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Abstract

The shortest path problem has been well studied previ-
ously. To improve the utility, the traffic conditions can be
modeled to associate a weight to each road segment. The
recent trend is to apply data mining techniques over use
history which usually covers a long period of time such as
months. However, this method fails to reflect the instant
(i.e. temporary) traffic conditions change such as traffic
accident or road work. Due to the temporary nature, the
local instant traffic conditions makes more sense when an
object is moving in road networks. In this work, we in-
vestigate the shortest path monitoring problem while the
instant traffic conditions in local region update repeatedly
around a moving object to a given destination. A simple
way is to apply A* algorithm repeatedly. However, the
weakness is obvious. Because only a small fraction, i.e.
the local area, of the whole networks have changed and the
other parts keep intact. That means, for many vertices, that
their paths (or the lower bounds of their paths) to the des-
tination are still valid. This motivates us to maintain these
information and reuse in the following computations. Our
method is based on two tree structures where one records
the previous computing results and the other aims to re-
duce the search space of subsequent processing. The ex-
periments over real data set demonstrate an improvement
of processing efficiency by one degree of magnitude at a
small memory cost. In addition, the tree can be shared
when monitoring the shortest paths for several moving ob-
jects to the same destination.

Keywords: Shortest Path Monitoring, Instant Local Traffic
Information

1 Introduction

The shortest path problem has been well studied previ-
ously. A good survey of shortest path methods has been
made by Pallottino et al.(1997) and Fu et al.(2006). While
the shortest path may need to be recomputed if the ob-
ject deviates from the planned path for some reasons, it
also happens due to the traffic conditions. More recently,
the traffic conditions of road networks have been consid-
ered in order to accurately capture the real shortest path,
such as speed patterns, driving patterns and a multitude
of other factors (proposed by Gonzalez et al. 2007) that
provide important information in the computation of de-
sirable routes. To do that, each road segment is assigned
a weight which is derived from the use history of mas-
sive local users. However, the historic traffic conditions
sometimes may be unreliable, because the traffic condi-
tions of road networks in the real life often change tem-
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porarily because of reasons such as traffic accidents and
road works. Such kinds of information usually cannot be
captured by the method weighting road segments based on
historic traffic conditions.

One possible solution is to reflect the instant (i.e. tem-
porary) changes in the global weighted road networks.
However, it is not sensible to do so due to the follow-
ing reason. The temporary changes of traffic conditions in
road networks quite often, if not always, impact the prox-
imity only. The users far away are not interested in these
temporary impacts since these impacts change even when
these users plan to travel these areas in the future. What
these users need is the instant traffic conditions when they
are close to these areas. Thus, the principle of processing
instant traffic conditions is that more attention is paid on
quantitative details of close region and on qualitative in-
formation of remote region. In this work, we studied the
problem of the real-time shortest path monitoring due to
the update of instant local traffic conditions.

The real-time shortest path planning monitoring is crit-
ical in various applications. While it is important in real
life such as for route planning of rescue vehicle in emer-
gency, we emphasize the scenarios in the virtual world
such as traffic simulation system involving tens of thou-
sands of agents (i.e. cars). Nowadays, more and more
online racing games simulate the road networks and traf-
fic conditions of real city such as Midtown Madness 1 and
the car racing in Second Life game platform 2, and they
usually attract millions to play online simultaneously. In a
typical scenario, several online players race from the same
source to the same destination. The instant local traffic sit-
uation around each car is the non-player character (NPC)
which is controlled by the gamemaster in the games. The
real-time shortest path needs to be updated to guide the
tour and the quick response is essential to the success of
such online race games.

In this work, we aims to efficiently monitor the short-
est path when local traffic conditions change. Since the
changes happen arbitrarily during the traveling, the short-
est path is the best possible path at current local traffic con-
ditions and thus they are potentially best traveling choice.
But users can chose to follow or not. In any case, the in-
stant suggestion as the response to the traffic changes is
valuable to users. To do that, the basic idea in this work
is to compute the shortest path once and effectively reuse
the results in the following monitoring. Initially, the clas-
sic A* algorithms (proposed by Hart et al. 1968) are ap-
plied. This results are recorded using two tree-like data
structures. While one tree is for recording the previous
computing results, the purpose of the other tree is to re-
duce the search space of subsequent processing. At any
instance when the latest local traffic conditions is known,
the methods are developed to update the traverse trees and
identify the new shortest path efficiently. The experiments
over real data set demonstrate an improvement of process-
ing efficiency by one degree of magnitude at a small cost

1www.microsoft.com/games/midtown/
2heidiballinger.wordpress.com/2008/07/19/car-racing-in-second-life/
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of storage. The tree can be shared when monitoring the
shortest paths for several moving objects (e.g. cars in the
online games) to the same destination. Note that the pro-
posed method is also applicable to provide instant shortest
path suggestion to users who deviate the planned paths at
his own discretion.

The shortest path monitoring is also known as the dy-
namic shortest path planning (DSP) (Frigioni et al.1996,
1998, 2000 and King 1999 and Demetrescu et al. 2004).
In these works, the underlying networks with constant
edge weights is allowed to be updated from time to time.
The updates include insertion/deletion of edges and edge-
weight updates, and these updates are known globally. Fri-
gioni et al. (1996) studied the single-source DSP problem
where the shortest path is maintained from a given source
to all other vertices. Note that the single-source DSP is
same to our problem only if no local instant traffic condi-
tions is considered. King (1999) investigated the all-pair
DSP problem where the shortest paths for all pairs of ver-
tices are concerned. The all-pair DSP problem may deal
with our problem but the local nature of this problem im-
plies that it is not sensible to use the techniques for the all-
pair DSP. Two steps are taken in all-pair DSP. The first step
is to compute the shortest paths among all pairs using well
known Floyd-Warshall algorithm in O(|V |3) or Johnson’s
algorithm for sparse network in O(|V |2 lg |V | + |V ||E|)
where |V |, |E| are the numbers of vertices and edges in
the network separately (Cormen et al. 2001). Then, the
maintaining algorithm is applied when the weights of the
edges change. The most recent algorithm (Demetrescu et
al. 2004) is in O(|V |2 lg3 |V |) amortized time per update.
To solve our problem, all-pair DSP are much higher even
comparing to direct applying Dijkstra’s algorithm per up-
date O(|V | lg |V | + |E|). Since heuristic algorithm A*
is no worse than Dijkstra’s algorithm, we compares our
method with simply applying A* per update. Besides, our
problem also differs from the time-dependent shortest path
problem (Ding et al. 2008) where the job is to find the best
departure time.

The contributions of this work are in three folds. First,
this is the first effort to investigate the impact of instant
local traffic conditions to the shortest path planning. Sec-
ond, we proposed two tree structures to support the path
monitoring to the single destination. The trees can be
shared among several user if they have the same destina-
tion. Third, the proposed method is applicable to shortest
path updating due to deviation of the planned path.

The remainder of the paper is organized as follows. In
section II, problem description is presented and we intro-
duce the related work in section III. Our approach includ-
ing traverse trees, bounds and searching algorithm are in-
troduced separately in section IV. Then, we discuss the
memory cost and the traverse tree sharing among multi-
ple moving objects in section V. The experiment results
on real data set are demonstrated and explained in section
VI. This paper is concluded in section VII.

2 Problem Description

In this paper, we use road networks to illustrate spatial
networks. A road network can be modeled as a graph
G = (E, V ), where V is a set of nodes corresponding
to road junctions and E is a set of (non-directional) edges
between two nodes in V corresponding to road segments.
According to the traffic conditions, each road segment is
associated with a non-negative weight. An edge can be
a straight line or a poly line. If there is an edge in E
linking two nodes in V , these two nodes are adjacent to
each other. Let Adj(v) denote all the adjacent nodes of
v ∈ V . Let d(v, v′) be the distance along a path between
two points v and v′ (i.e. the total length of the edges along
a network path between the two nodes). If there is no path
connecting v and v′, d(v, v′) =∞. The network distance

Table 1: A list of notations
Notation Description

V The set of all nodes
E The set of all edges
o The moving object,the central of range A
A The circular region of instant local traffic

conditions
r The radii of range A

weight (n1, n2) The weight of edge (n1; n2)
d(v, v′) the distance along a path between two points

v and v′

Adj(v) all the adjacent nodes of v ∈ V
(n1, n2) The edge between n1 and n2, or the path

from n1 to n2 if in a clear context
SP (n1, n2), |SP (n1, n2)| The shortest path between n1 and n2 and its

length
dN (n1, n2) The network distance between n1 and n2

dE(n1, n2) The Euclidean distance between n1 and n2

lb(v)andv.lb the lower bound of node v
ub(sp)andSP.ub the upper bound of shortest path from s to t

Temp path the shortest one of all known access paths
from s to t

between v and v′, denoted as dN (v, v′), is defined using
the network shortest path between the two nodes, denoted
as SP (v, v′). In addition, we use dE(v, v′) to denote their
Euclidean distance. The problem of this work can be de-
scribed as follows:

Given a road network G = (E, V ) and two points
s, t ∈ V , an object o moves from s to t. An initial short-
est path SP (s, t) is computed by A* algorithm. At any
instance, o is informed about the instant local traffic con-
ditions in the surrounding region A, i.e. the weights of the
road segments in A are updated. Without loss of general-
ity, the local region A is represented as a circular region
with radius r around the current location of o. The prob-
lem is to update SP (s, t) to SP ′(s, t) on G with the up-
dated local traffic conditions. SP ′ can be same as SP or
not. Table 1 shows a list of notations used in this paper.

3 Related work

Two representative network shortest path algorithms are
the Dijkstra’s algorithm (proposed by Dijkstra.1959) and
the A* algorithm(proposed by Hart et al.1968). They both
propagate a search ”wavefront” from a source node vs un-
til a destination node vd is reached. A heap H is used to
keep all the nodes in the wavefront. The initial step of
Dijkstra’s algorithm is to put every node v ∈ Adj(vs), to-
gether with the distance d(vs, v) (set to the length of the
edge linking vs and v), into H . Then, the algorithm it-
erates an expansion process by replacing a node v ∈ H ,
where d(vs, v) is the minimum for all nodes in H , by all
the nodes in Adj(v). For each node v′ ∈ Adj(v), d(vs, v

′)
is set to d(vs, v) + d(v, v′) if v′ is not yet in H or (in case
v′ in H) the existing estimate of d(vs, v

′) is larger than
d(vs, v) + d(v, v′). This process terminates when vd is
selected from H to expand (and dN (vs, vd) = d(vs, vd)).
Dijkstra’s algorithm can compute the shortest paths from a
source node to multiple destination nodes. If there is only
one destination, the wavefront expansion process can be
optimized towards the direction of the destination node.
This is the key idea of A*. Instead of selecting v ∈ H
with the minimum d(vs, v), a node v′ ∈ H with the mini-
mum d(vs, v

′)+dE(v′, vd) is selected to expand3. That is,
when selecting a node v′, not only the computed network
distance from vs to v′ is considered, the Euclidean dis-
tance from v′ to vd is also used as a directional guide. For
any node v ∈ H , d(vs, v)+dE(v, vd) is called the distance
lower bound of v from vs to vd (denoted as lb(v, vs, vd),
or v.lb when not causing ambiguity). Clearly, any valid

3d(vs, v′) = dN (vs, v′) when v′ is selected to expand.
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network path from vs to vd via v cannot be shorter than
v.lb.

Gonzalez et al.(2007) stresses the importance of road
hierarchy, speed pattern and driving pattern in the path
planning. The speed pattern means that the speed may
change at different time and road segments due to the traf-
fic congestion or road condition. Therefore, to compute
the fastest path exactly, the speed of each road segment
should be dynamic. The speed pattern can be extracted
from the use history of local person through the data min-
ing techniques. The basic idea is that the choices of local
people should always be the best, because they must have
enough reasons to choose this way, such as security, road
conditions and so on. The traffic pattern mining has also
been studied by Agrawal et al.(1995), Han et al.(2000),
Pei et al.(2001), Kanoulas et al.(2006). However, there
is still a notably weakness of using historic traffic data.
That is, the road conditions are changing continuously, the
speed patterns based on mining the historic traffic condi-
tions sometimes would be unreliable. They may not reflect
the real conditions of road network and some temporarily
changing of road conditions, such as road construction or
traffic accident, will lead to serious mistake in route plan-
ning.

The dynamic shortest-path (DSP) problem (Frigioni
et al.1996, 1998, 2000 and King 1999 and Demetrescu
et al. 2004) is to recompute the shortest-path repeatedly
while the underneath graph with constant edge weights is
allowed to be updated from time to time. The updates
include insertion/deletion of edges and edge-weight up-
dates. Frigioni et al.(1996) study the single-source DSP
problem and the fully dynamic algorithms are proposed
with optimal space requirements and processing time. Ex-
perimental evaluations for single-source DSP algorithms
can be found in Frigioni et al.(1996). Our problem can
be viewed as a single-destination DSP problem which is
different from the single-source problem due to the con-
sideration of instant local traffic conditions. King (1999)
investigates the all-pair DSP problem and Demetrescu et
al.(2004) improves all-pair DSP algorithm by giving the
optimal worst-case time. Two steps are taken in all-pair
DSP. The first step is to compute the shortest paths among
all pairs using well known Floyd-Warshall algorithm in
O(|V |3) or Johnson’s algorithm for sparse network in
O(|V |2 lg |V | + |V ||E|) (where |V |, |E| are the numbers
of vertices and edges in the network separately). The sec-
ond step is to update the all impacted shortest paths when
the weights of the edges change. The most recent algo-
rithm (Demetrescu et al. 2004) is in O(|V |2 lg3 |V |) amor-
tized time per update. The all-pair DSP problem may deal
with our problem but the local nature of this problem im-
plies that it is not sensible to use the techniques for the
all-pair DSP.

The time-dependent shortest path problem, proposed
by Ding et al.(2008), investigates to find the best departure
time such that the total travel time can be minimized over
a road network, where the traffic conditions change from
time to time.

4 Our Approach

Once user receives the instant local traffic conditions, the
system will recompute the shortest path from the current
position to the destination. To do that, a simple way is to
apply A* algorithm repeatedly. However, the weakness is
obvious. Because only a small fraction, i.e. the local area,
of the whole graph have changed and the other parts keep
intact. That means, for many vertices, that their shortest
paths (or the lower bounds of their shortest paths) to the
destination are still valid. This motivates us to maintain
these information and reuse them in the following compu-
tations.

We proposed an algorithm called Instant Shortest Path

s

v1

v13
v10

v3

v4

v5
v6

v8

v9

t
v11

v14

v7
v2

Lower Bound Tree
Shortest path: {s, v1, v2, v10, v11, t}

Figure 1: Once Searching Result

Monitoring (IBPM). Initially, the shortest path from the
source to the destination is computed using A* algorithm.
This results are recorded using two tree structures, called
Lower Bound Tree F and Upper Bound Tree T . When
the local instant traffic conditions is updated, two steps
are taken to update the shortest path. First, the nodes in
the traverse trees are updated for the corresponding road
segments. Second, the traverse trees are searched and the
search space is constrained by the lower bound and upper
bound provided by the traverse trees. In the path update,
the principle of A* algorithm is applied to guarantee the
correctness. The details of tree structures and the tech-
niques for update and search are introduced in details next.

4.1 Two Tree Structures

Two traverse trees are established to help the shortest path
monitoring. They are upper bound tree and lower bound
tree. These trees are constructed when the initial short-
est path is computed using A* algorithm and kept updat-
ing until the moving object arrives the destination. Each
node in traverse trees corresponds a real vertex in road
networks. At any instance, one vertex only appears once
in upper/lower bound tree. The upper bound and lower
bound are key points of optimizations in our method.

For the lower bound tree, the initial tree roots at the
source s, see an example in figure.1. Each non-leaf node v
is attached with a value which is the lower bound from cur-
rent location (i.e. s initially) to t, denoted as lb(v) or v.lb.
In order to keep the size of the lower bound tree small,
each vertex only corresponds to one node even though
one vertex may be accessed through different paths (i.e.
through different neighbor vertices). As a result, the path
from each node to the root corresponds to the shortest path
in the network. In the following process, since the weight
of the edge changes, the attached lower bounds of nodes
in the tree may change and consequently the tree structure
may need to be updated. Some nodes will be removed
from F and the lower bound tree may turn into a forest.
One may encounter a problem during the tree updating.
For a vertex v, its shortest path to source (i.e. the root in
the tree) may go through another neighbor vertex due to
the change of the weights of the networks. An example
is shown in figure 2. The shortest path from source to v
goes through v1 initially and then changes to go through
v2. In this situation, two operations are taken. First, the
predecessor of v is updated to v2 and the link between v1
and v is removed. Second, v1 is set to be a leaf node in the
tree by removing all other child nodes (explained later).

For the upper bound tree, it roots at the destination
t. Initially, the computed shortest path using A* algo-
rithm is recorded, see the shortest path in figure.1 . Each
time when the shortest path is updated, the new path is
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Figure 2: The Updating of Traverse Trees

recorded in the tree as well. Similar to lower bound tree,
we keep one node for one vertex only in the upper bound
tree. Thus, a node may appear in two shortest paths to t
and thus it may have two predecessor nodes to the des-
tination (i.e. root in the upper bound tree). The same
processing applied as to lower bound tree. In the upper
bound tree, the recorded shortest paths are called access
paths since they are possible channels from the source
to the destination. Among all access paths, the one with
the minimum length is called Temp path. Temp path is
current known shortest path. It can be used as the upper
bound of the shortest path from s to t (in other words,
|Temp path| ≥ |SP (s, t)|), denoted |Temp path| as
ub(sp(s, t)).

We have discussed the method to update lower and up-
per trees. Now, we focus on lower and upper bound calcu-
lation. The lower bound is discussed in this section and the
upper bound will be introduced in next section. The lower
bound of a node v in the lower bound tree lb(v) is an esti-
mated (or heuristic) distance from v to the destination t.
A* algorithm usually uses the Euclidean distance between
v and t, dE(v, t) as estimated distance of |SP (v, t)|. Ac-
cording to A* algorithm, the greater estimated distance
leads to a smaller search space and better performance ef-
ficiency, and it must not be greater than |SP (v, t)| (oth-
erwise it may lead to a wrong result). The lower bound
attached with v calculated from the lower bound tree is no
less than dE(v, t) and no greater than |SP (v, t)|. That is,

|SP (v, t)| ≥ lb(v) ≥ dE(v, t) (1)

In our method, the lower bound calculation is from
leaf to root. Firstly, we set the lower bound of each leaf
node v to be the Euclidean distance between v and t,
dE(v, t). Then, we calculate the lower bound of other
nodes based on their child nodes. In case one node v1 has
more than one child node and the lower bound calculated
from different child nodes are different, we choose the
smallest one as the lower bound of v1. The details of how
to calculate the lower bound of nodes in lower bound tree
is introduced in Algorithm.1.

Algorithm 1: Lower Bound Calculation
Data: Lower Bound Tree F
Result: lb(v) of each node
∀v ∈ F, lb(v)←∞; for all leaf node v in F do1

if NeighbourNumber(v) = 1 then2
lb(v)←∞;3

else4
lb(v)← dE(v, t);5

if6
lb(v.predecessor) > lb(v) + weight(v, v.predecessor)
then

lb(v.predecessor)←7
lb(v) + weight(v, v.predecessor);

v ← v.predecessor;8

In Algorithm 1, all lower bounds are calculated from
bottom to top. The leaf nodes have two different styles. If
v has only one neighbor, its predecessor, which means v
is at the end of a broken path and we set lb(v)←∞ (line

s v6

v2

v3

t

v5

v4

v1o

Figure 3: Lower Bound

2-3). Else, all other leaves’ lower bounds are assigned
as dE(v, t) (line 4-5). For example, if v is equal to t,
lb(v) is assigned 0. Having fixed leaves’ lower bound,
the lower bound of all other nodes in F can be calcu-
lated from bottom to top. If one node has more than one
child and the lower bounds from different child are dif-
ferent, we select the least one(line 6-7). For instance,
as shown in figure.1, {s, v1, v2, v10, v11, t} is the short-
est path from s to t, signed as SP (s, t). Based on Al-
gorithm 1, lb(v11) = lb(t) + weight(v11, t), lb(v10) =
lb(v11)+weight(v10, v11), by this way, lb(v7) = lb(v9)+
weight(v7, v9). If one node have more than one child,
such as v2 has two children, v7,v10. For one child v7,
lb(v2) = lb(v7) + weight(v2, v7) and for the other child
v10, lb(v2) = lb(v10) + weight(v2, v10). We select the
least one of them and assign it as lb(v2). The calculated
lower bound with each node v, the relation |SP (v, t)| ≥
lb(v) ≥ dE(v, t) is held and we prove it using lemma 1,2,3
to guarantee the correctness.

Lemma 1 ∀v, t, dE(v, t) is the shortest distance between
v and t.

Lemma 2 ∀v, t, there is only one shortest path between v
and t 4.

Lemma 3 If lb(v) is valid, |SP (v, t)| ≥ lb(v) ≥
dE(v, t).

Proof:
Step 1, prove lb(v) ≥ dE(v, t).

In classic A* algorithm, f(vm) = dN (s, vm) +
dE(vm, t). For any non-leaf node v, according
to algorithm 1, lb(v) = dN (v, vm) + dE(vm, t).
vm is the leaf node with the least f(vm) re-
lated to v. Because dN (v, vm) + dE(vm, t) ≥
dE(v, vm) + dE(vm, t), based on triangular inequal-
ity, we can get dE(v, vm) + dE(vm, t) ≥ dE(v, t).
So dN (v, vm) + dE(vm, t) ≥ dE(v, t). That
is lb(v) ≥ dE(v, t). For example, in fig-
ure.3, assume that f(v1) < f(v2) < f(v3),
then lb(v5) = dN (v5, v1) + dE(v1, t). Because
dN (v5, v1) + dE(v1, t) ≥ dE(v5, v1) + dE(v1, t)
and dE(v5, v1) + dE(v1, t) ≥ dE(v5, t). We can
get dN (v5, v1) + dE(v1, t) ≥ dE(v5, t). That is
lb(v5) ≥ dE(v5, t). For any leaf node v, if v has
more than one neighbor, lb(v) = dE(v, t). Else,
lb(v) = ∞ > dE(v, t). For all stated above,
lb(v) ≥ dE(v, t).

Step 2, prove |SP (v, t)| ≥ lb(v).
For any leaf node v in F , if v has more than one neigh-

bor, lb(v) = dE(v, t) ≤ |SP (v, t)|. Else, lb(v) = ∞,
which means v at the end of a broken path, so |SP (v, t)| is
also equal to∞. We can get lb(v) = |SP (v, t)| =∞. For
any non-leaf node v in F , lb(v) = dN (v, vm)+dE(vm, t).
If SP (v, t) via one leaf node va, |SP (s, v)|+|SP (v, t)| ≥
f(va). For vm is the leaf node with the least f(vm) related

4The tie is simple to process and not considered here.
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Figure 4: Lower Bound Tree Cleaning

to v, so f(va) > f(vm), |SP (v, t)|+|SP (s, v)| > f(vm),
|SP (v, t)| > f(vm)− |SP (s, v)|. Based on the theory of
A* algorithm, (s, v) is just the shortest path from s to v,
so |SP (s, v)| = dN (v, vm). Then, |SP (v, t)| > lb(v).
If SP (v, t) is not via leaf node, SP (v, t) must be via
a candidate node o, as shown in figure.3, |SP (s, v5)| +
|SP (v5, t)| ≥ f(o). Because vm is a leaf node and o is
still in the candidate heap (v did not have the chance to
be popped in pre-searching phase), we can get f(o) >
f(vm) and |SP (s, v)| + |SP (v, t)| > f(vm). Therefore,
|SP (v, t)| > lb(v). For all of above, |SP (v, t)| ≥ lb(v).
Integrating step 1 and step 2, when lb(v) is valid,
|SP (v, t)| ≥ lb(v) ≥ dE(v, t). �

According to Lemma.3, the range of lb(v) has been
controlled between |SP (v, t)| and dE(v, t).

In our application scenario, the object is moving con-
tinuously. When the user received the instant local traffic
information, some weights of road segments will be up-
dated and some corresponding nodes’ lower bounds will
also be invalid. Then, we have to ”clean” the lower bound
tree and remove all the invalid nodes. Once the weight
of one edge e has changed, the lower bounds of end ver-
tices of e, e.end1 and e.end2, will be invalid. In Algo-
rithm.1, the lower bound is calculated from leaf to root,
so the predecessors of e.end1 and e.end2 will also have
invalid lower bounds. To ensure the correctness of lower
bound and avoid additional computation, we propose our
method to clean the lower bound tree. For each updated
edge e, we find both e.end1 and e.end2, then remove all
the related nodes until root. For example, figure.4 shows
a branch of lower bound tree originated from v5. Assum-
ing that v6 is a vertex of an updated edge, we remove all
the related nodes above v6 (shown in dashed line). Be-
cause v1, the predecessor of v, has been removed from F ,
v becomes the root of a new branch.

Algorithm 2: Lower bound tree cleaning
Data: Lower Bound Tree F
Result: updated Lower Bound Tree F
for each updated edge e do1

RemoveNodeUntilRoot(e.end1);2
RemoveNodeUntilRoot(e.end2);3

Algorithm 2 describes the details how to clean invalid
nodes of F . Firstly, find all the updated edges.(line 1) For
each updated edge e, remove all the related node above
e.end1 and e.end2 until root. (line 2-3)

4.2 Instant Best Path Monitoring

This section introduces the Instant Best Path Monitoring
(IBPM) algorithm. It covers the details of upper bound
maintenance and how to utilize lower and upper bound to
implement our algorithm.

Utilizing upper bound tree T , we may find more than
one access path from current position s to destination
t, and set the shortest access path as Temp path. We
assign the length of Temp path as the upper bound of

v3

v

t

s

v1

v2
v4

s'
v5

Searching 
direction

Figure 5: One possible access path

shortest path from s to t, |Temp path| = ub(sp(s, t)).
Different from lower bound, ub(sp(s, t)) will be up-
dated in the searching phase continually. When the cur-
rent accessing node v is in the upper bound tree T , we
get a new access path from s to t. Utilizing the up-
per bound tree T , we can calculate the length of the
new access path, (denote as currentpath) efficiently.
Then, we compare |currentpath| with |Temp path|, if
|currentpath| < |Temp path|, update Temp path to
be currentpath. For instance, as shown in figure.5,
Temp path is s′, v1, v3, t. Node v is the current ac-
cessing node and it is at the upper bound tree T . Then,
we get a new access path P = s′, v2, v, v4, v5, t. If
|P | < |Temp path|, we set P to be Temp path and up-
date the ub(sp(s, t)). The details will be introduced in
Algorithm.3.

Algorithm 3: the Upper Bound Calculation
Data: Lower Bound Tree F , Upper Bound Tree T , Current

accessing node v
Result: the upper bound of SP (s, t)
|Temp path| ← ∞;1
|currentpath| ← dN (s, v);2
if v in T then3

while v.predecessor ̸= NULL do4
if v in F then5
|currentpath|+← lb(v);6
break;7

else8
|currentpath|+←9
weight(v, v.predecessor);
v ← v.predecessor;10

if |currentpath| < |Temp path| then11
|Temp path| ← |currentpath|;12

In Algorithm 3, the function monitors the upper
bound of shortest path |Temp path| in searching phase.
Firstly, we set the length of Temp path to be ∞ and
|currentpath| be the network distance from s to v,
dN (s, t). (line 2) When the current accessing node v is
in the upper bound tree T , we can get the |currentpath|
by calculate the sum of dN (s, v) + dN (v, t). If the lower
bound of v is valid and v ∈ T , which means lb(v) =
dN (v, t) and lb(v) is just the shortest path from v to t. The
|currentpath| can be calculated directly.(line 5-6) Else,
we have to calculate dN (v, t) step by step according to T ,
until v = t.(line 9-10). Having got the |currentpath|, we
compare it with |Temp path| and if |currentpath| is less
than |Temp path|, both Temp path and UP (sp(s, t))
will be updated.(line 11-12)

Then, we utilize the bounds (lower bound and upper
bound) to implement our IBPM algorithm based on clas-
sic A* algorithm. IBPM algorithm includes two steps, the
first step (IBPM-I)uses bounds to pretreatment data, de-
creasing unnecessary data accessing to improve the effi-
ciency. And the second step is based on some characters
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of A* algorithm and traverse trees, to achieve further op-
timization.

As mentioned in subsection 4.1, whether node v’s
lower bound is valid depends on two different conditions,
v ∈ F and v.pre = F.getparen(v). v ∈ F means
that the road conditions after v have not been updated and
v.pre = F.getpre(v) means the current search is from
the v.predecessor in F to v. Because A* algorithm does
not concern searching backward, if v.pre ̸= F.getpre(v),
means the current search is from some other nodes and
lb(v) may be unreliable. For each node v, if lb(v) is valid,
we can use lb(v) to check whether it can be the next can-
didate node in SP (s, t) under current context.

From Lemma.3, if lower bound of node v is valid,
|SP (v, t)| ≥ lb(v) ≥ dE(v, t). Then, we can get
the following conclusions. For any node v with valid
lower bound, if dN (s, v) + lb(v) ≥ ub(sp(s, t)), because
ub(sp(s, t)) ≥ |SP (s, t)|, we can get dN (s, v) + lb(v) ≥
|SP (s, t)|. Therefore, under current context, v can not
be the next candidate node and it will not be push into
candidate heap. Else, if lower bound of v is invalid, we
can only use f(v) = dN (s, v) + dE(v, t) as the esti-
mated distance of SP (s, t). Under current context, if
f(v) ≥ ub(sp(s, t)), means f(v) ≥ |SP (s, t)|, so the
shortest path must not be via v and v will not be push into
candidate heap.

Until now, we introduce IBPM with optimization
which is based on utilizing the lower and upper bounds
to reduce the search space. We call it IBPM with the first
optimization step, denoted as IBPM-I. Next, we proposed
a second optimization step which is based on reusing the
previous computed shortest path.

Lemma 4 As shown by red line in figure.6, if SP (s, t) is
the shortest path from s to t, (v, t) must be the shortest
path from v to t.

Proof:
If(v, t) is not the shortest path from v to t, there must be
another path P = SP (v, t) and |(v, t)| > |P |.
|SP (s, t)| = dN (s, v) + |(v, t)| > dN (s, v) + |P |
There exist another access path from s to t and its length is
less than |SP (s, t)|, which conflicts with our assumption.
Therefore, (v, t) = SP (v, t). �

The further optimization is based on the following con-
ditions: the lower bound of v is valid and v is at a history
shortest path (v ∈ T ), as shown in figure.7, the green line
describes the lower bound tree F and red line describes
the upper bound tree T . Node v in both F and T means
that the road conditions after v have not been updated and
(v, t) is still the shortest path from v to t. We can use these
conditions to improve our search algorithm ulteriorly. For
the current searching direction is from v4 to v and v4 is the
predecessor of v in F . So, v4 will not be concerned as v’s
neighbors and not be put into candidate heap Open list,
because A* algorithm does not concern searching back-
ward. As the classic A* algorithm, only four neighbors
of v (n1, n2, n3 and v5) will be concerned and put into
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Figure 7: The Second Optimization Step

Open list. Until now, the problem is obvious, is it neces-
sary to put all the neighbors of v into Openlist?

In figure.7, (v, t) is a part of a history shortest path and
the road conditions around (v, t) have not been updated.
For LEMMA 4, (v, t) is still the shortest path from v to t,
signed as SP (v, t).

Algorithm 4: Shortest Path Determinant
Data: Lower Bound Tree F , Upper Bound Tree T ,
Source s,destination t and ub(sp(s,t))
Result: SP (s, t)
Node v, pre;1
Heap Open list, Close list;2
Open list.push(s);3
while Open list ̸= NULL do4

get node v from Open list with the least f(v);5
if v = t then6

Return GetShortestPath(t);7

if v ∈ T&F & v.pre = F.getpre(v) then8
Open list.push(T.getpre(v));9

else10
for each unscanned neighbor n of v do11

if lb(n) is valid & n.pre = F.getpre(n) then12
if dN (s, v) + weight(v, n) + lb(n) >13
ub(sp(s, t)) then

continue;14

else15
if f(n) > ub(sp(s, t)) then16

continue;17

Open list.push(n);18

v ← Open list.pop;19
Close list.push(v);20

ShortestPath← Temp path;21
Return ShortestPath;22
begin23

Procedure Open list.push(n)24
if n ∈ Open list & new f(n) is not better then25

Return;26

if n ∈ Close list & new f(n) is not better then27
Return;28

n.pre← v;29
Remove any n in Open list and Close list;30
Open list.add(n);31

end32

For Lemma.2, there is only one shortest path between
any two nodes. So if the shortest path between s and t
is via v under current context, the following nodes must
be in SP (v, t). Or there would be another shortest path
from v to t, but it is conflicted with Lemma 2. Therefore,
we can only concern the nodes as SP (v, t), nor any other
neighbors of v. For next searching step, only push v5, the
next node of v in SP (v, t), into candidate heap Open list.
Other neighbors, n1, n2 and n3, will not be concerned.
Obviously, this optimization can improve the effect of our
IBPM algorithm notably. Based on our experiment results,
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comparing with A* algorithm and naive algorithm IBPM-
I, no matter time cost nor space cost, our IBPM algorithm
improve the efficiency more than 10 times.

Algorithm 4 describes the whole process of the short-
est path search, including all the details of our two-step
optimization. Node v is the current accessing node, while
node v.pre is the predecessor of v under current con-
text (line 1). As classic A* algorithm, we set a candi-
date heap Open list, and every time select the node with
the least f(v) from Open list and put it into Closelist
(line 2,5). Search is from current source s and then we
push s into candidate heap (line 3). If current access-
ing node v = t, means we have already find the short-
est path, then current search is finished and returns the
shortest path (line 6-7). If the lower bound of v is valid
and v is in the upper bound tree T , we only push the next
node of v in SP (v, t), just the predecessor of v in T , into
Open list and no need to concern other neighbors of v
(line 8-9). That is just the second step optimization we
introduce above. Else, the other neighbors of v do also
need to be concerned. For each neighbor n, if the lower
bound of n is valid, we compare the estimated path length,
dN (s, v) + weight(v, n) + lb(n), with the upper bound
of the shortest path, only it is less than ub(sp(s, t)), n
can be push into Open list (line 12-13,18). If the lower
bound is invalid, we have to use the classic estimated
length f(v) = dN (s, v) + dE(v, t) and compare it with
ub(sp(s, t)) (line 16,18). Line 12-17 is just the first step
optimization. The other parts of algorithm 4 are the same
as classic A* algorithm, our optimization is based on clas-
sic A* algorithm and according to specifical application,
add some restricting conditions to improve the efficiency.

5 Discussion

5.1 Memory Cost

The performance improvement to a large extents is on
the cost of memory in order to reuse the previous com-
puting results. Since the trees proposed in this work
record each visited vertex only once (see section 4), the
memory requirement is very small. In the worst case,
the nodes need to be recorded in the memory is the
size of entire network. That is the memory require-
ment is O(n). For Lower Bound Tree, each node has
three properties {id, lowerbound, predecessor} and for
Upper Bound Tree, each node also has three properties
{id, predecessor,Euclidean Distance}. Assume that
each property is size 4 Bytes. In the worst case, the whole
map with n nodes need to be saved in the traverse trees.
So, the Memory cost = 4Byte∗3∗n+4Byte∗3∗n =
24nByte. For example, we chosen the road network of
California, including 20148 nodes and under the worst
conditions, every node will be stored in the traverse trees.
Memory cost = 4byte∗3∗21048+4byte∗3∗21048 =
505KB. This is reasonable small in most application sce-
narios. At the same time, the efficiency can be improved
dramatically.

5.2 Multiple Moving Objects

As we discussed in section 1, our problem is different from
single-source DSP problem due to the consideration of
instant local traffic conditions. We view our problem as
a single-destination DSP. When several users are moving
to the same destination, they can share the tree structures
proposed in the work. One scenario is in the online car
racing games. Usually several (8-16) players start from
the same source to the same destination. Since the shortest
path instantly updated is a current best possible traveling
suggestion considering the local temporary traffic condi-
tions, the players can chose to follow or not. As a result
after a period of time of the game, cars may scatter in the
networks and thus their shortest paths to the destination

Table 2: Experiment setting
Name Value

Length of query path 300 to 1500 in California Road Net-
work, and 40 to 120 in Oldenburg Road
Network.

Radius of Instant Range A 0.01 to 0.05 in California Road Network
and 100 to 500 in Oldenburg Road Net-
work. Default: 0.01 and 100

Moving Step 1 to 5 in both California Road Network
and Oldenburg Road Network, Default:
1

vary. Since they share the same destination, the search
spaces for them are overlapped to large extents, that is, the
upper and lower bound discussed above in the overlapped
region can be shared. That provides opportunity to share
the tree structures among them such that the memory cost
is on maintaining two tree structures only. Otherwise, if
each car has its own tree structures, the memory require-
ment will be n ∗m where n is the number of cars and m
is the size of trees. The efficient memory cost is critical
in the application of such online games since these tree
structures are kept in server side, which usually needs to
support a large number of games at the same time.

6 Experiments

In this section, we conduct experiments on data sets
of California Road Network and City of Oldenburg
Road Network(stored as adjacency lists) 5, which con-
tain 21,048 nodes and 6,105 nodes respectively (see fig-
ure 9 & figure 10). All algorithms are implemented in
Java and tested on a windows platform with Intel Core2
CPU (2.13GHz) and 2GB memory. The main metric we
adopt is the CPU time of the monitoring process of our al-
gorithm during the user’s movement from the start to the
end. Apart from this, the number of visited nodes is also
a very important factor we consider as space cost. The
length of query path is calculated by the number of nodes
in the corresponding path. In California Road Network,
the length of query path is from 300 to 1500, while in City
of Oldenburg Road Network, the length of query path is
from 40 to 120. The radius of Instant Range A in Califor-
nia Road Network is from 0.01 Longitude to 0.05 Longi-
tude (0.01 Longitude ≈ 0.8 Kilometer in California road
network). In City of Oldenburg Road Network, the radius
is from 100 unit to 500 unit (100 unit ≈ 0.8 Kilometer).
The moving step describes the reception of frequency of
instant traffic information. In our experiments, the moving
step is from 1 to 5. (Movingstep = 1 means when the
user moves forward one node, the navigation system will
receive the instant traffic information and recompute the
shortest path).

The setting of our experiments is summarized in Table
2. The default setting of the radius of Instant Range A
is 0.01 in the California Road Network, 100 in using the
Oldenburg Road Network (both 0.01 and 100 mean ap-
proximately 800 meters, just one-minute-drive distance).
The default moving step is 1, when the user arrives at each
new intersection, the system will recompute the best path
from current position to the fixed destination.

For the purpose of comparison, we select A* algorithm
as the basic line. In addition, a naive algorithm based on
the first-step optimization of IBPM algorithm is also im-
plemented, and we refer it as IBPM-I algorithm. In this
algorithm, the way to establish, maintain and update the
traverse trees is the same as that in our IBPM algorithm.

5www.cs.fsu.edu/ lifeifei/SpatialDataset.htm
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Figure 8: California Road Network

Figure 9: City of Oldenburg Road Network

6.1 Effect of Path Length

First of all, we study the effect of the length of query path
on CPU time and the number of visited nodes. The query
path is the route on which the user travels to the destina-
tion. It is expected that the monitoring cost is in linear to
the length of the path because a longer distance requires
more updates and more complicated path recomputing. In
this experiment, we test the performance of the query path
length varying from 300 to 1200, and 40 to 120 in the
California and the City of Oldenburg Road Networks re-
spectively. The radius of Instant Range A is set to be 0.01
in California Road Network and 100 in City of Oldenburg
Road Network. And the moving step is set to be 1. In the
California Road Network, as shown in figure 11(a), when
the path length is between 300 and 1200, the CPU time of
the IBPM algorithm increases gradually from less than 1
second to nearly 3 seconds, while the time of the A* algo-
rithm rises dramatically to nearly 30 seconds. The time of
IBPM-I algorithm is less than pure A* algorithm, however
still over 20 seconds. figure 12(a) describes the impact of
the query path length on the number of visited nodes under
the default settings. Similar to the effect of the querty path
length on the CPU time, the number of visited nodes are
much more demanding in the A* algorithm and IBPM-I
methods than in the IBPM method.

In the Oldenburg Road Network, the size of which is
much smaller than California road network, the effect of
IBPM algorithm is also substantially better as displayed
in figure 13(a) and 14(a)). For the length of query path
between 40 and 120, the CPU time of A* algorithm starts
from less than 100 ms and goes over 700ms, the IBPM-I
algorithm is slightly better than A* algorithm, though also
reaching a maximum of almost 600ms. The IBPM algo-
rithm costs only 300ms, less than half of the time of A*
algorithm. The time saving in the smaller size Oldenburg
Road Network is not as apparent as in the California Road
Network due to the fact that the time of maintaining and
updating the traverse trees is a large proportion of total
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Figure 10: The Max Size of traverse trees

time.

6.2 Effect of Radius of Range A

The radius of Instant Range A demonstrates the range
of instant traffic information being covered. Generally
speaking, the larger area is covered by Instant Range A,
the better the calculating result is. However, the time cost
and space cost will increase similarly as the possibility
of deviating from the best path from current position to
the destination is higher. In this experiment, we test the
performance of IBPM alrotithm with the radius of Instant
Range A varying from 0.01 to 0.05 in the California Road
Networks and 100 to 500 in the Oldenburg Road Net-
works. The moving step is defaulted to be 1 again. In fig-
ure.11(b), the CPU time has been constant regardless that
the radius has changed from 0.01 to 0.05. In contrast, the
time cost in both A* algorithm and IBPM-I algorithm has
increased proportionally as the radius increases. Again as
displayed in figure.12(b), the number of visited nodes has
similar correspondence to CPU time as in figure.11(b).

For the Oldenburg Road Network in figure.13(b), the
time cost in IBPM rises slightly as radius goes up from
just over 200ms to 280ms, while the time cost of both A*
and IBPM-I algorithms has been more than 400ms. In
figure.14(b), the number of visited nodes as required by
IBPM is again much less than that by A* and IBPM-I al-
gorithms. It is also worth being noted that the movement
of time and space cost does not change as considerably as
in the example of California Road Network. The reason
behind is that there are limited routes to be chosen from
and the change of radius will not consequently lead to dif-
ferent routes in smaller size road networks.

6.3 Effect of Step Length K

The moving step describes the frequency of receiving the
instant traffic information and recomputing the best path
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from current position to the fixed destination. The bigger
the moving step is, the lower frequency the information is
being updated, and the less the total time cost as well as the
space cost are. In California road network, the radius of
instant Range A is 0.01. As can be seen from figure.11(c)
and figure.12(c), the time and space cost is much less at
the beginning of the travel in IBPM than in A* and IBPM-
I algorithm and this advantage has been always maintained
even with the substantial decrease of time and space costs
in A* and IBPM-I algorithm with the increase of moving
step from 1 to 5.

In Oldenburg Road Network (figure 13(c) and 14 (c)),
we set the radius of instant Range A to be 100. The sav-
ings of time and space costs in IBPM than in A* and
IBPM-I algorithms are again clearly demonstrated.

6.4 Multiple Moving Objects

Multiple moving objects such as cars in the online racing
games move from the same source to the same destination.
The upper and lower bound trees can be shared among
them. This experiment tests the impact of the number of
moving objects to memory cost as shown in figure.10. The
maximum number of nodes recorded in the shortest path
monitoring is shown. The memory size can be inferred di-
rectly by multiplying the size of a single node (12Bytes).
When the number of moving objects changes from 1 to
16, it demonstrates a constant memory requirement if they
share trees. The reason is that only two trees are main-
tained. In contrast, if each moving object maintains its
own traverse trees, the memory cost increases proportional
with the number of moving objects. In this experiment, the
radius is 0.01 and the moving step is 1 for California data
set; the radius is 100 and the moving step is 1 for Olden-
burg data set.

7 Conclusions

In this paper we propose two tree structures and an al-
gorithm call Instant Shortest Path Monitoring (IBPM) in
order to efficiently monitor the shortest path for an mov-
ing object when it is moving to a given destination and the
local traffic condition is updated repeatedly. Our problem
is different from exiting dynamic shortest path problems,
i.e. single-source and all-pairs DSP. We view our problem
as a single-destination with instant local traffic condition
updates. The efficient processing of this problem has a
wide range of applications such as online racing games
and large scale traffic simulations. Comparing to simple
method by running A* algorithm over and over again, our
method has dominant processing efficiency. The memory
cost is linear with the nodes visited by running the A* al-
gorithm once.
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Figure 11: Performance of CPU Time in California Road Network
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Figure 12: Performance of CPU Time in California Road Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 40  60  80  100  120

C
P

U
 T

im
e 

(m
s)

Length

A* algorithm
IBPM--I

IBPM

(a)

 150

 200

 250

 300

 350

 400

 450

 500

 550

 100  200  300  400  500

C
P

U
 T

im
e 

(m
s)

Radius

A* algorithm
IBPM--I

IBPM

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1  2  3  4  5

C
P

U
 T

im
e 

(m
s)

Step

A* algorithm
IBPM--I

IBPM

(c)

Figure 13: Performance of CPU Time in City of Oldenburg Road Network
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Figure 14: Performance of Visited Nodes in City of Oldenburg Road Network
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