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Abstract 

Support vector machine (SVM) classifiers represent one of 

the most powerful and promising tools for solving 

classification problems. In the past decade SVMs have 

been shown to have excellent performance in the field of 

data mining. The standard SVM classifier treats all 

instances equally. However, in many applications we have 

different levels of confidence in different instances that 

belong to a particular class. Fuzzy SVMs have been used to 

recognize the importance of each training instance. 

Although these schemes are called fuzzy SVMs, they are 

basically trained by weighted training instances. In this 

paper we propose a new robust weighting scheme for the 

class memberships for fuzzy SVM classifier. The 

weighting scheme is a sophisticated and effective method 

for weighting the training instances which makes use of 

highly discriminating patterns called emerging patterns 

(EPs). Our experiments show that this new weighting 

method has excellent performance and noise tolerance 

compared to the weighting scheme previously proposed.
 .
 

Keywords:  Classification, data mining, support vector 

machines, weighting schemes. 

1 Introduction 

The concept of support vector machines (SVMs) was 

developed by Vapnik in the early 1990s, based on 

statistical learning theory (SLT) and the principle of 

structural risk minimization (SRM) [1]. SVMs have 

gained wide acceptance due to their high generalization 

ability and better performance than many traditional 

learning methods over a wide range of applications. In 

many applications the SVM provides better generalization 

performance and less overfitting than other learning 

techniques such as artificial neural networks (ANNs) [1]. 

For example, SVMs have been effectively applied in many 

classification and recognition fields, such as isolated 

handwritten digit recognition, object recognition, speech 

recognition, and spatial data analysis [2]. 

In principal, the SVM uses a mappingφ that transforms 

vectors from the original labeled 2-class input (object) 

data into vectors in a high dimensional feature space. In 

the new space it may be possible to construct a separating 

hyperplane between the two (imaged) classes of labeled 

training data. The hyperplane is then pulled back to the 

input space via inverse image algebra, where it becomes a 
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(usually) non-linear decision that separates the labeled 

input data. Subsequent input data are classified by their 

location in one of the two decision regions defined by the 

non-linear boundary. In practice, the input data are not 

mapped anywhere. Instead, inner products involving 

hypothetical pairs of data in the feature space are replaced 

by the value of a kernel function K on their “preimages”, 

so that ),())(),((
jiji

K xxxx =φφ . This device, universally 

known as the “kernel trick”, is based on a very old theorem 

due to Mercer [1], and renders the SVM idea feasible in 

practice. 

The standard SVM classifier assumes that each training 

instance belongs unequivocally to only one class, and 

further, that all instances are equally important for 

classification. In addition, we usually assume that the class 

labels are accurate. But real-world data do not always 

belong unequivocally to one class (e.g., hybrids almost 

always deserve partial membership in two or more 

progenitor classes). Moreover, class labels are not always 

correct because of noise or a lack of expert knowledge. 

These two problems affect the optimal hyperplane 

obtained by an SVM. This classifier depends on only a 

small fraction of the instances (i.e., on the support vectors, 

SVs). So, the SVM classifier can be unduly sensitive to 

noise and mislabeled instances in the data [23]. 

In this paper, we propose a new weighting scheme for 

fuzzy SVM classifier that allows each training data to 

possess a different level of importance. We define 

importance of an instance by how strongly it contributes in 

decision making. For example, an instance that has 

features that strongly determine a class is generally 

considered more important than an instance that has weak 

correlation with any of the classes. We find sub-weights 

(class-memberships) for each training instance indicating 

its relationship to the two input classes. The sub-weights 

are then merged, becoming a single weight associated with 

the instance. The training data are assigned different levels 

of contribution towards the fuzzy SVM based on these 

memberships. This modification is accomplished by 

reformulating the constrained optimization problem upon 

which the fuzzy SVM classifier is based. The usual 

construction follows the Lagrangian to a solution for the 

optimal hyperplane in the primal form, found in the dual 

form. 

We employ the recently introduced idea of emerging 

patterns (EPs) to compute sub-weights for class 

memberships. EPs are defined as itemsets whose supports 

(probabilities) increase significantly from one class to 

another [7, 8]. The discriminating power of EPs is in most 

cases proportional to their growth rates [11]. The growth 

rate of an EP is the ratio of its support in one class to that in 

the other class. EPs have had a great impact in many 

applications such as rare-class classification, and 

expansion of training data [9, 13]. Although mining EPs 
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(like mining association rules) is a time consuming task in 

data mining, they can capture significant changes between 

datasets [10, 12]. Hence, EPs can be used to build robust, 

accurate classifiers. We make use of EPs to determine the 

importance of each instance before building a SVM 

classifier. This type of SVM is as computationally 

efficient as the standard SVM because EPs do not play a 

role during decision-making. 

The remainder of the paper is organized as follows. 

Section 2 reviews the basic theory of the standard SVM 

and fuzzy SVM classifiers. In section 3, we briefly review 

EPs. Section 4 introduces our quality weighting model 

based on EPs. Section 5 reports our experiments. In 

section 6, we compare our method with other weighting 

methods. Finally, we summarize our work and list some 

ideas for future research in section 7. 

2 Standard & Fuzzy SVM Classifiers 

In this section, we briefly introduce the theory of standard 

and fuzzy SVM classifiers. 

2.1 Standard SVM Classifier 

Suppose we are given a set of labeled training data 
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Each input vector xi is considered to be a full member 

of either of two classes (called, simply, + and –), its 

membership indicated by the class label yi∈{–1, 1} for 

i=1, …, n. We wish to find a hyperplane 
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defined by the pair (w, b), such that we can separate the 

points xi by the function 
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The set X={x1, …, xn}is said to be linearly separable if 

there exists (w, b) such that the inequality 
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is valid for all elements of X. When X is linearly separable, 

we can find a unique optimal hyperplane (called the SVM) 

for which the margin between the projections of the 

training points from the two classes onto the hyperplane is 

maximized. If the set is not linearly separable, 

classification violations occur in the SVM formulation. To 

deal with data that are not linearly separable, the previous 

model is generalized by introducing n nonnegative (slack) 

variables �i such that 
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where �i � 0 for those points which do not satisfy (4). 

The optimal hyperplane is found as the solution to the 

optimization problem: 
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where constant C is regarded as a regularization parameter. 

C is the only free parameter in the SVM classifier 

formulation. Tuning this parameter balances margin 

maximization against classifier error. We construct the 

Lagrangian of τ: 
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Differentiating L with respect to w and b, and setting 

the results equal to zero yields the first order necessary 

conditions that solutions must satisfy: 
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Solving these equations and back substituting into the 

original optimization problem converts it into the dual 

problem for data in the input space: 
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where � = (�1, …, �n) is the vector of nonnegative 

Lagrange multipliers associated with the constraints. The 

solution for this problem satisfies 
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If we cannot find a hyperplane that (linearly) separates 

the X in the input space into its two labeled classes with 

high classification accuracy, we consider the possibility of 

transforming X to a higher dimensional feature space, 

say )(XZ φ= . It is our hope that the extracted data Z are 

linearly separable in )( Nℜφ . The property of the SVM 

classifier that renders it feasible is that it is not necessary to 

find the nonlinear mapping φ . Instead, we need only 

choose a kernel function ),(
ji

K xx that satisfies Mercer’s 

theorem [1], for then dot products in feature space take 

values ),())(),((
jiji

K xxxx =φφ . When using a kernel 

function, the dual problem (for vectors in feature space) 

becomes 
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The solution also satisfies (14) and (15), and is 

available via quadratic programming. Two kernels are 

used to construct SVM and fuzzy SVM classifiers in this 

paper. 

 

Polynomial kernel: 
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Radial-basis function (RBF) kernel: 
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2.2 Fuzzy SVM Classifier 

The fuzzy SVM has proposed to extend SVM by G.C 

Cawley et al [26], C. Lin et al. [4] and H. Huang et al. [5]. 

Their schemes are identical. These authors call their 

models fuzzy SVMs because they determine the 

importance of each training instance from fuzzy 

membership values. However, their schemes still produce 

crisp labels, i.e., they are still crisp classifiers. In this paper 

we use the term “soft SVM” to avoid confusion with 

earlier designs. Our classifier is also crisp, but we build the 

fuzzy SVM classifier by replacing the fuzzy memberships 

of each instance with a single weight based on EPs. There 

are other classifiers called “fuzzy SVMs” by their authors 

[3, 6, 20, 21, 22], but they are not based on instance 

weights or fuzzy memberships. We do not discuss these 

alternate designs in this article, but we do compare our 

design to the fuzzy SVM of Lin et al. [4]. 

Similar to (1), suppose we are given a set of labeled 

training data associated with weights 
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where �i∈[0, 1] is a weight which indicates the importance 

of (xi, yi) in the determination of a SVM classifier. 

Normally �i is not less than �, which is a sufficiently small 

positive number. We discuss in detail how to obtain 

reliable weights for training data in section 4. 

Analogous to the standard SVM classifier, the basic 

idea of the fuzzy SVM classifier is to maximize the margin 

of separation whilst minimizing the training error, in order 

to achieve good generalization ability. On the other hand, 

unlike the SVM classifier, a fuzzy SVM classifier uses a 

function of the weights to reduce the effect of less 

important data points (i.e., increase the effect of more 

important points). The optimal hyperplane problem for 

this case, using weighted training data is the solution of the 

primal problem 
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Note that a small �i reduces the effect of the parameter 

�i in the optimization problem. This means that the 

corresponding point (xi, yi) is regarded as less important 

for building the optimal classifer than points with higher 

weight values. The Lagrangian function becomes 
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By differentiating L with respect to w, b and �i, and 

setting the results equal to zero, we obtain the first order 

necessary conditions for a solution: 
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Solving these and back substituting in the usual way 

transform the primal optimization problem into its dual 
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and the solution satisfies (14) and (15). 

It is clear that the only difference between the standard 

SVM classifier and the fuzzy SVM classifier is the upper 

bounds of Lagrange multipliers {�i} in the dual problem. 

In the standard SVM classifier, the {�i} are bounded by a 

single constant C, while in the weighted formulation they 

are bounded by dynamical values that are functions of the 

corresponding membership values in the fuzzy SVM 

classifier. The lower the membership value of a data point 

xi is to its own class, the narrower the feasible region is 

along the �i axis. 

A fuzzy SVM classifier may maximize the margin like 

a standard SVM classifier, and correctly classify more 

important points (with higher weights) while preventing 

less important points (with lower weights, probably noise 

or outliers) from making the margin narrower, whether or 

not they are misclassified. So, different data points can 

have different impacts during learning of the optimal 

separating hyperplane. If every instance has the weight 

�i=1, the fuzzy SVM classifier reduces to the standard 

SVM classifier. With different values of �i, we can control 

the tradeoff of the corresponding training point xi. 

Consequently, the effectiveness of the fuzzy SVM 

classifier depends on the choice of the weights {�i}. In 

section 4 we show how to compute the {�i} based on 

emerging patterns (EPs). 
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3 Emerging Patterns (EPs) 
For a dataset D, an instance I in D is I = {(A1=a1), (A2=a2), 

(A3=a3), …, (An =an)}, where a1, a2, a3, …, an are values 

related to the attributes{A1, A2, A3, …, An}. We call each 

pair (A, a) an item [8]. Let Z denote the set of all items in 

an encoding dataset D. Itemsets are subsets of Z. We say 

an instance Y contains an itemset X, if X ⊂ Y. 

Definition 1. Given a dataset D and an itemset X, the 

support of X in D, SuppD(X), is defined as 
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where countD(X) is the number of instances in D 

containing X. 

EPs are itemsets whose supports change significantly 

from one class to another [7, 13]. EPs capture sharp 

differences between data classes, thus affording a 

competitive alternative to other existing state-of-the-art 

classifiers [24]. 

Definition 2. Given two different datasets D1 and D2, 

where instances in Di belong to class Ci, 

let )(XSupp
iD

denote the support of the itemset X in Di. 

The growth rate of X from D1 to D2, )(
2 1

XGR
DD →

, is 

defined as 
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When D1 is clear from the context, an EP e from D1 to 

D2 is called an EP of D2; the support of e in D2, )(
2

eSupp
D

, 

is simply denoted as the support of e, Supp(e); and its 

growth rate from D1 to D2, )(
2 1

eGR
DD →

, is denoted as the 

growth rate of e, GR(e). 

Due to their high support in the home class and low 

support in the contrasting class, EPs can be regarded as 

strong signals that distinguish classes of data. Intuitively, a 

good instance should provide strong EPs of the same class 

– it should contain strong signals that are unique to this 

class. A bad instance (i.e., noise or outlier), however, may 

contain no EPs, or EPs of both contrasting classes with 

approximately equal strength. Thus, EPs can be used to 

help find the class memberships for training instances and 

then to build the fuzzy SVM classifier. Section 4 presents 

our method for constructing the fuzzy SVM. 

4 A Weighting Method Based on EPs 
We can train the fuzzy SVM classifier directly if the 

training data already have associated weights {�i ∈[0, 1]}. 

And in this case, the weights are sometimes regarded as 

probabilities of the instances that represent their 

importance or meaning confidence. However, data 

collected in almost all real-world applications lacks 

information about weights and noise. Without any, or with 

little, prior information, it is very hard to generate a 

reliable weighting model from data and to find the true 

noise distribution. Therefore finding a good function to 

calculate the weights from the data is a primary concern 

when building a fuzzy SVM classifier. In this paper we 

propose a model based on using EPs. 

First, we calculate a sub-weight for each class and 

instance, depending on the EPs contained, and then map 

the sub-weights of each instance into a single weight 

representing the importance of each point. Then we 

normalize these values to determine a final weight for each 

instance which reflects its relative importance for 

determining the decision surface. 

4.1 Using EPs to Calculate Sub-weights 
We discretize continuous attributes in the training 

instances so that we can extract EPs. (The fuzzy SVM 

classifier will be built using the original training instances.) 

Assume that after dicretization we have a set of training 

instances, D = {I1, I2, I3, …, In}, and a set of classes, C = 

{C1, C2, C3, …, Cm}. We partition D into m datasets, D1, 

D2, … , Dm, where D = D1

�
D2

�
…

�
Dm. Ek is a set of 

EPs extracted from the dataset related to class Ck such that 

the EPs in Ek have significantly higher support in Dk than 

in
k

D , which is the complementary set of Dk. The support 

of an EP e∈Ek is )(eSupp
kD

and the growth rate of it 

is )( eGR
kk DD →

. The strength of e in class Ck, Strengthk(e), 

is defined as follows [8]: 
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Strengthk(e) represents the contribution of e∈Ek in class 

Ck. This contribution is proportional to both the growth 

rate (discriminating power) of e, )( eGR
kk DD →

, and its 

support in the home class (Ck), )(eSupp
kD

. An EP might 

have a high growth rate and low support in its home class 

and hence, its strength will be low. Alternatively, an EP 

might have a low growth rate and high support in its home 

class, again resulting in low strength. That is, in order for 

an EP to be strong, it has to have both a high growth rate 

and high support. 

Getting all the EPs contained in an instance I∈D for 

class Ck, we calculate the sub-weight SWk( I ) of I for Ck, 

which is found by aggregating the contributions of these 

EPs. 
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Now we get the sub-weights of each instance for every 

class, no matter whether it is the instance’s home class or 

not. The result of this, depicted schematically in Figure 1, 

is that the crisp instances are converted to weighted ones. 

4.2 Merging Sub-weights of Each Instance to A 

Total-weight 
For an m-class problem, we have m sub-weights for each 

instance. We need a reliable way to combine them into a  
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 C1 C2 … Cm 

I1 1 0 … 0 

I2 0 1 … 0 

… … … … … 

In 0 0 … 1 

 

 C1 C2 … Cm 

I1 SW1(I1) SW2(I1) … SWm(I1) 

I2 SW1(I2) SW2(I2) … SWm(I2) 

… … … … … 

In SW1(In) SW2(In) … SWm(In) 

Fig. 1: Conversion of crisp instances to weighted ones. 

 

single total-weight for each instance to build the fuzzy 

SVM classifier. We can do this for each instance I in class 

Ck by computing a total-weight using the sub-weights as 

follows: 
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The function TW"( I ) in (33) uses absolute values of 

differences of sub-weight pairs. Although TW"( I ) 

indicates the difference between sub-weights very well, it 

still has a problem, viz., the value of the total-weight for an 

instance will be the same, no matter which home class it 

belongs to. For example, two instances in class C1 with 

sub-weight sets (9, 1) and (1, 9) will have the same 

total-weight. 

In real-world data there are usually noise and outliers, 

and some data may be misclassified. The performance of 

any classifier will improve if these problems are taken into 

account. Our method of calculating the sub-weights of 

classes usually results in the labeled class of a training 

instance having the highest sub-weight value. However, 

something on the order of 5%-15% of the instances in any 

training data seem to have a higher sub-weight in a class 

other than the marked class. We should not arbitrarily 

move such instances into the class with the highest 

sub-weight, but we can reduce weights of the instances 

whose labeled class sub-weight is much lower than the 

highest values. Consequently, for an instance I in home 

class Ck, we modify (33) by introducing the sub-weight 

SWk( I ) into it: 
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The square root is used to avoid “polarization” of the 

values of TW (some are too large and others are too close 

to 0). 

Using this function, 5.81199 =−×=TW for 

sub-weight set (9, 1) and 8.21191 =−×=TW for 

sub-weight set (1, 9). Hence, TW distinguishes the two 

cases from each other. Moreover, if an instance is labeled 

as belonging to a class, and is associated with a low 

sub-weight for the class, it will have a low total-weight. 

Alternatively, we can introduce a method similar to 

standard deviation (note it is not a standard deviation) to 

compute the total-weight as 
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4.3 Weight Normalization 
Now we have a single total-weight for each instance. 

However, these weights cannot be directly used for 

training instances to build a fuzzy SVM classifier, because 

the number of EPs may differ significantly from one class 

to another. As a result, the class with the largest number of 

EPs will have the highest aggregated value. 

To overcome this problem, the total-weights of 

instances in a class are normalized by the value range of 

the class. Having a total-weight TW( I ) for training 

instance i, we need a normalization function that maps 

TW( I ) from (–�, +�) to [0, 1]. Let TWmax and TWmin be 

the maximum and the minimum total-weights for a given 

class. We use the following mapping to get the normalized 

weights: 
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where TW( I ) is the final weight for training instance I. We 

perform this mapping class by class, thereby obtaining a 

normalized final weight for each instance. Figure 2 depicts 

the architecture of our weight assignment scheme 

underlying the fuzzy SVM. 

5 Experimental Evaluation 
In order to evaluate the effectiveness of our EP-based 

weighting model, we carry out a number of experiments. 

We used 25 benchmark datasets from the UCI Machine 

Learning Repository [19]. Both polynomial and RBF 

kernels were used. We used the WEKA [17] discretization 

filter “weka.filters.supervised.attribute.Discretize -R first 

-last” for continuous attributes [25], and modified the 

WEKA SVM classifier to build our fuzzy SVM classifier. 

Error estimates are obtained using stratified 10-fold 

Cross-Validation (CV-10). Results reported are the mean 

classification performance over the 10 folds. Here we use a 

range of values for hyper-parameters C, d and �, and report 

the best classification accuracy for each classifier. 

5.1 EP-based Fuzzy SVM vs. Standard SVM 
In Table 1 we compare the accuracy of the standard SVM 

classifier to our fuzzy SVM classifier with EPs-based 

weights calculated by (34). The comparison is effected by 

calculating the percent improvement (%impr) in accuracy 

(acc) as 
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Fig. 2: Procedure of building the EP-based fuzzy SVM. 

 

100×
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=
acc_SVM

acc_SVMSVMacc_w
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Equation (37) will yield a negative % when the SVM 

performs better than the fuzzy SVM; conversely, a 

positive % indicates superior performance by the fuzzy 

SVM. Table 1 shows that our EP-based method to assign 

weights results in a fuzzy SVM classifier which almost 

always outperforms the standard SVM classifier using 

either kernel. The maximum improvement, 22.03%, is 

realized for the dataset Breast-c, while the maximum 

-%impr is -4.17% for colic-o. Put another way, SVM is 

better than fuzzy SVM in only 9 out of 50 tries (18% of the 

tries). The parameter sets are shown in Table 2. 

 

Polynomial Kernel RBF Kernel 
Dataset 

SVM FSVM %impr SVM FSVM %impr 

Anneal-o 90.20 98.89 9.63 90.87 98.23 8.10 

Autos 78.05 81.51 4.43 78.54 81.85 4.21 

Balance-s 99.36 98.76 –0.60 98.72 100 1.30 

Breast-c 69.63 84.97 22.03 75.91 75.52 –0.51 

Breast-w 97.00 99.42 2.49 97.14 99.08 2.00 

Colic 82.61 90.07 9.03 84.51 85.05 0.64 

Colic-o 78.26 75.00 –4.17 78.53 79.35 1.04 

Credit-a 85.51 95.46 11.64 86.96 93.17 7.14 

Credit-g 75.70 91.50 20.87 78.30 81.60 4.21 

Diabetes 77.86 78.85 1.27 77.73 77.87 0.18 

Glass 74.77 78.52 5.02 72.90 76.07 4.35 

Heart-c 84.49 95.18 12.65 86.14 94.59 9.81 

Heart-h 84.75 94.35 11.33 84.05 91.67 9.07 

Heart-s 84.44 95.56 13.17 84.44 85.93 1.76 

Hepatitis 85.17 93.96 10.32 86.46 94.43 9.22 

Ionosphere 91.75 91.45 –0.33 94.89 94.59 –0.32 

Iris 96.67 96.67 0 97.33 96.00 –1.37 

Kr-vs-kp 99.66 99.66 0 99.72 99.56 –0.16 

Labor 89.47 87.72 –1.96 92.98 87.72 –5.66 

Lymph 86.49 87.84 1.56 86.49 87.84 1.56 

Mushroom 100 100 0 100 100 0 

Sick 96.66 96.66 0 97.03 97.03 0 

Sonar 84.62 89.90 6.24 88.46 87.50 –1.09 

Vote 96.55 97.24 0.71 96.55 96.09 –0.48 

Weather-n 71.43 71.43 0 71.43 78.57 10.00 

Average 86.44 90.82 5.70 87.44 89.57 2.98 

Best 4 16  7 16  

Wilcoxon Test (Win/Draw/Loss) 

 Polynomial Kernel RBF Kernel 

FSVM 

vs. SVM 
13/11/1 10/14/1 

Table 1: %Accuracy and %improvement; SVM vs. 

FSVM (eq.34) 

 

We performed CV-10 Wilcoxon signed-rank tests (at 

the 0.05 level) and found that our fuzzy SVM classifier 

with polynomial kernels got 13 wins, 11 draws and 1 loss. 

And with RBF kernels, fuzzy SVM got 10 wins, 14 draws 

and 1 loss. By changing the constant C and CV 

foldnumber, we get similar results with all of the datasets. 

When we use the weighting function in (35) to build the 

fuzzy SVM machine, the results (in Table 3) are also much 

better than those attained by the standard SVM. 

Comparing Tables 1 and 3, we see that the fuzzy SVM 

with weights calculated by (34) is somewhat more 

accurate than the fuzzy SVM machine based on (35). This 

is because (35) does not indicate the differences of 

sub-weights as well as (34). However, for some datasets 

with a large number of classes, (35) may be slightly more 

efficient than (34). Henceforth, we use only weighting 

scheme (34). 

5.2 Robustness of the EP-based Fuzzy SVM 

Classifier 
In the real world we must expect errors or noise in datasets. 

Therefore, robustness (or noise tolerance) is an important  

Yes 

Continuous 

attributes? 

Original training dataset 

Discrete dataset 

Discretization 

EPs for each class 

Sub-weights for each class

Normalized weights for each instance 

Training dataset with weights 

Weighted dataset generation 

EP-miner

Normalization 

EP- 

FSVM 

No 

Total-weights for each instance 
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Polynomial Kernel RBF Kernel 

SVM FSVM SVM FSVM Dataset 

C d C d C 2�
2
 C 2�

2
 

Anneal-o 5 2 10 3 1000 1 500 10 

Autos 1 2 1 2 100 10 10 10 

Balance-s 100 2 1000 2 1000 10 150 1 

Breast-c 1 1 1 1 5 10 5 10 

Breast-w 1 1 1 2 1 1 500 100 

Colic 1 1 1 1 10 1000 500 1000 

Colic-o 1 3 1 1 10 100 1000 1000 

Credit-a 1 2 5 1 10 10 100 10 

Credit-g 50 1 5 1 100 100 150 1000 

Diabetes 100 1 10 1 1 1 10 1 

Glass 500 3 50 2 500 1 1000 10 

Heart-c 50 1 100 1 1000 100 1000 1000 

Heart-h 10 1 10 1 50 10 1000 100 

Heart-s 50 1 1 1 50 100 50 100 

Hepatitis 1 1 1 1 100 100 150 1000 

Ionosphere 10 2 1 2 10 10 10 1 

Iris 5 1 500 3 100 100 5 1 

Kr-vs-kp 1 3 1 3 100 10 100 10 

Labor 1 2 10 1 5 10 500 10 

Lymph 1 1 10 1 5 10 500 100 

Mushroom 1 1 1 1 1 0.1 5 1 

Sick 100 3 1000 1 150 1 1000 10 

Sonar 1 3 5 1 5 1 10 1 

Vote 5 1 10 1 5 10 500 100 

Weather-n 10 1 1 2 5 1 5 10 

Table 2: Parameter sets for models in table 1 
 

feature of a classifier [16, 18]. Next, we investigate how 

well these EP-based classifiers respond to increasing noise 

in data, and compare the robustness of our fuzzy SVM 

classifier to that of the standard SVM classifier. To 

simulate the effect of noise, we replace the attribute values 

of all training instances as follows: 

 

)1(' λ×+×= ravav   (38) 

 

where av and av' are the original and new attribute values; 

r is a random value in the range [–1, 1] and � is the 

percentage of noise. We leave the testing data intact. Using 

these training datasets with noise, we build the standard 

SVM and fuzzy SVM classifiers and compare their 

performance. 

Here, we use model difference to evaluate the noise 

tolerance of classifiers. The model difference between two 

models M1 and M2, MD(M1, M2), is: 

 

%100
_

),(_
),( 21

21
×=

allIns

MMdIns
MMMD  (39) 

 

where Ins_d(M1, M2) is the number of instances models 

M1 and M2 label differently, and Ins_all is the number of 

instances in the test set. The model difference MD(M1, M2) 

between models trained by noisy data and noise-free data 

is one way to measure the robustness of a classifier. The 

results on four datasets are reported in Table 4. (We  

Polynomial Kernel RBF Kernel 
Dataset 

SVM FSVM %impr SVM FSVM %impr 

Anneal-o 90.20 93.32 3.46 90.87 92.65 1.96 

Autos 78.05 79.02 1.24 78.54 80.00 1.86 

Balance-s 99.36 99.68 0.32 98.72 100 1.30 

Breast-c 69.63 81.12 16.50 75.91 72.73 –4.19 

Breast-w 97.00 99.42 2.49 97.14 99.08 2.00 

Colic 82.61 90.07 9.03 84.51 86.96 2.90 

Colic-o 78.26 75.00 –4.16 78.53 79.35 1.04 

Credit-a 85.51 96.52 12.88 86.96 94.35 8.50 

Credit-g 75.70 87.20 15.19 78.30 79.80 1.92 

Diabetes 77.86 78.85 1.27 77.73 77.87 0.18 

Glass 74.77 76.07 1.74 72.90 76.07 4.35 

Heart-c 84.49 95.18 12.65 86.14 94.59 9.81 

Heart-h 84.75 95.24 12.38 84.05 92.86 10.48 

Heart-s 84.44 93.33 10.53 84.44 85.19 0.89 

Hepatitis 85.17 89.68 5.30 86.46 90.96 5.20 

Ionosphere 91.75 91.75 0 94.89 94.89 0 

Iris 96.67 96.67 0 97.33 96.00 –1.37 

Kr-vs-kp 99.66 99.66 0 99.72 99.56 –0.16 

Labor 89.47 89.47 0 92.98 91.23 –1.88 

Lymph 86.49 87.16 0.77 86.49 87.16 0.77 

Mushroom 100 100 0 100 100 0 

Sick 96.66 96.66 0 97.03 97.03 0 

Sonar 84.62 86.54 2.27 88.46 88.94 0.54 

Vote 96.55 97.24 0.71 96.55 96.09 –0.48 

Weather-n 71.43 71.43 0 71.43 71.43 0 

Average 86.44 89.85 3.94 87.44 88.99 1.77 

Best 1 17  5 16  

Wilcoxon Test (Win/Draw/Loss) 

 Polynomial Kernel RBF Kernel 

FSVM 

vs. SVM 
10/14/1 7/17/1 

Table 3: %Accuracy and %improvement; SVM vs. 

FSVM (eq.35) 

 

Noise Percentage (%) 0 10 20 30 40 

SVM 0 11.59 14.16 18.03 20.03 
Breast-w 

FSVM 0 8.44 13.02 15.74 17.02 

SVM 0 9.35 17.29 21.50 26.64 
Glass 

FSVM 0 4.67 9.81 13.55 16.36 

SVM 0 8.26 17.09 21.08 24.22 
Ionosphere 

FSVM 0 5.13 14.25 17.38 19.09 

SVM 0 25.33 26.67 33.33 36.00 
Iris 

FSVM 0 21.33 22.00 26.00 28.67 

Table 4: %Model difference; SVM vs. FSVM with 

increasing noise 
 

performed similar experiments on a large number of 

datasets and observed similar behavior.) 

The graphs in Figure 3 show that the model differences 

of the fuzzy SVM classifier change less than those of the 

standard SVM classifier in the presence of noise. For 

example, on the “Glass” dataset, the model difference of 

our fuzzy SVM classifier increases from 0% to 16.36% 

when the noise level increases from 0% to 40%. Over the 

same range, the standard SVM classifier increases to  
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Fig. 3:  Effect of increasing noise on model differences 

and accuracy for dataset “Breast-w”. 
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Fig. 4:  Effect of increasing noise on model differences 

and accuracy for dataset “Glass”. 
 

26.64%, about 10% more than the fuzzy SVM design. 

Figures 3 and 4 show that our fuzzy SVM classifier is 

more tolerant to noise and more accurate than the standard 

SVM classifier for these data sets, and for many others that 

are not reported here. 

Polynomial Kernel RBF Kernel 

Dataset 
SVM 

DC 

FSVM 

EP 

FSVM 
SVM 

DC 

FSVM 

EP 

FSVM 

Balance-s 99.36 96.59 98.76 98.72 97.20 100 

Breast-w 97.00 95.97 99.42 97.14 95.97 99.08 

Colic-o 78.26 75.00 75.00 78.53 78.70 79.35 

Diabetes 77.86 76.94 78.85 77.73 77.61 77.87 

Glass 74.77 75.65 78.52 72.90 73.58 76.07 

Heart-s 84.44 93.50 95.56 84.44 85.33 85.93 

Ionosphere 91.75 91.75 91.45 94.89 94.40 94.59 

Iris 96.67 97.09 96.67 97.33 96.00 96.00 

Sonar 84.62 86.13 89.90 88.46 87.50 87.50 

Average 87.19 87.62 89.35 87.79 87.37 88.49 

Best 2 1 5 3 0 6 

Wilcoxon Test (Win/Draw/Loss) 

 Polynomial Kernel RBF Kernel 

EP FSVM 
vs.SVM 

4/4/1 3/6/0 

EP FSVM 
vs. 

DC FSVM 

5/4/0 4/5/0 

Table 5: %Accuracy; numeric datasets in table 1; 

SVM vs. (DC FSVM) vs. (EP FSVM); 

 

6 Related Work 
In this section we compare our EP based weighting 

scheme with the weighting methods in [4, 15]. 

6.1 Data-center-based Weighting Method 
In [4], the following weighting function based on data 

centers (DC) is used. 
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where x+ and x– are the data centers of classes + and – 

respectively, and � is a sufficiently small positive number 

used to avoid the case W '( I )=0. This weighting scheme is 

defined only for numeric feature vector data, whereas our 

weighting function (34) can handle datasets with either 

numeric or nominal attributes. 

We calculate the weights based on data centers and use 

them to build a DC fuzzy SVM classifier. Table 5 

compares this design to our fuzzy SVM classifier using 

EP-based weights (EP FSVM) for the numeric datasets in 

our study library. 

Table 5 shows that our EP-based model is superior to 

the data-center-based scheme. The fuzzy SVM classifier 

combining EPs-based model got 5 wins, 4 draws, no losses 

(polynomial kernels), and 4 wins, 5 draws, no losses (RBF 

kernels). And it increases the accuracy significantly for 

most of the datasets. The best improvement is for dataset 

Glass, which enjoys improvements of 3.79% and 3.38%. 
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6.2 Other EP-based Weighting Methods 
Alhammady and Ramamohanarao [15] introduced the 

following method for determining the sub-weights for 

decision trees: 
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where MedianSWk is the median of the sub-weight values 

in class Ck. SWk ( I ) is the initial value of sub-weight of 

instance I for class Ck, and SWk"( I ) is the final value. This 

function normalizes the sum of all sub-weights of each 

instance so that it is equal to 1. Using these sub-weights to 

build weighted decision trees has shown good results [15]. 

But if we use SWk"( I ) as the final-weight of instance I to 

build the fuzzy SVM classifier, it poses a problem. For 

example, if there are two instances in class C1 with 

sub-weights (1, 0) and (10, 0), then the total-weights of 

both instances are equal to 1. Consequently, these two 

instances will exert equal influence during training 

because they have the same total weight, even though the 

instances are quite different. Our method overcomes this 

problem. 

In [14] the following weighting function is used by Fan 

and Ramamohanarao: 
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This function, the sub-weight of the instance’s home 

class minus the sum of all other sub-weights, can handle 

some two-class problems. But for multi-class cases (43) 

also poses a problem. For example, if there are two 

instances in class C1 with sub-weights (5, 2, 2, 1) and (5, 5, 

0, 0), then the total-weights of both are equal to 0 (5 – 2 – 2 

– 1 = 0 and 5 – 5 – 0 – 0 = 0). Again, these two instances 

will exert equal influence during training because they 

have the same total weight, even though the instances are 

quite different. Indeed, they may be ignored as noise with 

such low total-weights. However, these two instances are 

quite different and should not be treated as the same, or as 

noise. 

Using (34) with sub-weights (5, 2, 2, 1) and (5, 5, 0, 0), 

the total-weights become 3.16 and 4.06 respectively. Thus 

indicating the second set is more important than the first. 

Further experiments have convinced us that our weighting 

method is usually better than these EP-based weighting 

methods. 

7 Conclusions 
In this paper we have defined and developed a new, robust 

weighting method to build fuzzy SVM classifiers by 

means of emerging patterns, or EPs. We use EPs to 

discover class memberships for the training instances, and 

combine the class membership weights of each instance 

into a single weight which represents the instance’s 

importance in building the classifier. Then we use the 

weighted training instances rather than the original crisp 

ones to construct the fuzzy SVM classifier. 

Our EP-based fuzzy SVM classifier performs 

consistently better than the standard SVM classifier over a 

wide variety of datasets and data types. The accuracy of 

our weighting method is usually better than some other 

recently studied weighted designs. Typical improvements 

are in the range of 2%-10%. Finally, our experiments 

suggest that our method is more tolerant to noise and 

outliers than the standard SVM. Of course, no amount of 

empirical evidence supports sweeping generalizations 

about classifier performance, but we think our experiments 

are sufficiently broad that we can recommend this design 

with some confidence. 

In the future we will explore our weighting method 

with other classifiers (e.g., C4.5 and decision trees), and 

furthermore, in the fields other than classification (e.g., 

regression and clustering). 
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