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Abstract

Decentralized systems are used by a significant
number of Internet users due to their specific fea-
tures such as autonomy and content privacy. With
the evolution of big data, the problem of filter-
ing information based on user interests has be-
come prevalent. Decentralized strategies for in-
formation filtering, such as similarity clustering,
seem appealing due to its simplicity over model-
based approaches (Matrix factorization). How-
ever, decentralized similarity clustering is not as
well studied as centralized ones. In this work, we
studied gossip-based similarity clustering with dif-
ferent real world similarity distributions. We an-
alyzed convergence time and found the trade-off
between convergence time and bandwidth utiliza-
tion based on optimal protocol parameters (mes-
sage size, neighbor-list size). The optimal set-
tings of the protocol parameters not only give
the minimum convergence time (approximately),
from a worst case random structure, but also avoid
wastage in bandwidth.

Keywords: Peer-to-Peer Networks, Gossip Pro-
tocols, Vicinity, Semantic Overlays, Similarity
Distribution, Convergence, Information Filtering

1 Introduction

There are a number of existing, real world, de-
centralized applications ranging from file sharing
to other exciting and useful applications such as
search engines, social networks, and personalized
recommender systems. Some of the examples are
BitTorrent (Cohen 2008), Tribler (Pouwelse et al.
2008), YaCy (Ltjohann et al. 2011, Community
2012), Gossple (Bertier et al. 2010) and What-
sUp (Boutet et al. 2013). These applications of-
fer users provisions such as autonomy and privacy.
Users experience full control of their content and
resources. Moreover, unlike centralized systems,
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these systems are economical due to elimination of
power consumption costs of running data centers.
The number of BitTorrent users has increased to
150 million as of January 2012, reported by Bit-
Torrent Inc. These applications are responsible for
3.35% of all worldwide bandwidth, more than half
of the 6% of total bandwidth dedicated to file shar-
ing until February 2013. The amount of data pro-
duced in real time, driven by these applications,
have reached between 20% and 40% of global In-
ternet traffic. These facts depict the significant
research into decentralized systems.

Many of these decentralized applications re-
quire complex big data processing such as anomaly
detection, information filtering, document clus-
tering and content recommendation. Similarity-
based Clustering (SBC), either of users or items,
is a primary technique used by all of these systems.
Many decentralized works make use of decentral-
ized overlays for SBC because the overlay directly
supports communication between the nodes in the
system; i.e. the clusters formed are essentially part
of the overlay. Building and using clusters is less
complex and more direct, than other model-based
approaches for clustering.

Decentralized SBC is not as well understood
as it’s centralized counterpart. Methods to ana-
lyze the correctness of the distributed approach
are not clearly defined and its harder to under-
stand the performance of the overall distributed
system. Communication complexity is a central
factor to the performance of these systems. How
many messages need to be communicated for a rea-
sonable performance? How big must be the mes-
sages? How quickly the system gets ready to be
used? Running at Internet scale (108 users) makes
it even harder to understand overall performance.
We, therefore focus on the fundamental aspect of
performance versus resource consumption trade-off
in a decentralized similarity clustering system.

Of the decentralized systems mentioned earlier,
many of them use gossiping as their basis for build-
ing an overlay and for processing data (Magureanu
et al. 2012, Kermarrec & Táıani 2012, Ormándi
et al. 2010, Bertier et al. 2010). Gossiping (Voul-
garis & Steen 2013, Voulgaris et al. 2005, Jelasity
& Babaoglu 2005, Jelasity et al. 2007) has features
including robustness, scalability, simplicity and is
usually modeled using epidemic models. Gossip-
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based overlays should handle hundreds of millions
of users in the system. Due to these advantages
over structured approaches, many researchers are
moving towards gossip-based systems.

Vicinity (Voulgaris & Steen 2013) and T-
Man (Jelasity et al. 2009) are well known gos-
siping protocols that enable similarity clustering.
These protocols have been well studied and have
comparable properties. They are based on ran-
dom sampling which is a cost-optimal approach.
It requires time to converge to an accurate sim-
ilarity clustering, when these systems are imple-
mented with gossiping. Convergence to an accu-
rate similarity clustering is important because the
accuracy of the clustering affects the overall accu-
racy of any outcome based upon it. Furthermore,
as data changes by node churns or changing user
profiles, similarity clustering is a continuous self-
healing operation that needs to maintain accuracy.
Therefore, we study the quality of the convergence,
the time and the bandwidth required for conver-
gence.

A trade-off between convergence time and
bandwidth is very useful to be known before build-
ing an application, e.g. recommendation systems
or clustering documents, on top of similarity clus-
tering. This trade-off provides the designers of
such systems knowledge about bandwidth require-
ments for a favorable convergence speed.

We studied Vicinity as a similarity clustering
protocol for convergence analysis and performed
experiments with real-world distributions, i.e. user
graphs where similarity is based on data extracted
from real applications. These include Movielens,
Yahoo and Epinion. These distributions make our
results indicative of behavior that we expect to see
in a real implementation at large scale.

1.1 Our Contribution

Our work has two core contributions:

• Analyzing the convergence of SBC overlays
when exposed to real time similarity dis-
tributions. The existing work in this do-
main considers synthetically generated net-
work graphs with regular or symmetric prop-
erties such as Mesh, Torus, Binary Tree or
sorted Ring to make them understandable.
However, most of the real world datasets have
irregular and asymmetric structure and prop-
erties. Most of these have power law dis-
tribution such as Movielens, Epinion, Book
Crossings (Ormándi et al. 2010) and the lit-
erature does not have the detailed study of
such similarity distributions. Therefore, our
work investigates Movielens dataset primar-
ily with two other real datasets namely Yahoo
and Epinion.

• Finding the trade-off between convergence
time and bandwidth to decide optimal set-
tings that lead to fast convergence and afford-
able bandwidth from SBC system’s perspec-
tive.

1.2 Organization

The paper is organized as follows. Section 2 ex-
plains similarity distributions used for analysis of
the protocol. Section 3 explains an SBC system
model by describing the protocol, the system it-
self and the criteria we have used for evaluation
of results. Section 4 evaluates the results. Sec-
tion 5 explains findings for future work. Section 6
describes the review of literature most relevant to
our work and Section 7 makes some concluding
remarks.

2 Characteristics of Graphs Based-on
Similarity Distributions

In an SBC system, ratings given by users of the
system are used to calculate similarity between
user profiles. The value depicting similarity of in-
terests represents the distance between users. On
the basis of this distance, users are grouped to-
gether. This grouping leads to different types of
in-degree distributions of the network, where some
nodes may have very high in-degree or some nodes
very low in-degree or all nodes of the network
may have uniform in-degree. For experiments, real
traces from the benchmark datasets, Movielens,
Epinion and Yahoo are used to observe the con-
vergence behavior of the protocol. A synthetically
generated Mesh network is used in initial experi-
ments for protocol analysis due to its regular struc-
ture, unlike real distributions, and as a baseline
comparison to the real datasets.

2.1 Datasets

To analyze real world similarity distributions,
three benchmark datasets are used including
Movielens, Yahoo and Epinion. The Movie-
lens (Labs 2011) dataset, contains one million rat-
ings on 1682 movies by 943 users. The Web-scope
dataset from Yahoo labs (Labs 2012) contains ap-
proximately 3 million ratings about 1000 songs
from exactly 15,400 users. The Epinion (Massa
2003) traces contain 664,824 ratings about 139,738
products by 49,290 users.

For analysis of convergence between distribu-
tions, 900 users are randomly selected from re-
spective dataset. Based on user profiles, the top
k optimal users for each user are calculated using
Cosine similarity. These tables for each value of k
are then used to calculate optimal nodes in each
nodes view. The similarity distances range from 0
(completely non-similar) to 1 (the most similar).
Table 1 shows the clustering co-efficients for the
three real networks comprised of 900 nodes, with
three different values of k. Movielens has high clus-
tering co-efficients whereas Epinion has the least

Top k Movielens Yahoo Epinion
10 3.13× 10−4 2.13× 10−4 1.86× 10−4

20 3.79× 10−4 2.53× 10−4 2.11× 10−4

40 4.64× 10−4 3.03× 10−4 2.49× 10−4

Table 1: Clustering Co-efficient of Real Datasets
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(d) k = 800

Figure 1: Similarity distribution of Movielens with 900 nodes.
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(d) k = 800

Figure 2: Similarity distribution of Epinion with 900 nodes.

among all which depicts differences in interests of
users.

Preliminary experiments are performed on a
2-D Mesh due to its simple and understandable
structure. To generate a mesh network, the dis-
tance metric used is number of hops. Each node
is assigned a distance in terms of number of hops
to every other node in the network. The result-
ing network is a single connected component. All
nodes collectively build a mesh topology with in-
degree = out-degree which is 4 for all nodes except
edge nodes with degree 3 and corner nodes with
degree 2.

2.2 Degree Distribution

Determining the degree distribution of a particular
dataset based on similarities between nodes, de-
pends upon the value of k. Figure 1 and Figure 2
show the similarity distribution of 900 nodes in
the Movielens and Epinion datasets respectively,
with four different values of k. With k = 10,
both datasets have Power-law distribution which
no longer remains Power-law as k increases to half
of the network size. Differences in degree distri-
bution leads to differences in convergence time as
explained in Section 4.3.

3 Decentralized SBC System Model

For the purpose of SBC approach, we con-
sider a system containing a set of users U =
{1, 2, 3, . . . , n}, where each node of the network
represents a user of the system, a set of items
I = {1, 2, 3, . . . , k} and a set of ratings about items
R = ru,i where i ∈ I and u ∈ U . Each user of
the system has a profile that contains information
about the items held and associated ratings. The
system shall provide a user, access to the profile

information of the top k similar users. For the pur-
pose, the system requires a similarity metric which
is Cosine for Movielens dataset. The Cosine simi-
larity between user a and b is calculated using the
following equation:

Similarity(a, b) =

∑n
l=1 ra,lrb,l√∑n

l=1 r
2
a,l

∑n
l=1 r

2
b,l

,

where a, b ∈ U, l ∈ I.
To realize the system, Vicinity is proposed as

the overlay protocol, as argued in Section 1.

3.1 Vicinity

Vicinity is a gossip-based protocol which is used
to cluster peers that are semantically close. Vicin-
ity is a two layer protocol. The upper layer con-
sists of Vicinity (proper) and the lower layer con-
sists of the Cyclon protocol. Each node main-
tains a list of neighbors which is a subset from the
whole network, called a “view”. All nodes con-
verge to the semantically closest neighbors in their
views, once the protocol is converged. These opti-
mal views can be used for generating recommenda-
tions. To restrain the protocol from saturation, i.e.
the point where long distant nodes are no longer
accessible thereby preventing some of the views
to reach to their optimal, fresh random samples
from the network are acquired with the peer sam-
pling service provided by the Cyclon protocol.
Cyclon continuously feeds Vicinity with ran-
dom peer samples from the network, which guar-
antees convergence given a sufficiently long period
of time.

Each node in the network is required to run
two protocol instances, one for Vicinity and one
for Cyclon. Therefore, every node maintains two
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views, one for Cyclon and the other for Vicin-
ity. As Cyclon is a peer sampling service, its
view contains fresh random samples of the net-
work. Vicinity, however, has only those nodes
in the view which are semantically close. Vicin-
ity uses a selection function, which decides what
peers to keep in the Vicinity view on the basis of
similarity metric used.

Each node in the network has an associated de-
scriptor that contains a Node Identifier, an Age
parameter, and the Profile of the node. The Age
parameter gives some indication of when the node
was last contacted. Every node initiates gossip ex-
actly once in each round. During gossiping, nodes
exchange neighbors from their views. The number
of neighbors exchanged in each gossip, is called
gossip length.

Vicinity is described in Algorithm 1 and 2.
Two threads are required to execute simultane-
ously, by a node, active and passive. Every node
executes the active thread exactly once every T
time units to initiate gossip. Each node also needs
to execute a passive thread in response to a gossip
request. The passive thread is not always run-
ning. Only the nodes selected for gossiping are
required to run the thread at the time of a gossip
request being received. There are three methods
used by nodes in the network. To initiate gos-
sip, the node executes SelectToGossip(), which
selects the oldest node in the view. Functions
SelectToSend() and SelectToKeep() select op-
timal nodes from all buffers by applying a selec-
tion function, and exchange a number of neighbors
equal to gossip length. A more detailed explana-
tion of the protocol is described in (Voulgaris et al.
2007).

while true do
wait(T time units);
increase age of all descriptors in the view;
Q← SelectToGossip();
remove Q from the view;
bufSend ← SelectToSend();
send bufSend to Q;
receive bufRcv from Q;
view ← SelectToKeep();

end
Algorithm 1: Active Thread

receive bufRcv from Q;
bufSend ← SelectToSend();
send bufSend to Q;
view ← SelectToKeep();

Algorithm 2: Passive Thread

3.2 Building an SBC System

An SBC system, for instance, can be used to pre-
dict rating about an item on the basis of the rat-
ings from the most similar users if the application
is a recommendation system. Vicinity converges
to the most similar neighbors for each user which
makes it suitable for building an SBC system.

To bootstrap Cyclon and Vicinity protocols
(for the purpose of simulation, but not necessar-
ily in a real deployment), the two views associated
with each node are filled with randomly selected
neighbors. Each node of the network is then asso-
ciated with the list of items and associated ratings
from the dataset. The selection function, Cosine,
is applied to calculate similarity between nodes.
A similarity value of 1 between two nodes shows
that the nodes are identical. The similarity value
decreases to 0 with a decrease in commonality be-
tween profiles.

Due to the use of real datasets instead of a
dynamic data source, user profiles remain static
throughout the presence of the node in the net-
work. After implementation of Vicinity with dif-
ferent distributions, the differences in convergence
behavior of the protocol are observed. We leave
the study of changing profile information to future
work.

3.3 Convergence Criteria

The protocol is considered to be fully converged
when all nodes of the network have optimal nodes
in their views. Formally, Let Γd(u) be the set of
nodes at distance d, for a given node u. Consider
a view V , of size v. Find the smallest d0 such that
| Γd0(u) |≥ v. Then the node u is converged if and
only if:

V ⊆ Γd0(u), and

V ∩ Γd(u) = Γd(u) for all d < d0. (1)

From Eq. 1, if many equi-distant nodes are found
for a given node, then any of those found in the
view is considered optimal. This is illustrated in
Figure 3 where optimal nodes of node m are shown
in a 2-D Mesh.
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Figure 3: Optimal links for node m in a 2-D Mesh,
with view sizes 4 and 6.

With view size 4, optimal neighbors for node m
are {h, l, n, r} whereas, with view size 6, optimal
neighbors for node m are 4 nodes at the distance of
1 hop; {h, l, n, r} and any 2 nodes among 8 nodes
at the distance of 2 hops; {g, i, q, s, c, k, w, o}, any 2
of these can fill empty view slots as optimal neigh-
bors. We define percentage convergence at a given
cycle as the extent that a node has converged at
that cycle. Formally, Let V ∗(u) be any set V that
satisfies Eq. 1 for node u. Then the percentage
convergence ξτ (u), for node u at cycle τ is:
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Figure 6: 80% nodes converged

ξτ (u) = maxV ∗(u)

{
| Vτ (u) ∩ V ∗(u) |
| V ∗(u) |

}
, (2)

i.e. the percentage convergence is the maximum
over all the possible converged sets.

4 Simulations and Experiments

All experiments were performed in PeerNet, which
is an extended version of PeerSim (Montresor &
Jelasity 2009). The simulations were carried out
using both modes of the simulator, cycle-driven
and event-driven. The cycle-driven mode executes
each experiment in cycles where one cycle is com-
pleted when all nodes initiate gossip exactly once.
The event-driven mode is activated when events
processing or exchange of messages between nodes
is required.

4.1 Environment settings

The parameters that affect convergence are shown
in Table 2.

4.1.1 View Size

Vicinity uses Cyclon for randomly linking to
long distant nodes, which makes it capable of con-
verging quickly towards the optimal links. Due to
the random selection, the convergence time varies
for each run. Therefore, we run the experiment
multiple times to get an acceptable standard error
in mean (SEM). For SBC systems, it is crucial to
know how long it can take to converge. The longer
the convergence time, the longer it takes to gen-
erate accurate results based upon this. For each
distribution, this time may vary. Keeping view

Parameter Symbol Values
View Size Vc= Vvic 5,10,20,40
Gossip Length gc= gvic all values of g ≤ V
Network Size N 100 to 6000 Nodes

Table 2: Protocol Parameters

size small makes the convergence slower but helps
maintaining fresh links. When using large view
sizes, it not only takes longer to contact all the
links in the list, but also increases the chances of
invalid or stale links in the view. It seems more ap-
pealing to use larger view sizes when more choices

are required. On the other hand, smaller view sizes
give most recent information from a small number
of optimal nodes with the compromise on the num-
ber of choices of users. For simulations, view sizes
are kept equal for both protocols ranging from 4
to 45, in all experiments.

4.1.2 Gossip Length

Using a large gossip length, reduces the conver-
gence time significantly but costs more bandwidth,
which is a critical parameter. A trade-off between
bandwidth and convergence time is required to de-
termine the optimal gossip length for SBC sys-
tems. Gossip length is kept equal for Cyclon and
Vicinity, in all experiments.

4.1.3 Network Size

For SBC systems, larger networks can be more fa-
vorable because they increase the chances of find-
ing similar nodes. Initial experiments are con-
ducted with networks containing 900 nodes. The
reason of keeping the network size this small is to
simplify the comparison between different distri-
butions. However, network sizes varies between
100 and 6000 for experiments concerning the ef-
fect of network size on convergence time. All these
networks are extracted from Movielens containing
6040 users.

4.2 Protocol Analysis

Each experiment in each simulation was run for
100 trials for each distribution due to the random-
ness of Cyclon and the initial conditions. This
leads to different convergence times which can be
observed clearly by ripples after g = v/4 for each
view size in Figure 12 in Section 4.3.

4.2.1 Average View Quality

An interesting behavior of Vicinity is that it fills
views of each node with the most similar neigh-
bors first. This behavior is observed using aver-
age view quality which is shown in Figure 4 using
view slots. By Average View Quality (AVQ), we
mean how similar a node is to its neighbors in its
view, on average. The average similarity taken
over all nodes of the network is represented by
shades of gray. Black shows the presence of non-
optimal links in the view slots, that are replaced
by more similar links turning to white as the num-
ber of cycles increases. Black is more dominant
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Figure 7: Message Load on each node during 1000 cycles with v=20, g=5, N=900

on the tail of the view, which represents existence
of least-optimal links. These links are the least
similar, as compared to the others in the view,
but more similar than other nodes in the network.
The reason for the long tail is that as the protocol
converges, most of the nodes acquire their opti-
mal links, hence decreasing the chances for some
other nodes still foraging for their optimal links
in the neighbors views. Hence, the random peer
sampling service must be relied on to obtain those
links, which can take some time.

4.2.2 Percentage Convergence

In Figure 5, the Percentage Convergence (PC) for
each node in a 30×30 Mesh, is shown at cycles be-
tween 1 to 50, with view size 30 and gossip length
4. Each line represents a separate cycle in the
order {1, 3, 5, 10, 20, 30, 40, 50}, moving upwards.
Nodes are sorted according to the percentage of
convergence to increase readability. At each cy-
cle, some nodes are converging faster than others,
due to the path taken to reach to the destination
nodes. At cycle 50, there are still some nodes kept
waiting for their optimal nodes causing the long
tail shown in the Figure 4.

4.3 Convergence Analysis

4.3.1 Convergence Time

Figure 6 demonstrates the convergence time for
each distribution when 80% of nodes are fully con-
verged. Here, each distribution is represented by
its initial letter(s). It can be observed that the
optimal convergence time for each distribution is
different for view sizes 5, 10, 20 and 40 when the
gossip length is equal to view size. All real world
distributions took longer to converge than Mesh
due to the distribution itself where the in-degree
distribution forms an irregular graph unlike Mesh.
Therefore, some nodes acquire link to their desti-
nation nodes in initial cycles whereas some nodes
keep foraging for their optimal nodes for many cy-
cles. Depending on the clustering co-efficients as
described in Table 1, each real distribution con-
verges accordingly. The higher the distribution
is clustered, the faster it reaches to convergence.
Figure 7 shows the maximum load on each node
(sorted) during 1000 cycles, with different distri-
butions.

4.3.2 Network Size

Experiments with network sizes between 100 and
6000 nodes from Movielens dataset, suggest the in-
crease in convergence time when the network size
is increased to one million. Above 6000, the re-
sults are based on extrapolation for the conver-
gence time when nodes are 104, 105 and 106. Fig-
ure 8 shows the increase in convergence time to
7000 cycles (approximately) when the network size
grows to one million nodes.
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Figure 8: Convergence time for Movielens reaches
7,000 cycles for a 1 million nodes network.

4.3.3 Message Load

When the in-degree distribution of the network
is Power-law, which is mostly the case with real
datasets, the number of messages received at max-
imum and on average, are not the same for all
nodes present in the network. This leads to higher
bandwidth requirement for some nodes. Figure 7
shows the maximum number of received messages
by each node during 1000 cycles.
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Figure 9: Maximum no. of messages received by a
node in 1000 cycles.

Figure 9 and 10 show the maximum and aver-
age message load experienced by a node for Movie-
lens and other distributions. Mesh has the least
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Figure 10: Average no. of messages received by a node in 1000 cycles.

average message load approximately equal to 1.
Whereas, Movielens and other real distributions
have average message load less than 5. How-
ever, the maximum number of messages received
by any node in the network reaches 40 for Movie-
lens where 90% nodes have the maximum message
load less than 20 as shown in Figure 9.

It can be seen that only one node received a
maximum of 43 messages in a cycle. For nodes ex-
periencing greater than the average message load,
the bandwidth can be a critical parameter. Fig-
ure 11 shows the maximum and average number
of messages received by each individual node, av-
eraged over 1000 cycles. On average, each node
receives one message where the actual number
of maximum messages can increase to above 40.
When the network grows to 100,000 nodes, the
maximum messages received by a node reached
greater than 400 per cycle, increasing bandwidth
requirement up to 1 gigabyte per second.
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Figure 11: Extrapolation for N > 6000 shows the
maximum number of messages reach above 400.

4.3.4 Bandwidth Utilization

The communication overhead in gossip-based SBC
overlays is due to the self-healing nature of gossip
protocols. The nodes need to exchange messages
frequently that requires bandwidth. The band-
width cost depends directly on factors such as mes-
sage load, network size and convergence time as
explained in section 4.3.

To understand the bandwidth utilization in a
gossip-based SBC system, consider a movie rec-
ommendation system where a given nodes’ table
is comprised of v other nodes, each with its asso-
ciated profile. Let s be the size of a node profile,
where in this case the profile could be the m lat-
est movies watched containing the user assigned
ratings and identifying information including title,

year, producer, director. For a subset of size g, the
total bytes required to send/receive one message is
g s, or g s bytes per second for a cycle time T = 1
second.

If we consider exchanges between random nodes
then the total number of messages exchanged in
each cycle is on average 4 per protocol, exactly 2
as initiator and on average 2 as responder. Using
Vicinity costs 4 messages per cycle. For sim-
ple comparison in our work, we assume some rea-
sonable values of s = 100 bytes for each profile
item and m = 100 items in the profile, and a
subset size of g = 4, the required bandwidth is
4×4×100×100 = 160k bytes per cycle. If the con-
vergence time is 1000 cycles for a given distribution
and given network size (let’s say 1000 nodes), and
T = 1 hour (very slow cycles), the bandwidth is
(a tiny) 160k/3600 = 44 bytes per second but it
takes 1000 hours to converge and consumes a total
of 1600 MB per node. For T = 2 seconds (unre-
alistically fast, since Internet delays start to dom-
inate), the bandwidth increases to 160k/2 = 80k
bytes per second (quite appreciable), taking 2000
seconds to converge with the same amount of total
information exchanged. In this paper, we infer this
trade-off for large scale networks from simulation
data as shown in Section 4.3.2. Smaller messages
cause less communication overhead and hence de-
sirable. To find the message size which is suitable
for optimal convergence, we consider gossip length
g with three different cases: g > v, g = v, and
g < v. Keeping g > v gives the same convergence
speed as g = v because a node only knows v neigh-
bors. Therefore, g = v and g < v were considered
for experiments with view sizes {5, 10, 20, 40}. It is
observed that with g = v, the optimal convergence
time is achieved because every node is exchanging
whatever it has in the view. To analyze the con-
vergence speed for g < v, all possible values of g
less than v are considered beginning from g = 2 to
v. A value of g = 1 leads to very long convergence
time.

Figure 12 shows the convergence time in cy-
cles against gossip length for four different distri-
butions when all nodes’ views are 80% converged.
It is observed that using g less than v/4 reduces
the convergence time, significantly. However, with
gossip length larger than v/4, only a small de-
crease in number of cycles (approximately 2 to
3 cycles) is observed. This is due to the reason
that each node exchanges a fixed size portion (g)
of its view with the other node. The exchanged
portion consists of the most similar nodes selected
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Figure 12: Convergence time with g ≤ v, for 80% convergence

from the other nodes perspective. Hypothetically,
a larger portion must lead to faster convergence
by providing with more neighbor choices. But
actually the larger portion provides with only a
few more less similar neighbor choices having de-
creased chances to be selected as optimal nodes.
This is evident by the difference of 2 to 3 cycles
between g = v/4 and g = v. Therefore, using
g = v to get approximately the same convergence
speed, at the cost of more bandwidth, is wast-
ing resources. Figure 12(a) shows the convergence
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(b) Different network sizes
(103, 104, 105, 106), moving up-
wards.

Figure 13: Bandwidth-Convergence Trade-off

time for Mesh distribution when all nodes are 80%
converged. The same can be observed for all other
distributions, i.e. Epinion and Yahoo as shown
in Figure 12. The results shown in Figure 12(c)
are when 80% nodes are 80% converged, to avoid
long simulation runs. Epinion holds the smallest
clustering co-efficient among all the three real dis-
tributions. This causes the least clustered nodes
to look for their optimal nodes for thousands of
cycles.

Figure 13(a) demonstrates the bandwidth re-
quirement as the total convergence time varies be-
tween one minute to one day, for 50%, 80%, 90%
and 100% convergence with Movielens dataset.
For all other experiments on network size, only
80% convergence is used for calculating conver-

gence time.
Figure 13(b) plots the bandwidth against the

total time required to converge for four different
network sizes. The convergence time for network
sizes 103, 104,105, and 106 are 11, 72, 675, and
6750 cycles, respectively. It can be observed that
with the increase in the size of a network, the re-
quired bandwidth increases in the same time. The
reason is that the larger networks take more cycles
to converge. This shows that decreasing number
of cycles required to converge, contributes towards
decreased bandwidth. Moreover, the bandwidth
utilization is also dependent on the time that the
application can allow to converge the network. If
this time is in seconds rather than hours, more
bandwidth will be required to reach to the con-
vergence state. These experiments are performed
using the optimal settings of view size and gos-
sip length. Without these settings, the required
bandwidth will increase as gossip length increases.

5 Long-tail Behavior

Investigation about convergence of SBC overlays
leads to a few questions about the scenario where
some nodes keep foraging for very low in-degree
nodes but cannot reach them through Vicinity
gossip rounds. In that case, the only solution that
the protocol offers is the peer sampling service pro-
vided by Cyclon. Nodes rely on this service’s
random input to reach those low in-degree nodes
leading to very long convergence time. This situ-
ation is depicted in Figure 14 where nodes a and
b are low in-degree (equal to 1), fully converged
nodes. Node z is foraging for a and b as it’s optimal
nodes but cannot reach them. No other nodes have
links to a or b except t and v, respectively. Nodes y
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Figure 14: Problem reaching low in-degree nodes.

and w are filling the neighbor list as replacements.
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Vicinity gossiping does not serve any benefit ex-
cept increasing the convergence time. These low
in-degree nodes get isolated and need a way to be
reached by other nodes. This problem will be fur-
ther investigated in the future work. The worst
case for SBC overlays is when nodes in the overlay
have nothing common in their profiles. This situ-
ation is common when bootstrapping the overlay.

6 Related Work

6.1 Similarity Clustering

The preliminary work in semantic clustering in-
cludes (Voulgaris et al. 2004) and (Handurukande
et al. 2004). The idea was to improve file shar-
ing and content searching by developing relation-
ships between users. These semantic relationships
between users are used to search for files or con-
tents with significant performance. The authors
in (Mekouar et al. 2012) analyze different similar-
ity metrics to generate accurate recommendations
using a super peer based hierarchical overlays.

6.2 Gossip-based SBC Protocols

Voulgaris et al. in (Voulgaris et al. 2007, Voul-
garis & Steen 2013) introduce a gossip-based se-
mantic clustering protocol named Vicinity. This
protocol uses Cyclon (Voulgaris et al. 2005) as
a peer sampling service. On the basis of a se-
lection function, Vicinity converges to a set of
optimal neighbors for each user in the network.
The similarity metric used by Vicinity is fur-
ther analyzed by (Busnel & Kermarrec 2005) to
incorporate peer generosity and file popularity to
it. They introduced Vicinity-based decentral-
ized algorithm for similarity measurement using
the eDonkey2000 dataset. The results give a good
idea about the in-degree distribution of the net-
work and the hit ratio of the similarities consid-
ered (i.e. random, overlap and others). Another
semantic clustering protocol, which is very close
to Vicinity, is T-Man. Although, Vicinity is
quite different from the original T-Man, the most
recent version of T-Man (Jelasity et al. 2009) is
quite similar to the baseline version of Vicinity
protocol as explained in (Voulgaris & Steen 2013).
The difference lies between the two protocols in
terms of garbage collection and bandwidth usage.
Vicinity is found better in these two due to its
round robin policy for neighbor selection.

6.3 Gossip-based SBC Systems

In (Ormándi et al. 2010), different versions of
T-Man (Jelasity et al. 2009) are compared with
Buddy-Cast protocol. This is the most relevant
work to our research. They proposed T-Man-
based algorithm that produces a topology with fa-
vorable convergence speed and balanced load in
a user-based collaborative filtering system. All
datasets used for comparison including Movie-
lens, Jesters and Book Crossing, have a Power-
law distribution. Kermarrec et al. (Kermarrec
et al. 2010) use random walks to handle sparsity

of data in decentralized recommendation systems.
They also compare two different similarity mea-
sures to find which one is suitable for their T-
Man-based random walk recommendation algo-
rithm. In further work by (Kermarrec & Táıani
2012), authors make use of heterogeneous simi-
larities instead of homogeneous one, for generat-
ing recommendations for decentralized social net-
works. The research (Magureanu et al. 2012), fo-
cus on designing a T-Man-based recommendation
system which is efficient in terms of accuracy of
recommendations and item coverage. They intro-
duced a trust metric to calculate trust between
users. Two different datasets; Yahoo! web-scope
and Epinion, are used to analyze sparsity. The
work by (Baraglia et al. 2013) gives the concept of
developing public and private communities on the
basis of similarity between different user profiles.
The authors compare their proposed protocol with
Vicinity and Cyclon using Movielens dataset,
although, the results are very close to Vicinity
protocol. Tribler (Pouwelse et al. 2008), which is
a popular peer-to-peer Bit-Torrent client applica-
tion is developed using Buddy-Cast (Bakker et al.
2009), for the purpose of generating and receiving
recommendations between users. This shows the
significance and suitability of gossip protocols for
the purpose of SBC but it does not give any idea
of how the convergence behavior changes when the
degree or similarity distribution of the network
changes, and how this affects the results based
upon them.

7 Conclusion

Decentralized SBC overlays based on gossiping of-
fer a simple and scalable platform to a variety
of applications such as document clustering, in-
formation filtering and anomaly detection. The
suitability of such overlays to a particular applica-
tion depends upon their convergence level. There
are limited studies about the convergence of these
overlays based on factors such as similarity distri-
bution, message load and size of the network.Fast
convergence of SBC overlays to a percentage, is de-
sirable because reaching convergence costs band-
width. Using unbounded bandwidth results in the
fastest convergence but is unreasonable in practi-
cal applications. Studying the trade-off between
convergence speed and bandwidth, gives a band-
width conserving solution with ideal convergence
speed. We found that there exists a threshold for
gossip length, at which the convergence speed is
nearly optimal and after that utilizing more band-
width for increasing convergence speed is largely
wasting resources. These settings are independent
of the type of distribution. However, the conver-
gence time is different for each distribution due to
different network characteristics such as cluster-
ing co-efficients. Experiments with message load
show that bandwidth is a critical parameter for the
nodes with high message load especially when net-
work size is very large. Therefore, using optimal
settings leads to bandwidth-efficient convergence.
Future work includes implementation of this work
with some real world data where profiles of users
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are dynamic and the network size is very large to
realize a gossip-based SBC system.
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