
Efficient Algorithms for the All Pairs Shortest Path Problem with
Limited Edge Costs

Tadao Takaoka
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

E-mail: tad@cosc.canterbury.ac.nz

Abstract

In this paper we deal with a directed graph G =
(V,E) with non-negative integer edge costs where the
edge costs are bounded by c and |V | = n and m = |E|.
We show the all pairs shortest path (APSP) prob-
lem can be solved in O(mn+ n2 log(c/n))) time with
the data structure of cascading bucket system. The
idea for speed-up is to share a single priority queue
among n single source shortest path (SSSP) prob-
lems that are solved for APSP. We use the traditional
computational model such that comparison-addition
operations on distance data and random access with
O(log n) bits can be done in O(1) time. Also the
graph is not separated, meaning m ≥ n. Our com-
plexity is best for a relatively large bound on edge
cost, c, such that c = o(n log n).

1 Introduction

We consider the all pairs shortest path (APSP) prob-
lem for a directed graph with non-negative edge costs
under the classical computational model of addition-
comparison on distances and random accessibility by
an O(log n) bit address. The complexity for this
problem under the classical computational model is
O(mn+ n2 log n) with a priority queue such as a Fi-
bonacci heap [6]. We improve the second term of the
time complexity of the APSP problem for a directed
graph with limited edge costs under this computa-
tional model.

To deal with such a graph with edge costs bounded
by c, referring to two representatives, Ahuja, Mel-
horn, Orlin, and Tarjan [1] invented the radix heap
and achieved O(m+ n

√
log c) time for SSSP. Thorup

[10] improved this complexity to O(m+n log log c). If
we apply these methods n times for the APSP prob-
lem, the time complexity becomes O(mn+ n2

√
log c)

and O(mn + n2 log log c) respectively. We first im-
prove the time complexity for this problem to O(mn+
nc). When c ≤ m, that is, for moderately large c,
this complexity is O(mn). We finally reduce this to
O(mn + n2 log(c/n)) 1. For the priority queue we
start from a simple bucket system, whose number of
buckets is c and the number of delete-min operations
is nc for both SSSP and APSP problems. If edge costs

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 18th Computing: The Australasian The-
ory Symposium (CATS 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 128, Julian Mestre, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

1Precisely speaking, this should be O(mn+ n2 log(c/n+ 1)).

are between 0 and c for SSSP, the tentative distances
from which we choose the minimum distance for a
vertex to be included into the solution set take values
ranging over a band of length c. If c < n, we can
reduce the time for delete-min by looking at the fixed
range of values, as observed by Dial [4]. We observe
the same idea works for the APSP problem in a bet-
ter way, as shown in [9]. To the author’s knowledge,
this simple idea is nowhere else in print.

For the more sophisticated priority queue we use
a cascading bucket system of k levels to choose min-
imum distance vertices one by one and modify the
distances of other candidate vertices. This data struc-
ture is essentially the same as those in Denardo and
Wegman [3] and in [1]. Our contribution is to show
how to use the data structure, which was used for the
SSSP problem, in the APSP problem without increas-
ing the complexity by a factor of n. We mainly fol-
low the style of Cherkassky, Goldberg and Radzik[2].
Taking an analogy from agriculture, the data struc-
ture is similar to a combine-harvester machine with k
wheels. The first k−1 wheels work inside the machine
for threshing crops and refining then to finer grains
from wheel to wheel, whereas the last wheel goes the
distance of c(n−1) and harvests the crops. For SSSP
and APSP, the amount of crops is O(n) and O(n2)
respectively.

It is still open whether the APSP problem can be
solved in O(mn) time. The best bounds for a gen-
eral directed graph are O(mn + n2 log log n) with an
extended computational model, yet simulated by the
conventional comparison-addition model by Pettie [8].
Our contribution of O(mn + n2 log(c/n)) time com-
plexity is better than existing O(mn + n2 log logn)
and O(mn+ n2 log log c) when c = o(n log n).

The rest of the paper is as follows: In Section 2, we
introduce a simple data structure of the bucket sys-
tem. In Section 3, we define shortest path problems;
single source and all pairs. In Section 4, we show
the bucket system works well for the APSP problem
by determining shortest distances directly on vertex
pairs. In Section 5, we define the double bucket sys-
tem. In Section 6 we describe the k-level cascading
bucket system, which is a generalization of the double
bucket system. In Section 7, we show that the hid-
den path algorithm [7] can fit into our framework of
bucket systems, whereby we can have a further speed-
up. Specifically m can be replaced by m∗, where m∗

is the number of optimal edges, that is, they are part
of shortest paths. Section 8 is the conclusion.

Sections 2 and 5 may be redundant as they are
special cases of k = 1 and k = 2 of the k-level bucket
system in Section 6. The sections are included for
step by step development of our data structures and
algorithms. Also some materials from [9] are repeated

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

21

in this paper for the readers’ convenience.

2 Simple data structure

In this section we review a well known data struc-
ture of priority queue for developments in subsequent
sections. The priority queue allows insert, delete and
find-min, and is called the bucket system. This is a
special case of k = 1 in the general k-level cascading
bucket system. Specifically, a bucket system consists
of an array of pointers, which point to lists of items,
called buckets. Let list[i] be the i-th list. If the key
of item x is i, x appears in list[i]. The array element,
list[i], is called the i-th bucket. If there is no such x,
list[i] is nil. In the bucket system, array indices play
the role of key values. To insert x is to append x to
list[i] if the key of x is i. To perform decrease-key
for item x, we decrease the key value of x, say, from
i to j, delete x from list[i] and insert it to list[j]. To
find the minimum for delete-min, we scan the array
from the previous position of the minimum and find
the first non-nil list, say, list[i], and then delete the
first item in list[i]. Since all key values of the items in
the list are equal, we can delete all the items. Clearly
the time for insert and decrease-key are both O(1).
The time for delete-min depends on the interval to
the next non-nil list. Since we are interested in the
total time for all delete-mins, we can say the time
for all delete-mins is the time spent to scan the array
plus time spent to delete items from the lists. If the
length of one scan is limited to c, and n delete-min
operations are done, the total time for delete-min is
O(cn). In comparison-based priority queues such as
the Fibonacci heap, delete is an expensive operation,
whereas in the bucket system it is O(1). We take
advantage of this efficiency of delete in more sophis-
ticated bucket systems in subsequent sections.

If the number of different key values at any stage is
bounded by c, and the possible number of key values
for the who;e process is larger than c, we can maintain
a circular structure of size c for the array list.

3 Shortest path problems

To prepare for the later development, we describe
the single source shortest path algorithm in the fol-
lowing. Let G = (V,E) be a directed graph where
V = {1, · · · , n} and E ⊆ V × V . The non-negative
cost of edge (u, v) is denoted by cost(u, v). We as-
sume that (v, v) ∈ E with cost(v, v) = 0 and that
cost(u, v) = ∞, if there is no edge from u to v. We
specify a vertex, s, as the source. The shortest path
from s to vertex v is the path such that the sum of
edge costs of the path is minimum among all paths
from s to v. The minimum cost is also called the
shortest distance. In Dijkstra’s algorithm given be-
low, we maintain two sets of vertices, S and F . The
set S is the set of vertices to which the shortest dis-
tances have been finalized by the algorithm. The set
F is the set of vertices which can be reached from S
by a single edge. We maintain d[v] for vertex v in S
or F . If v is in S, d[v] is the (final) shortest distance
to v. If v is in F , d[v] is the distance of the shortest
path that lies in S except for the end point v. Let
OUT (v) = {w|(v, w) ∈ E}. The solution is in array
d at the end.

Algorithm 1
1 for v ∈ V do d[v] :=∞;
2 d[s] := 0; F := {s}; // s is source
3 Organize F in a priority with d[s] as key;
4 S := ∅;

5 while S 6= V do begin
6 Find v in F with minimum key and delete v

from F ;
7 S := S ∪ {v};
8 for w ∈ OUT (v) do begin
9 if w is not in S then
10 if w is in F then
11 d[w] := min{d[w], d[v] + cost(v, w)}
12 else begin d[w] := d[v] + cost(v, w);

F := F ∪ {w} end
13 Reorganize F into queue with new d[w];
14 end
15 end.

Line 6 is delete-min. Combined with line 13, line
11 is decrease-key, and lines 12-13 is insert. In this
and next sections, we assume edge costs are integers
between 0 and c for a positive integer c.

To have a fixed range for the key values in F , we
state and prove the following well known lemma.

Lemma 1 For any v and w in F , we have |d[v] −
d[w]| ≤ c.
Proof. Take arbitrary v and w in F such that d[v] ≤
d[w]. Since w is directly connected with S, we have
some u in S such that d[w] = d[u]+cost(u,w). On the
other hand, we have d[u] ≤ d[v] from the algorithm.
Thus we have d[w]−d[v] = d[u]−d[v]+cost(u,w) ≤ c.

From this we see that the time for Algorithm 1 is
O(m + cn) [4], and space requirement is O(c + n) if
we use a circular structure for list. If we maintain c
buckets in a Fibonacci heap, we can show the time is
O(m+ n log c).

4 All pairs shortest path problem

If we use Algorithm 1 n times to solve the all pairs
shortest path problem with the same kind of prior-
ity queue, the time would be O(mn + n2c). In this
section we review [9], improving this time complex-
ity to O(mn + nc). Precisely speaking this complex-
ity can be O(mn + min{nc, n2 log log c}), as we can
switch between the bucket system and the priority
queue in [10], depending on the value of c. We call
Dijkstra’s algorithm vertex oriented, since we expand
the solution set S of vertices one by one. We modify
Dijkstra’s algorithm into a pair-wise version, which
puts pairs of vertices into the solution set one by one.
Let (u, v) be the shortest edge in the graph. Then
obviously cost(u, v) is the shortest distance from u
to v. The second shortest edge also gives the short-
est distance between the two end points. Suppose
the second shortest is (v, w). Then we need to com-
pare cost(u, v) + cost(v, w) and cost(u,w). If edge
cost(u, v)+cost(v, w) < cost(u,w), or (u,w) does not
exist, we denote the path (u, v, w) by < u,w > and
call it a pseudo edge with cost cost(u, v) + cost(v, w).
It is possible to keep track of actual paths, but we
focus on the distances of pseudo edges. As the algo-
rithm proceeds, we maintain many pseudo edges with
costs which are the costs of the corresponding paths.
We maintain pseudo edges with the costs defined in
this way as keys in a priority queue.

Algorithm 2
1 for (u, v) ∈ V × V do d[u, v] :=∞;

// array d is the container for the result.
2 for (u, v) ∈ E do d[u, v] := cost(u, v);

F := {< u, v > |(u, v) ∈ E};
3 Organize F in a priority queue with d[u, v]

as a key for e =< u, v >;
4 S := ∅;

CRPIT Volume 128 - Theory of Computing 2012

22

5 while |S| < n2 do begin
6 Let e =< u, v > be the minimum pseudo

edge in F ;
7 Delete e from F ; S := S ∪ {e};
8 for w ∈ OUT (v) do update(u, v, w);
9 end;

10 procedure update(u, v, w) begin
11 if < u,w >/∈ S then begin
12 if < u,w > is in F then

d[u,w] := min{d[u,w], d[u, v] + cost(v, w)}
13 else begin d[u,w] := d[u, v] + cost(v, w);

F := F ∪ {< u,w >} end;
14 Reorganize F into queue with the new key ;
15 end
16 end

We perform decrease-key or insert in the procedure
update, which takes O(1) time each. Update is to
extend a pseudo edge with an edge appended at the
end. The total time taken for all updates is obviously
O(mn). We perform delete-min operations at lines
6-7. If c < n2, several pseudo edges with the same
cost may be returned from the same bucket. In this
case, those pseudo edges are processed in batch mode
without calling the next delete-min. The correctness
is seen from the fact that if a pseudo edge is returned
at line 6, the corresponding path is the shortest one
that is an extension of a pseudo edge in S with an
edge at the end. The following lemma is similar to
Lemma 1, from which subsequent theorems can be
derived. It guarantees the number of different key
values in the priority queue is bounded by c.

Lemma 2 For any < u, v > and < w, y > in F , we
have |d[u, v]− d[w, y]| ≤ c.
Proof. Let < u, v > and < w, y > in F be such
that d[u, v] ≤ d[w, y]. Let < w, y > be an exten-
sion of some pseudo edge < w, x > in S with an
edge (x, y), and we have d[w, y] = d[w, x]+ cost(x, y).
On the other hand, we have d[w, x] ≤ d[u, v] from
the algorithm. Thus we have d[w, y] − d[u, v] =
d[w, x]− d[u, v] + cost(x, y) ≤ c.

We have the following obvious lemma.

Lemma 3 The number of different shortest distances
for the all pairs shortest path problem for the graph
with edge cost bounded by c is at most c(n− 1).

Theorem 1 The all pairs shortest path problem can
be solved in O(mn+ nc) time [9].

For c ≤ m, the time becomes O(mn). The complexity
of deletes in line 7 is O(n2), which is absorbed into
O(mn) if m ≥ n.

In the paper [7], pseudo edges are extended back-
ward. We can extend pseudo edges into both direc-
tions, forward and backward. This version will reduce
the time for update operations, but it is not known
whether we can improve the asymptotic complexity.

5 Double bucket system

Let us describe a double bucket system for SSSP first.
We have two levels, level 0 and level 1, of buckets.
Level 0 has p buckets and level 1 has dc/pe buckets.
Each bucket has its interval that indicates which ver-
tex can be put in the bucket, i.e., if the key of a vertex
is in the interval, it can be in the bucket. The range
of key values for the frontier, F , is split into dc/pe
intervals at level 1, and p values at level 0. We aslo
maintain the number of elements in each bucket.

The active pointer, ai, at level i is pointing to
the first non-empty bucket at level i, called the
active bucket. For initialization, we express the dis-
tance of (s, v) in the SSSP, d[v], by two integers (x, y):

d[v] = xp+ y (1)
(0 ≤ x ≤ dc/pe − 1, 0 ≤ y ≤ p− 1)

Note that there are up to c possibilities for (x, y). If
d[v] is specified by (x, y), and x = 0, v is put in the
y-th bucket at level 0. If x 6= 0, v is put in the x-th
bucket at level 1. For general d[v], the range for x in
(1) becomes 0 ≤ x ≤ dcn/pe− 1, and the possibilities
of (x, y) is up to cn. As there are only c possibilities
for d[v] for v in F , we can have a circular structure for
level 1. The range of x is a1 ≤ x ≤ a1 +dc/pe−1. We
use a non-circular structure for level 1 for simplicity.

We describe delete-min. Let a0 = p when level 0 is
empty. Using this information, if level 0 is non-empty,
we find the first non-empty bucket. Take all vertices
in the bucket and perform update. Then move a0
to the next non-empty bucket using the information
from the numbers of elements of buckets. If level 0 is
empty, we go to the first non-empty bucket at level 1
using the active pointer, and we re-distribute all ver-
tices in the bucket to the buckets at level 0 using infor-
mation from their key values and the active pointer.
Suppose this is the x-th bucket at level 1, that is,
a1 = x. In this case the bucket contains vertices with
key values in the range [xp, (x+1)p−1], meaning that
we only know an approximate key value if we pick a
vertex from this bucket, but re-distributing vertices
to level 0 makes the distances exact with v in the y-
th, that is, (d[v] − xp)-th bucket at level 0. We say
a1p is the base for level 0, as the actual key value is
the bucket number plus the base. The active pointer
a1 is increased until it hits the next non-empty bucket
at level 1. Then we perform the delete-min at level
0 as described above. The vertices move from level 1
to level 0 only once. The scanning of level 0 is done
up to n times, each scanning taking O(p) time in the
worst case. The movement of the active pointer a1 is
at most O(cn/p), as there are O(cn) values for dis-
tances and the active pointer goes over distance p by
one movement. Thus the total time for delete-min is
O(pn + cn/p). Level 1 goes over O(cn) space. If we
organize level 1 into a circular structure we can do it
in O(c/p) space apart from O(n) for all buckets.

Next we describe insert and decrease-key. When
we insert w with its key d[w], we compute (x, y) by
equation (1), and put it into an appropriate bucket,
x-th or y-th described above. When we perform
decrease-key on w, we delete w from its current loca-
tion, and insert it with the new key value. This oper-
ation is O(1). Thus the total time for insert/decrease-
key is O(m).

The total time is given by O(m+ pn+ cn/p). Let
p =
√
c. Then the total time becomes O(m+ n

√
c).

Now let us run Algorithm 2 for the APSP problem.
The time for insert/decrease-key is O(mn) in total,
as update takes place m times for each u at line 8.
The time for delete-min is O(n2p + cn/p). This is
because for each movement of a pair from level 1 to
level 0, O(p)-time scanning of level 0 can take place,
causing O(pn2) time. The important observation is
that the movement of the active pointer at level 1 is
still O(cn/p) because we have only O(cn) possibilities
for distances in the APSP problem and an increase in
the active pointer a1 effectively skips p values over
the distance range, if necessary for a delete-min. Let
p =

√
c/n. Then the total time becomes O(mn +

n
√
cn) = O(mn+ n2

√
c/n).

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

23

6 k-level cascade bucket system

Now we generalize the previous 2-level bucket system
into k-level (cascading) bucket system. We call this
cascading because the movement of vertices from
level to level looks like water flow from high level
to low level. Let ai be the active pointer, which is
defined by the minimum index of the non-empty
bucket at level i, initialized to 0. Now the key value
d[v] = cost(s, v) is given by

d[v] = xk−1p
k−1 + ...+ x1p+ x0 (2)

(0 ≤ x0, x1, ..., xk−2 ≤ p−1, 0 ≤ xk−1 ≤ dc/pk−1e−1)

The initial insert of v with key d[v] can be done as
follows: We compute (xk−1, ..., x1, x0) from (2). Let i
be such that i is the largest index of non-zero xi, that
is, xi 6= ai. Then put v in the xi-th bucket at level
i. During putting all v, ai are set to correct values in
time proportional to the number of v inserted.

The range for xk−1 becomes 0 ≤ xk−1 ≤
dcn/pk−1e for general d[v]. Again we can use a cir-
cular structure for the range of ak−1 ≤ xk−1 ≤
ak−1 + dc/pk−1e − 1.

Bi’s are bases of the i-th level, initially all 0.
Using the values of ai’s, Bi’s are defined by

Bi = ak−1p
k−1 + ...+ ai+1p

i+1

Bi−1 = Bi + aip
i, Bk−1 = 0 (recurrence formula)

Note that the range of key values for the j-th bucket
of i-th level is

[Bi + jpi, Bi + (j + 1)pi − 1] (3).

Furthermore note that Bi are monotone non-
decreasing in i and also non-decreasing as computa-
tion proceeds. For general d[v], we have the invariant
that if vertex v is in level i, the value of i is the largest
such that xk−1 = ak−1, ..., xi+1 = ai+1 and xi 6= ai
in (2). Vertex v is put in the xi-th bucket in level i
correctly at initialization since ai are all zero, and v
is put at level i such that xi is the first non-zero value
when scanned from the largest index. The values of
xi are computed only at initialization in O(kn) time.
In the following, the new location of v is determined
by (3) with the new value of d[v] being in the interval,
and the invariant is kept under the three operations
of decrease-key, insert and delete-min. We say in-
terval [α, β] at level i is the minimum bucket if the
corresponding bucket is non-empty and α is minimum
among the intervals at level i.

Let us describe update. Suppose the value of d[w]
has been decreased. We delete w from the bucket
containing w in O(1) time. Then we compare d[v]
with base values Bi of levels i. If w is inserted into
the same level, insert can be done in O(1) time. If
w goes to a lower level, it takes O(`) time where ` is
the level difference. Since all vertices go from higher
to lower levels or stay in the same level, the total
time for decrease-key is O(m + kn). Insert of v can
be done like decrease-key. The vertex is put at the
highest level tentatively and we perform decrease-key
with d[v] regarded as the new value. Thus the total
time for decrease-key/insert is O(m+ kn).

Now we describe the delete-min operation. We
maintain the active pointer, ai, at each level i. If
ai = p except for i = k − 1, level i is empty. If
level 0 is non-empty, we pick up the first non-empty
bucket by the active pointer. If level 0 is empty, we
go to higher levels for a non-empty level, say the i-
th. The key value of vertex v in this bucket given

by ai has Bi as the base. When all vertices v in the
bucket are moved to level i − 1, aip

i must be added
to the base for level i − 1. Then the first non-empty
bucket at level i − 1 is re-distributed to level i − 2,
etc. We call this process of repeated re-distribution
level by level “cascading”. Cascading finally creates
at least one non-empty bucket at level 0. Note that
for re-distribution we use formula (3) to identify ap-
propriate buckets. Active pointers apart from level
i can be set to the minimum bucket at each level in
O(1) time through the re-distribution process. Also
bases are updated through this process. The pointer
ai moves for the next non-empty bucket, taking O(p)
time, when i < k − 1.

For distribution of vertices to lower levels, all n
vertices go from higher level to lower level, taking
O(kn) time in total. One find-min takes O(k+p) time
if i < k−1 and O(k+c/pk−1) if i = k−1, and there are
n find-min operations. Thus the total time for delete-
min is O(kn+pn+cn/pk−1). The total time for SSSP
is O(m+ n(k + p) + cn/pk−1) = O(m+ kn+ c1/kn),
where p = c1/k. This complexity is O(m + n log c)
when k = O(log c) and O(m+ n log c/ log log c) when
k = O(log c/ log log c).

Now we turn to the APSP problem. Let us use a
k-level cascading bucket system as a priority queue in
Algorithm 3. Instead of vertices, we maintain vertex
pairs in the queue. As O(mn) decrease-key/insert
operations are done and O(n2) pairs are moving to
lower levels, the total time for this part is O(mn +
kn2).

To find the minimum, we scan the levels from lower
to higher for a non-empty level. Then, after find-
ing the minimum bucket we scan the i-th level for
the next non-empty bucket for updating ai, taking
O(k + p) time for each delete-min if i < k − 1. Thus
the total time for delete-min becomes O(kn2 + pn2)
if i < k. The total time for the advancement of
the active pointer ak−1 is O(cn/pk−1), same as that
for SSSP. The total time for delete-min becomes
O(kn2 + pn2 + cn/pk−1). Thus the complexity for
APSP becomes O(mn+ kn2 + pn2 + cn/pk−1).

Setting p = (c/n)1/k yields the complexity of
O(mn + kn2 + n2(c/n)1/k) for the APSP problem.
When k = 2, we have the result in the previous
section. Further setting k = log(c/n) yields the
complexity of O(mn + n2 log(c/n)). Further opti-
mizing yields O(mn+ n2 log(c/n)/ log log(c/n)) with
k = O(log(c/n)/ log log(c/n)). This comlexity is bet-
ter than the best for APSP for c = o(n logr n) for any
r > 0.

7 Hidden path algorithm

The hidden path algorithm in [7] is a refinement of Al-
gorithm 2 where update is only by optimal edges. An
edge e = (u, v) is optimal if cost(u, v) is the shortest
distance from u to v, that is, if edge (u, v) is returned
by the delete-min operation.

Algorithm 3 Hidden path algorithm
1 for (u, v) ∈ V × V do d[u, v] :=∞;

// array d is the container for the result.
2 for (u, v) ∈ E do d[u, v] := cost(u, v);

F := {< u, v > |(u, v) ∈ E};
3 Organize F in a priority queue with d[u, v]

as a key for e =< u, v >;
4 S := ∅;
5 while |S| < n2 do begin
6 Let e =< u, v > be the minimum pseudo

CRPIT Volume 128 - Theory of Computing 2012

24

edge in F ;
7 Delete e from F ; S := S ∪ {e};
8 if < u, v > is an edge then begin
9 Mark e = (u, v) optimal;

10 for t ∈ V such that < t, u >∈ S do
update(t, u, v);

11 end;
12 for w ∈ V such that (v, w) is optimal do

update(u, v, w);
13 end;
14 procedure update(u, v, w) begin
15 if < u,w >/∈ S then begin
16 if < u,w > is in F then

d[u,w] := min{d[u,w], d[u, v] + cost(v, w)}
17 else begin d[u,w] := d[u, v] + cost(v, w);

F := F ∪ {< u,w >} end;
18 Reorganize F into queue with the new key ;
19 end
20 end

Note that update at line 10 is necessary because
when pseudo edge < t, u > was put into S, the edge
(u, v) might not have been an optimal edge yet.

The range of distance values in the frontier is lim-
ited in the band of c from the following lemma similar
to Lemma 2.

Lemma 4 For any < u, v > and < w, y > in F , we
have |d[u, v]− d[w, y]| ≤ c
Proof. Let < u, v > and < w, y > in F be such
that d[u, v] ≤ d[w, y]. Let < w, y > be an extension
of some pseudo edge < w, x > in S with an optimal
edge (x, y), and we have d[w, y] = d[w, x]+ cost(x, y).
On the other hand, we have d[w, x] ≤ d[u, v] from
the algorithm. Thus we have d[w, y] − d[u, v] =
d[w, x] − d[u, v] + cost(x, y) ≤ c. Note that pseudo
edge < w, x > can be formed before or after edge (x, y)
is found to be optimal. In either case, the update of
pseudo edge from w to y via x is done in line 10 or
12 respectively with an optimal edge (x, y).

Let m∗ be the number of optimal edges. From this
lemma, we see the data structures developed in the
previous sections are compatible with Algorithm 3,
so that all time complexities hold with m replaced
with m∗(≤ m) when Algorithm 3 is used in place of
Algorithm 2.

8 Concluding remarks

We improved the time bounds for the all pairs short-
est path problem when the edge costs are limited by
an integer c > 0. Although the gain obtained is small,
the importance of our contribution is to show that the
direct use of Thorup’s data structure for the APSP
problem is not optimal. Note that our data structure
is not optimal either when we set c = O(nα) for α > 1.
Therefore we still have some room for approaching
the goal complexity of O(mn). It remains to be seen
whether the fact that there are only c(n − 1) differ-
ent distances for the solution of APSP is compatible
with Thorup’s data structure. If so, we could have
the complexity of O(mn+ n2 log log(c/n)). One may
be tempted to split the distance range of band-width
c into n intervals of size c/n each and use Thorup’s
data structure for each interval. Delete-min and in-
sert seem to work for our goal, but decrease-key is
hard to implement. This is because decrease-key con-
sists two heap operations of delete and insert that
may be in different levels. Delete is hard to imple-
ment in O(1) time in that data structure.
Ackmowledgment Discussions with Yuji Nakagawa
while the author was at Kansai University in 2010 are
highly appreciated.

References

[1] Ahuja, K., K. Melhorn, J.B. Orlin, and R.E. Tar-
jan, Faster algorithms for the shortest path prob-
lem, Jour. ACM, 37, 213-223, (1990).

[2] Cherkassky, B. V., Goldberg, A. V. and Radzik,
T., Shortest paths algorithms: Theory and ex-
perimental evaluation, Mathematical Program-
ming 73, 129-174 (1996)

[3] Denardo, E. V. and Fox, B. L., Shortest-route
methods: I. Reaching, pruning, and buckets, Op-
erations Research 27, 161-186 (1979)

[4] Dial, R. B., Algorithm 360: Shortest path for-
est with topological ordering, CACM 12, 632-633
(1969)

[5] Dijkstra, E.W., A note on two problems in con-
nexion with graphs, Numer. Math. 1, 269-271
(1959).

[6] Fredman, M.L. and R,E, Tarjan, Fibonacci heaps
and their uses in improved network optimization
algorithms, Jour. ACM 34, 596-615 (1987).

[7] Karger, D.R., D. Koller, and S. J. Phillips, Find-
ing the hidden path: the time bound for all-pairs
shortest paths, SIAM Jour. Comput. 22,1199-
1217 (1993).

[8] Pettie, S., A new approach to all-pairs shortest
paths on real-weighted graphs, Theoretical Com-
puter Science, 312(1), 47-74 (2004)

[9] Takaoka, T. and Hashim, M., Sharing Infor-
mation in All Pairs Shortest Path Algorithms,
CATS 11, Perth, CRPIT, 119. Alex Potanin and
Taso Viglas Eds., ACS. 131-136 (2011)

[10] Thorup, M., Integer Priority Queues with De-
crease Key in Constant Time and the Single
Source Shortest Paths Problem, STOC03, 149-
158 (2003)

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

25

CRPIT Volume 128 - Theory of Computing 2012

26

