzzy SVM classifier.

Our EP-based fuzzy SVM classifier performs

consistently better than the standard SVM classifier over a

wide variety of datasets and data types. The accuracy of

our weighting method is usually better than some other

recently studied weighted designs. Typical improvements

are in the range of 2%-10%. Finally, our experiments

suggest that our method is more tolerant to noise and

outliers than the standard SVM. Of course, no amount of

empirical evidence supports sweeping generalizations

about classifier performance, but we think our experiments

are sufficiently broad that we can recommend this design

with some confidence.

In the future we will explore our weighting method

with other classifiers (e.g., C4.5 and decision trees), and

furthermore, in the fields other than classification (e.g.,

regression and clustering).

8 Acknowledgment
The authors would like to thank Dr Laurence Park for

providing useful comments on a draft of this paper.

9 References
[1] Vapnik, V.N. (1998): Statistical Learning Theory.

New York, John Wiley.

[2] Burges, C.J.C. (1998): A tutorial on support vector

machines for pattern Recognition. Data Mining and

Knowledge Discovery 2(2):121-167.

[3] Inoue, T., & Abe, S. (2001): Fuzzy support vector

machines for pattern classification. Proc. Int. Joint

Conf. on Neural Networks, Washington, 2:1449-1454.

[4] Lin, C., & Wang, S. (2002): Fuzzy support vector

machines. IEEE Trans. Neural Networks,

13(2):464-471.

[5] Huang, H., & Liu, Y. (2002): Fuzzy support vector

machines for pattern recognition and data mining. Int.

Journal of Fuzzy Systems, 4(3):826-835.

[6] Abe, S., & Inoue, T. (2002): Fuzzy support vector

machines for multiclass problems. 10th European

Symposium on Artificial Neural Networks, Bruges,

113-118.

[7] Dong, G., & Li, J. (1999): Efficient mining of

emerging patterns: discovering trends and differences.

Proc. 5th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, San Diego, 43-52.

[8] Dong, G., Zhang, X., Wong, L., & Li, J. (1999):

CAEP: Classification by aggregating emerging

patterns. Proc. 2nd Int. Conf. Discovery Science,

Tokyo. 30-42.

[9] Li, J., Dong, G., & Ramamohanarao, K. (2001):

Making use of the most expressive jumping emerging

patterns for classification. Knowledge Information

Systems, 3(2):131-145.

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

131

[10] Zhang, X., Dong, G., & Ramamohanarao, K. (2000):

Exploring constraints to efficiently mine emerging

patterns from large high-dimensional data sets. Proc.

6th ACM SIGKDD Int. Conf. Knowledge Discovery

and Data Mining, Boston, 310-314.

[11] Li, J., Ramamohanarao, K., & Dong, G. (2000): The

space of jumping emerging patterns and its

incremental maintenance algorithms, Proc. 17th Int.

Conf. on Machine Learning, Standord, 551-558.

[12] Fan, H., & Ramamohanarao, K. (2003): Efficiently

mining interesting emerging patterns. Proc. 4th Int.

Conf. on Web-Age Information Management,

Chengdu, 189-201.

[13] Ramamohanarao, K., & Bailey, J. (2003): Discovery

of emerging patterns and their use in classification.

Australian Conf. on Artificial Intelligence, Perth,

1-12.

[14] Fan, H., & Ramamohanarao, K. (2005): A weighting

scheme based on emerging patterns for weighted

support vector machines. IEEE Int. Conf. on Granular

Computing, Beijing, 2:435-440.

[15] Alhammady, H., & Ramamohanarao, K. (2006):

Using emerging patterns to construct weighted

decision trees. IEEE Trans. Knowledge and Data

Engineering, 18(7):865-876.

[16] Sun, Q., Zhang, X., & Ramamohanarao, K. (2003):

Noise tolerance of EP-based classifiers, Australian

Conf. on Artificial Intelligence, Perth, 796-806.

[17] Witten, I.H., & Frank, E. (1999): Data Mining:

Practical Machine Learning Tools and Techniques

with Java Implementations. San Francisco, Morgan

Kaufmann.

[18] Han, J., & Kamber, M. (2000): Data Mining,

Concepts and Techniques. Burlington, Morgan

Kaufmann Publishers.

[19] Newman, D.J., Hettich, S.C., Blake, L., & Merz, C.J.

(1998): UCI repository of machine learning

databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html

[20] Tsang, E.C.C., Yeung, D.S., & Chan, P.K. (2003):

Fuzzy support vector machines for solving two-class

problems. Proc. 2nd Int. Conf. on Machine Learning

and Cybernetics, Xi’an, 1080-1083.

[21] Tsujinishi, D., & Abe, S. (2003): Fuzzy least squares

support vector machines for multiclass problems.

Neural Networks, 16(1):785-792.

[22] Abe, S. (2004): Fuzzy LP-SVMs for multiclass

problems. 12th European Symposium on Artificial

Neural Networks, Bruges, 429-434.

[23] Zhang, X. (1999): Using class-center vectors to build

support vector machines. Proc. IEEE Workshop on

Neural Networks for Signal Processing IX, Madison,

3-11.

[24] Cong, D., Wang, J., Yang W., & Zhang, S. (2005):

Pattern Decomposition Algorithm Based on FP-tree.

Computer Engineering, 31(16):77-79, 88.

[25] Fayyad, U.M., & Irani, K.B. (1993): Multi-interval

discretization of continuous-valued attributes for

classification learning. Proc. 13th Int. Joint Conf. on

Artificial Intelligence, Chambéry, 1022-1029.

[26] Cawley, G.C., & Talbot, N.L.C. (2001): Manipulation

of prior probabilities in support vector classification.

Proc. Int. Joint Conf. on Neural Networks,

Washington, 4:2433-2438.

CRPIT Volume 104 - Database Technologies 2010

132

