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Abstract

This paper introduces a new type of discriminative
subgraph pattern called breaker emerging subgraph
pattern by introducing three constraints and two new
concepts: base and breaker. A breaker emerging sub-
graph pattern consists of three subpatterns: a con-
strained emerging subgraph pattern, a set of bases
and a set of breakers. An efficient approach is pro-
posed for the discovery of top-k breaker emerging sub-
graph patterns from graph datasets. Experimental re-
sults show that the approach is capable of efficiently
discovering top-k breaker emerging subgraph patterns
from given datasets, is more efficient than two previ-
ous methods for mining discriminative subgraph pat-
terns. The discovered top-k breaker emerging sub-
graph patterns are more informative, more discrim-
inative, more accurate and more compact than the
minimal distinguishing subgraph patterns. The top-k
breaker emerging patterns are more useful for sub-
structure analysis, such as molecular fragment analy-
sis.

Keywords: Breaker emerging subgraph patterns, dis-
criminative patterns, graph mining.

1 Introduction

As an abstract data structure, graphs are suitable for
representing any objects and their relationships. A
graph is a set of vertices and edges, where a vertex
represents an object, and an edge between two ver-
tices represent that a relationship exists between the
two vertices. In real world, there exist large amounts
of data that can be represented as graphs, such as
molecular structures, Web-link structures, biological
networks, transport networks and social networks.
Graph mining mainly studies how to discover knowl-
edge from graph data. In recent years graph min-
ing has become an active research field. Many graph
mining methods have been proposed for discovering
various patterns from graph data. No matter what
methods are used and what patterns are discovered,
many graph mining tasks need to conduct a key oper-
ation, graph comparison, which detects two kinds of
information: graph similarity and graph dissimilarity.
This paper focuses on graph dissimilarity.

Graph dissimilarity reflects the difference between
two graphs or two classes of graphs. Conventional
graph matching metrics such as graph edit distance
(Sanfeliu et al. 1983), maximal common subgraphs
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(McGregor 1982) and subgraph isomorphism can be
used to measure the dissimilarity (as well as the sim-
ilarity) between two graphs. However, these metrics
are not applicable to measuring the dissimilarity be-
tween two contrasting classes of graphs, which is a
key issue in graph mining. From an application point
of view, in graph mining, there exist many cases in
which one needs to detect the dissimilarity between
two contrasting classes of graphs. For example, in
drug analysis, medical experts detect molecular differ-
ences between two classes of drug components (strong
side effect vs. weak side effect) to explore the molec-
ular mechanism of the side effect. In e-commerce
website analysis one detects differences of Web access
behaviors between two classes of visitors (purchaser
vs. non-purchasers or males vs. females) to improve
website organization or provide customized Web-link
structures. From the point of view of data mining
theory, the differential information between two con-
trasting classes of data is crucial for many mining
tasks such as classification. In order to distinguish
from the dissimilarity between two individual graphs,
in this paper “graph class dissimilarity” is used to de-
note the dissimilarity between two classes of graphs.

Graph class dissimilarity is usually represented
as discriminative subgraph patterns. Therefore, the
first problem in detecting graph class dissimilarity is:
which patterns are the best to be used for identify-
ing graph class dissimilarity. The second problem is
how to discover the patterns efficiently. Discrimina-
tive subgraph patterns can be classified into two cat-
egories: one is discriminative individual (connected)
subgraph patterns, and the other is discriminative
multiple subgraph patterns (a pattern consists of one
or multiple connected subgraphs). The former is nor-
mally used for individual substructure analysis. The
latter is usually more discriminative than the former
and is used for effective classification. The two types
of patterns are more complementary than competi-
tive. In this paper, we focus on discriminative indi-
vidual subgraph patterns.

Most existing discriminative patterns are only for
simple types of data, such as transactional data and
relational data, and few discriminative patterns for
graph data have been proposed. As an important
discriminative pattern, emerging pattern (EP) (Dong
et al. 1999) has been proved to be of strong discrim-
inating power for distinguishing between two classes
of data, and has broad applications, such as construc-
tion of accurate classifiers (Ramamohanarao et al.
2006). In recent years, researchers have extended the
discovery of emerging patterns from simple types of
data to graph data, and proposed two kinds of pat-
terns: contrast subgraph pattern (CSP) (Ting et al.
2006) and distinguishing subgraph pattern (DSP)
(Zeng et al. 2008). Recently Fan et al. proposed
a general discriminative pattern, discriminative and
essential frequent pattern (DEFP) (Fan et al. 2008),
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which applies to various types of data including graph
data.

However, we found that none of CSP and DSP
include the most discriminative individual subgraph
patterns exactly, and both of them have some draw-
backs as analysed in the next section. The DEFP is
essentially discriminative and has been applied to ef-
fective classification (Cheng et al. 2008), but as a kind
of discriminative multiple subgraph pattern, it is not
applicable to individual substructure analysis. Our
study aims at introducing a more accurate and more
informative discriminative individual subgraph pat-
tern, and devising an efficient mining algorithm. In
this paper, we introduce a new type of discriminative
subgraph pattern called breaker emerging subgraph
pattern (BESP), and devise an efficient algorithm to
discover the top-k BESPs from graph datasets.

The rest of this paper is organised as follows. Re-
lated work is reviewed and analysed in Section 2. Mo-
tivations are illustrated in Section 3. Section 4 defines
the breaker emerging subgraph pattern. Section 5
proposes an efficient algorithm for mining top-k BE-
SPs. Experimental results are presented in Section 6.
Conclusions and future work are included in Section
7.

2 Related Work

In this section, we provide a brief summary of the
related work on emerging patterns, contrast subgraph
patterns and distinguishing subgraph patterns.

2.1 Emerging Pattern

The emerging pattern (EP) was originally proposed
by Dong et al. (1999). An EP is defined as an item-
set X whose support increases significantly from one
dataset DN to another, DP , where the increasing de-
gree of the support is measured by growth rate, which
is defined as

GRDN→DP
(X) =





0 if supN (X) = 0
and supP (X) = 0

∞ if supN (X) = 0
and supP (X) 6= 0

supP (X)
supN (X) otherwise

(1)
where supP (X) is the support of itemset X in DP ,
which equals countP (X)/|DP |, countP (X) is the to-
tal number of transactions in DP that contain X, and
|DP | is the total number of transactions in DP . Sim-
ilarly supN (X) represents the support of X in DN ,
which equals the number of transactions in DN that
contains X over the total number of transactions in
DN , denoted by |DN | (Dong et al. 1999).

Given the minimal growth rate threshold
Min GR, EPs from DN to DP are itemsets whose
growth rates are no less than Min GR (Dong et al.
1999). The higher GR of an EP is, the more discrim-
inative and more significant the pattern is. In this
paper the growth rate is also adopted to evaluate the
discriminating power of a pattern.

Although the EP was originally defined on items
by Dong et al. (1999), it applies to any other types
of data including graph data. When it is defined on
graph data, the EP can be called emerging subgraph
pattern (ESP).
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Figure 1: The support plane of emerging subgraph
patterns

2.2 Contrast Subgraph Pattern

Contrast subgraph patterns (CSPs) (Ting et al. 2006)
are defined as subgraphs1 that appear in one class
of graphs DP , but never appear in another class of
graphs DN . A CSP is minimal if none of its strict
subgraphs are CSPs. For CSPs, only the minimal
CSPs (MCSPs) are discovered (Ting et al. 2006).

2.3 Distinguishing Subgraph Pattern

The distinguishing subgraph pattern (DSP) was pro-
posed by Zeng et al. (2008). Given two graph datasets
DP , DN and two support thresholds α, β (α, β ∈
[0, 1], α À β, where À means much greater than), a
subgraph g is a DSP if supP (g) ≥ α and supN (g) ≤ β.
The pattern g is a minimal DSP (MDSP) if no strict
subgraphs of g are DSPs. Among all DSPs, only MD-
SPs are discovered (Zeng et al. 2008).

2.4 Analysis

To illustrate and analyse the above patterns, in Fig.1
we use a plane rectangular coordinate system (similar
to the support plane (Dong et al. 1999)) to represent
any ESP g and its growth rate (GR(g) = tg(δ)). The
closer to line OD a point g is, the higher GR(g) is,
i.e., the more discriminative the ESP g is. In Fig.1,
ESPs are the points in the triangle OGD, CSPs are
the points on the line OD, and DSPs are the points
in the rectangle ABCD.

The CSPs are the most discriminative ESPs with
infinite growth rates. However, some problems oc-
cur when they are applied to real datasets. First, the
constraint is so strict that sometimes no or only a few
such patterns exist in the datasets. Second, CSPs are
so sensitive to noise that false patterns could be in-
volved in the result and some real patterns could be
missed when the patterns are corrupted by noise. For
example, (1) if a noise ◦ (a vertex or an edge) ap-
pears at least one time in DP and never appear in
DN , then ◦ will be found as a MCSP; (2) assumed
that g′ = g ¦ e (g′ is extended from g by adding an
edge e) is a real MCSP, and g appears in DN , if e is
added to one of the matches of g in DN by mistake,
then g′ will be missed. In addition, the CSP is a kind
of discriminative multiple subgraph pattern since dis-
connected graphs are permitted. This disconnectness
allowance blows up the search space (Ting et al. 2006)
and makes it not applicable to the scenario of indi-
vidual substructure analysis.

With the thresholds α and β, the DSP is not so
sensitive to the noise with low frequencies2. However,
to obtain significantly discriminative patterns, α is

1Both connected subgraphs and disconnected subgraphs are
permitted

2The frequencies of the noise are assumed to be lower than the
support threshold in this paper
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usually needed to be specified a very high value and
β a very low value. With this specification, discrim-
inative patterns in the quadrangle ABHO in Fig.1
will be missed. Another drawback of MDSP is that
some more discriminative patterns could be missed as
MDSPs are not necessarily the most discriminative.
For example, if g is a MDSP, then all super-patterns
of g will not be included in the result. Thus, more dis-
criminative patterns (g’s super-patterns with higher
GR values) will be missed.

Another choice for discriminative subgraph pat-
terns is a complete set of emerging subgraph pat-
terns. However, it is not practicable as finding all
ESPs is of high time-complexity, and in real applica-
tions, usually users are only interested in the k most
discriminative patterns rather than all of them. In
Fig. 1 the real top-k most discriminative patterns are
the k black circles in region R (between line OD and
the dotted curve) with green crosses (false patterns
corrupted by noise) and white triangles (redundant
patterns) filtered. However, as shown in Fig.1, both
CSPs and DSPs only include part of the black circles.
Additionally, as analysed above, the discovered MD-
SPs and MCSPs could be inaccurate with the risk of
missing highly discriminative patterns and contain-
ing false patterns in the result. Moreover, redundant
patterns are not considered and filtered in both CSP
and DSP.

3 Motivations

As analysed above, none of the existing patterns,
ESPs, MCSPs and MDSPs, include the top-k most
discriminative subgraph patterns exactly, and no ap-
proaches have been proposed for mining top-k dis-
criminative subgraph patterns. Therefore, it is nec-
essary to introduce a more discriminative and more
accurate pattern, and devise an efficient algorithm for
the discovery of top-k such patterns.

Furthermore, we identify that none of the existing
patterns include the information of patterns’ struc-
ture changes and discriminating power changes. In
substructure analysis, this change information is im-
portant. For example, a commonly used principle in
chemistry and medicine domains is that structurally
similar compounds are more likely to exhibit simi-
lar properties (Bender et al. 2004). The principle
reflected by grow rates is that structurally similar
subgraphs have comparative grow rates. An excep-
tion of the principle is that two structurally similar
compounds exhibit different properties, i.e., the dif-
ference between their growth rates is very big. These
two classes (normal and exceptional) of change infor-
mation are interesting and significant for exploring a
pattern’s structure change and its impact on the prop-
erty. In our new discriminative subgraph pattern, the
two classes of change information are represented by
two subpatterns called “base” and “breaker” respec-
tively. The basic idea is illustrated by an example as
follows.

Example 1 Given two graph datasets DP (Fig.2(a))
and DN (Fig.2(b)) which consist of molecular struc-
tures of two contrasting classes of compounds respec-
tively, assume that the compounds in DP exhibit a
positive property (e.g., toxicity) and the compounds in
DN exhibit the corresponding negative property (e.g.,
non-toxicity). The vertex labels X, Y and Z are ab-
stract representations of concrete atoms, and the im-
plicit vertex labels in the rings correspond to atom
C (carbon). Given Min GR = 2.0, the discovered
top-1 ESP is g1 in Fig.2(c). We examine the struc-
ture change and growth rate change of the patterns in
Fig.2(c) (growth rates are in the brackets).
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Figure 2: Graph datasets and subgraph patterns

The pattern g1 indicates that compounds contain-
ing g1 are likely to exhibit the positive property.
We examine g1’s structure changes and growth rate
changes. Considering ba1 and ba2 in Fig.2 (c), we no-
tice that ba1 and ba2 are subgraphs of g1, and they
are two minimal ESPs, i.e., there exist no subgraphs
of ba1 and ba2 that are ESPs. Intuitively ba1 and
ba2 can be seen as two “bases” of g1. Then we con-
sider br1. The pattern br1 is structurally similar to
g1 since br1 can be formed from g1 by replacing the
atom “X” with “Y”. We notice that g1’s growth rate
decreases sharply from ∞ to 0. The br1 appears in
DN but never appears in DP . This indicates that g1
loses the positive property and exhibits strong neg-
ative property after being “broken” by replacing the
atom “X” with “Y”. The pair of br1 and the oper-
ation can be seen as a “breaker” of g1. For experts
this information is not only useful for exploring the
inner molecular mechanism of the property but also
helpful for finding out ways to weaken or remove the
property.

It is obvious that the ESPs with the “bases” and
“breakers” are more informative. This type of ESP is
called breaker ESP in this paper. This paper aims at
defining the breaker ESP, and proposing an efficient
approach to discover top-k breaker ESPs.

4 Breaker Emerging Subgraph Pattern

In this section, a new type of discriminative subgraph
pattern, breaker ESP (BESP) is defined. After the
definition of preliminary concepts, three constraints
are introduced into ESPs; then the two subpatterns,
base and breaker, are introduced; finally the BESP is
defined.

4.1 Preliminary Concepts

The graphs considered in this paper are undirected
labeled graphs.

Definition 1 (Undirected Labeled Graphs)
An undirected labeled graph G can be represented
by a 5-tuple, G = {V, E, ΣV ,ΣE , λ}, where V is a
nonempty set of vertices, E ⊆ V × V is a set of
undirected edges, ΣV and ΣE are the sets of vertex
labels and edge labels respectively. The function λ
defines the mappings from vertices to vertex labels,
V → ΣV , and from edges to edge labels, E → ΣE.

Definition 2 (Subgraphs) G is a subgraph of G′
(denoted by G ⊆ G′) iff V ⊆ V ′ and E ⊆ E′∩(V ×V ).
G ⊂ G′ denotes G is a strict subgraph of G′.

Definition 3 ((Sub)Graph Isomorphism)
Graph G = {V, E, ΣV ,ΣE , λ} is graph isomor-
phic to another graph G′ = {V ′, E′,Σ′V ,Σ′E , λ′}
iff there exists a bijection f : V → V ′ such that
for ∀u ∈ V, f(u) ∈ V ′ and λ(u) = λ′(f(u)), and
for ∀e = (u, v) ∈ E, e′ = (f(u), f(v)) ∈ E′ and
λ(e) = λ′(e′). Graph G is subgraph isomorphic to G′
if there exists a subgraph G′′ of G′ such that G is
graph isomorphic to G′′.
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Definition 4 (Growth Rate of a Subgraph)
Given two graph datasets DP and DN , the growth
rate of a subgraph g from DN to DP , GRDN→DP

(g),
is defined as equation (1) (X is replaced by g).

Definition 5 (Emerging Subgraph Patterns)
Given two graph datasets DP , DN and a threshold
of growth rate, Min GR, a set of emerging subgraph
patterns (ESPs) from DN to DP is defined as:

ESPDN→DP
= {g|GRDN→DP

(g) ≥ Min GR} (2)

It should be remarked that in the rest of the pa-
per, the subscript DN → DP is omitted when it is
apparent, i.e., GR(g) = GRDN→DP

(g), Min GR =
Min GRDN→DP

and ESP = ESPDN→DP
. Simi-

larly, GRDP→DN
and ESPDP→DN

can be defined.
For convenience, in the rest of the paper, the sub-
script “N” is used to denote “DP → DN” in-
stead, i.e., GRN (g) = GRDP→DN

(g), Min GRN =
Min GRDP→DN

and ESPN = ESPDP→DN
.

Definition 6 ((Maximum) Common Subgraph)
A common subgraph of G1 and G2 is a graph G
such that there exist subgraph isomorphism from G
to G1 and from G to G2. We call G a maximum
common subgraph of G1 and G2, MCS(G1, G2), if
there exists no other subgraph of G1 and G2 that has
more vertices than G (Wang et al. 2005).

4.2 Three Constraints on ESPs

As analysed in Section 2.4, the existing patterns,
ESPs, MCSPs and MDSPs, have some drawbacks.
The constraints α and β for MDSPs lead to the risk
of missing highly discriminative patterns. Both ESPs
and MCSPs have no constraints on support. This
leads to two problems: one is huge searching complex-
ity and the other is the inaccuracy due to the noise
of low frequencies. Additionally, redundant patterns
are not filtered in the three patterns. To overcome
these drawbacks, we exert three constrains on ESPs.

The first constraint is the minimal support thresh-
old. In our definition, any ESP g must be frequent,
i.e., supP (g) ≥ min supP , where min supP is the
threshold of supP . This constraint brings three ad-
vantages: (1) it ensures that the patterns are popular
to some degree in the dataset; (2) it filters the noise
with low frequencies, and thus filters some false pat-
terns corrupted by the noise; (3) it greatly reduces
the number of patterns that need to be generated,
and thus reduces the computational complexity.

The second constraint is that any ESP g must be
closed in DP , that is to say there exist no proper
supergraphs of g that have the same support of g. The
first reason for exerting this constraint is that it can
further reduce the number of patterns that need to be
generated. The second reason is that it can filter some
redundant patterns without losing significant ESPs.
For example, if g is not closed, i.e., ∃g′ such that g ⊆
g′ and supP (g) = supP (g′), then GR(g) ≤ GR(g′)
since supN (g) ≥ supN (g′). Therefore, for g′, g is
redundant. After adding the constraint, g will be
pruned.

The third constraint is for pruning redundant
patterns that have subgraphs or super-graphs with
higher growth rate values. For a pair of ESPs g and
g′ having the relationship: g ⊂ g′ (or g′ ⊂ g), (1)
if GRP (g) > GRP (g′) then g′ is pruned as a redun-
dant pattern; (2) if GR(g) = GR(g′) and supP (g) 6=
supP (g′) then the larger graph is pruned as a redun-
dant pattern.

Given DP , DN , min supP and Min GR, the ESPs
that satisfy the min supP constraint is called frequent
ESPs (FESPs), and the ESPs that satisfy the first

two constraints above are called closed frequent ESPs
(CFESPs), and the ESPs that satisfy the three con-
straints are called constrained ESPs (CESPs). The
set of FESPs, CFESPs and CESPs are denoted by
FESP , CFESP and CESP respectively.

4.3 Breaker Emerging Subgraph Pattern

As indicated in Example 1, besides each ESP itself,
the bases and breakers of the pattern should be pro-
vided. A breaker ESP consists of three subpatterns:
a CESP, a set of bases and a set of breakers.

The bases of a CESP gi are defined as the minimal
CFESPs in the subgraphs of gi, which are formally
defined below.

Definition 7 (The bases of a CESP) Given DP ,
DN , min supP and a set of CESPs, CESP = {gi},
for ∀gi ∈ CESP , the set of bases of gi, Bai, is defined
as

Bai = {ba|ba ∈ CFESP, ba ⊂ gi, and

¬∃s ∈ CFESP such that s ⊂ ba} (3)

As shown in Example 1, a breaker pattern, br, of
a CESP gi is structurally similar to gi, but its grow
rate decreases significantly. Two types of breakers are
interesting. One is that br still appears frequently
in DP , but its growth rate is weaken to a value be-
low Min GR. The other is that br appears more fre-
quently in DN than in DP , i.e., GRN (br) > 1. The
first type exhibits the same property as gi to some
extent, while the second type exhibits the opposite
property. The first type is called weakening breaker,
and the second type is called reverse beaker. To define
the breakers, two metrics are needed to measure the
structural similarity and the change degree of growth
rate.

For real graph data from different applications,
the standards for measuring the structural similar-
ity could vary. Even in the same domain such as
chemistry, dozens of similarity coefficients are avail-
able for measuring the structural similarity (Nikolova
et al. 2004). In this paper, we just adopt a com-
monly used metric, the maximum common subgraph,
to measure the structural similarity. The similarity
degree between gi and a candidate breaker pattern br
is quantified by:

Similarity(gi, br) =
2|MCS(gi, br)|
|gi|+ |br| (4)

where, |gi| refers to the size of gi. Two patterns are
structurally similar if their Similarity is no less than
a user specified threshold δ ∈ (0, 1).

The graph size can be evaluated by edge num-
ber or vertex number. The Similarity is denoted by
Similarity1 (Similarity2) when vertex (edge) num-
ber is used.

For the first type of breaker, the change degree of
the grow rate of a breaker candidate, br, of gi, can be
defined as

GR change(gi, br) =
{ ∞ if GR(br) = 0

GR(gi)
GR(br) otherwise (5)

The change degree is significant if
GR change(gi, br) is no less than a user speci-
fied threshold ρ > 1.

For the second type of breaker, GRN represents
the change degree, i.e., the degree that a breaker pat-
tern exhibits the negative property.

The two types of breakers are formally defined as
follows.
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Definition 8 (Weakening Breaker) Given DP ,
DN , CESP = {gi}, CFESP , Min GR, δ and ρ,
for ∀gi ∈ CESP , the set of weakening breakers of gi,
WBri, is defined as

WBri = {〈br, ϕ〉|br ∈ CFESP, br = ϕ(gi),
1 ≤ GR(br) < Min GR, Similarity(gi, br) ≥ δ,

GR change(gi, br) ≥ ρ} (6)

A breaker of gi consists of a breaker pattern br
and a breaker operator ϕ, which is a set of opera-
tions that transforms gi to br, and br = ϕ(gi) means
that br can be formed by conducting the operator ϕ
on gi. The operations in ϕ are from 6 basic opera-
tions on graphs: AV (adding a vertex), AE (adding an
edge), DV (deleting a vertex), DE (deleting an edge),
MV (modifying a vertex label) and ME (modifying an
edge label). Since the bases reflect the information of
the patterns with GR no less than Min GR, GR(br)
is constrained to be less than Min GR.

Definition 9 (Reverse Breaker) Given DP , DN ,
CESP = {gi}, min supN , Min GRN and δ for
∀gi ∈ CESP , the set of reverse breakers of gi, RBri,
is defined as

RBri ={〈br, ϕ〉|br=ϕ(gi), Similarity(gi, br)≥δ

supN (br) ≥ min supN , GRN (br) ≥ Min GRN} (7)

The threshold min supN is used to ensure that
br is popular to some extent in DN and to filter the
noise with low frequencies in DN . The Min GRN is
used to ensure that br loses the positive property and
exhibits the negative property to some degree.

Based on the CESP and the definitions of base and
breaker, breaker ESPs (BESPs) are defined as follows.

Definition 10 (Breaker ESPs) Given DP , DN ,
min supP , min supN , Min GR, Min GRN , δ and
ρ, the set of BESPs from DN to DP is defined as

BESP = {〈gi, Bai, Bri〉|gi ∈ CESP} (8)

where, Bai is the set of bases of gi and Bri is the set
of breakers of gi (Bri = WBri ∪RBri).

A breaker ESP is composed of three subpatterns: a
constrained ESP, gi, a set of bases Bai of gi, and a
set of breakers Bri of gi. It should be noted that Bai
(Bri) is an empty set when no bases (breakers) of gi
exist in the datasets. In implementation, the BESPs
are sorted by the growth rate of gi in descending or-
der, and only the top-k BESPs are discovered, where
k is a user-specified integer.

5 Mining Top-k Breaker Emerging Subgraph
Patterns

An efficient algorithm for mining top-k BESPs, k-
MBESP, is proposed in this section. The top-k BESPs
are discovered in three main stages:

1. Find top-k constrained ESPs, CESPK =
{g1, ..., gk} ;

2. Find the bases of each gi ∈ CESPK ;

3. Find the breakers of each gi ∈ CESPK .

5.1 Finding Top-k Constrained ESPs

The top-k CESPs are found by 4 steps. First, the
set of closed frequent subgraphs, CF , is discovered
from DP . Second, all closed frequent subgraphs are
inserted into a layered graph L as shown in Fig.3.

Algorithm 1 Top-k-CESP
Comments: find top-k CESPs.
Input: DP , DN , min supP , Min GR, k
Output: Top-k CESPs, CESPK

1: CESPK ← ∅;
2: Scan DP once to find frequent vertices FV ;
3: for each vertex v ∈ FV do
4: CloseGraph(v, NULL, DP , min supP , CF );
5: for each graph Gi

′ in DN do
6: GR-Computation(L,Gi

′, |DP |, |DN |,Min GR);
7: Traverse L to single out CESPK ;

graphparent-embedded countP countN GR  child-link next

g5
�=           X 3 0    

g4
�=       4   1   4.0

g3
�= X   Z 2   1 2.0

g1
�= X   4    2   2.0 g2

�= Z    3 2   1.5

(b) Node structure

(a) L

0

Head-table root

1

7

6
�

Figure 3: The layered graph L and its node structure

Third, DN is scanned once to compute supN and GR
of each subgraph in L. Finally, the top-k CESPs are
detected and output from L. The procedure is de-
scribed in Algorithm 1.

In Line 4, the CloseGraph algorithm (Yan et al.
2003) is adopted to find CF first. In the imple-
mentation of CloseGraph, an additional subprocedure
is addted to insert each found frequent closed sub-
graph into L as shown in Fig.3(a). In Line 6, GR-
Computation computes current countN and GR of
each node in L. The following example is used to
illustrate the algorithm.

Example 2 Given DP and DN as shown in
Fig.2(a)(b), let min supP =0.5, Min GR=2.0,
min supN=0.25, Min GRN=2.0, δ = 0.8, ρ = 10
and k = 2. The k-MBESP algorithm is used to
discover top-2 BESPs.

In Example 2, firstly, FV = {C, X, Z} is found;
then CloseGraph generates CF = {g1

′, g2
′, ..., g5

′},
and inserts each gi

′ ∈ CF into L as shown in Fig.3(a).
Each gi

′ and its related information are stored in
a node of L. For space limitation, only 4 domains
(graph, countP , countN and GR) are shown explic-
itly. The node structure is shown in Fig.3(b). The
L is organised in two dimensions. Horizontally, the
graphs with the same edge number are organised in
the same layer. Level numbers (edge numbers) are
stored in the Head-table. Vertically, a child-link is
set from a parent to a child (a node c is a child of
node p if p.graph ⊂ c.graph). The root is chosen as
its parent when a node has no parents. To avoid gen-
erating too many links, child-links are only set from
the nearest parents to the children, e.g, a child-link is
not set from g1

′ to g5
′.

The GR-Computation procedure is described in
Algorithm 2. The basic idea is for each graph Gi

′ in
DN , to search L from top to down to test whether
the subgraph in each node is embedded in Gi

′. To
reduce the time complexity of subgraph-isomorphism
test, two pruning strategies are introduced.

• Pruning strategy 1 For node u in Level l,
if u.graph 6⊆ Gi

′, then u’s children are pruned
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Algorithm 2 GR-Computation
Comments: compute countN and GR of each node
in L after Gi

′ is scanned.
Input: L, Gi

′, |DP |, |DN | and Min GR
Output: L in which countN and GR of
each node have been computed after Gi

′ is
scanned

1: for each node u ∈ L do
2: u.parent-embedded ← true;
3: for l=0 to max-layer do
4: u ← L.Head-table[l];
5: while u 6= null do
6: if u.GR 6= −1 then
7: if u.parent-embedded = true and

u.graph ⊆ Gi
′ then

8: u.countN ← u.countN + 1;
9: u.GR ← u.countP /|DP |

u.countN /|DN | ;
10: if u.GR<Min GR then
11: u.GR←−1;
12: else for each child c of u do
13: c.parent-embedded ← false;
14: if i = |DN | and u.countN = 0 then
15: u.GR ←∞;
16: u ← u.next;

Algorithm 3 Base-Detection
Comments: find the bases of each gi ∈ CESPK .
Input: L and CESPK
Output: Bai(i = 1, 2, ..., k)

1: for each Bai do Bai ← ∅;
2: for each child u of L.root
3: if u.GR 6= −1 then
4: for each gi ∈ CESPK
5: if u.graph ⊂ gi then
6: Bai ← Bai ∪ {u.graph};

(Note: this pruning does not mean really prun-
ing the nodes from L but means that subgraph-
isomorphism test need not be conducted between
any graphs in the nodes and Gi

′).

• Pruning strategy 2 The subgraph-
isomorphism test need not be done for node u if
current u.GR is less than Min GR.

Pruning strategy 1 is implemented by Line 7, 12 and
13 in Algorithm 2. In Line 7, the second condition is
tested only if the first condition is true. Pruning strat-
egy 2 is implemented by Line 6, 10 and 11. A special
value of -1 is used to indicate that current u.GR is
less than Min GR. In Example 2, countN and GR
of each node in L are computed by GR-Computation
and their values are shown in Fig.3(a).

The last step of the Top-k-CESP procedure is,
based on GR and the third constraint, traversing L
and identifying top-2 CESPs, CESP2 = {g1 = g5

′ :
∞, g2 = g3

′ : 2.0}.

5.2 Finding the Bases

The bases of each gi in CESPK can be found easily
from L since they are kept in L. Note that if there
is a child-link from the root to node u, then u.graph
is a minimal CFESP. Therefore, based on Definition
7, if u.graph ⊂ gi, then u.graph is a base of gi. The
procedure is described in Algorithm 3. In Example 2,
for g1, Ba1 = {g′1, g′4}, and for g2, Ba2 = {g′1}.

Algorithm 4 WBreaker-Identification
Comments: find the weakening breakers of each
gi ∈ CESPK and reverse breakers in CFESP
Input: |DP |, |DN |, CESPK , L, δ, ρ, min supN ,
Min GRN and k
Output: WBri, and RBri if there exist reverse
breaker patterns in CFESP (i=1,2,...,k).

1: for i=1 to k
2: Calculate Emin(gi) and Emax(gi);
3: Locate node u in L s.t. u.graph = gi;
4: for each node p from Layer Emin(gi) to

Layer Emax(gi)
5: if p.GR = −1 and ((there exists a path

from p to u or from u to p) or (p and u
have a common antecedent node from
Layer Emin(gi) to Layer |gi| − 1)) then

6: brCi ← brCi ∪ {p.graph};
7: Scan DN to compute countN and GR of each

br ∈ brC (brC =
k∪

i=1
brCi);

8: for each gi ∈ CESPK
9: for each br ∈ brCi

10: if GR(br) ≥ 1 and GR change(gi, br) ≥ ρ
then

11: WBri ← WBri ∪ {〈br, ϕ〉};
12: else if GR(br) < 1, 1/GR(br) ≥

Min GRN , supN (br) ≥ min supN then
13: RBri ← RBri ∪ {〈br, ϕ〉};

Algorithm 5 RBreaker-Identification
Comments: find the reverse breakers of each gi ∈
CESPK .
Input: |DP |, |DN |, CESPK , min supN , Min GRN ,
δ, k
Output: RBri(i = 1, 2, ..., k)

1: Find FESPN using Algorithm 1;
2: for i=1 to k
3: for each br ∈ FESPN
4: if Similarity1(gi, br) ≥ δ then
5: RBri ← RBri ∪ {〈br, ϕ〉};

5.3 Finding the Breakers

Two breaker identification procedures are devised for
the discovery of two types of breakers respectively.

5.3.1 Finding the Weakening Breakers

The procedure is described in Algorithm 4. In this
procedure, edge number is used to evaluate graph size.
First, obtain the minimum (maximum) edge number,
Emin(gi) (Emax(gi)) of candidate breaker patterns of
each gi ∈ CESPK . Given δ and |gi|, Emin(gi) and
Emax(gi) can be derived easily from Equation (4) ac-
cording to |MCS(gi, br)| ≤ min{|gi|, |br|}. Second,
traverse L from Layer Emin(gi) to Emax(gi) to detect
candidate breaker patterns, brCi, of gi (Line 4, 5 and
6). Line 5 identifies the candidates that satisfy thresh-
olds Min GR and δ in Equation (6). Third, scan DN
to calculate countN and GR of each candidate. Fi-
nally check if the candidates satisfy the threshold ρ
(Line 10). If there exists such br that satisfies the
constrains of reverse breakers, then br is inserted into
the corresponding reverse breaker set (Line 12 and
13).

5.3.2 Finding the Reverse Breakers

The procedure is described in Algorithm 5. In Line
1, the constraints closed and k are not needed in Al-
gorithm 1 for finding frequent ESPs from DP to DN ,
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FESPN . The key of the computation of Similarity1
(Equation (4)) in Line 4 is to identify the maximum
common subgraph of gi and br, MCS(gi, br). An
existing efficient algorithm (Wang et al. 2005) is im-
plemented to detect the minimal common subgraphs.
The MCS(gi, br) is discovered by five major steps:
(1) produce the matching pairs of two input graphs;
(2) sort the order of matching pairs; (3) build a com-
mon subgraph path through selecting matching pairs;
(4) determine the size of the corresponding common
subgraph by the path; (5) continue finding paths until
all paths have been considered. In FESPN usually
almost no or only a small number of candidates are
structurally similar to gi. In order to accelerate the
procedure, two pruning strategies are introduced to
prune the search space.

• MCS-pruning 1 If 2min{|gi|,|br|}
|gi|+|br| < δ then

Similarity1(gi, br) < δ because |MCS(gi, br)| ≤
min{|gi|, |br|}. In this case, MCS(gi, br) need
not be identified.

• MCS-pruning 2 In Step (1) of the MCS de-
tection procedure, if the number of matching
pairs, NMP , does not satisfy 2NMP

|gi|+|br| ≥ δ, then
retreat from the procedure. Also in Step (3)
only consider the pathes whose NMP satisfy
2NMP
|gi|+|br| ≥ δ.

In Example 2, the discovered reverse breakers
are Br1 = {〈br1,MV (v7, Y )〉}, where br1 is from
Fig.2(c), and MV (v7, Y ) means the label of v7 (the
vertex with label “X” in br1) is modified to Y .

6 Experimental Results and Analysis

To evaluate the k-MBESP algorithm, experiments
were conducted on both real and synthetic datasets.
All experiments were done on a 2.2GHz Intel Core
PC, with 2 GB main memory, running Windows XP.
For comparison, we also implemented the algorithm
for mining MCSPs (Ting et al. 2006) and the algo-
rithm for mining MDSPs (Zeng et al. 2008), which
are denoted by MCSP-Miner and MDSP-Miner re-
spectively. All algorithms were implemented in Java.

6.1 Real Dataset

The real dataset that we use is the AIDS antiviral
screen chemical compound dataset obtained from the
website3. The dataset contains 42687 compounds,
among which, 377 are confirmed active (CA), 1911
are confirmed moderately active (CM) and 40389
are confirmed inactive (CI). In the experiments, we
only focus on CA and CI compounds. CA com-
pounds are stored in DP and CI compounds are
stored in DN . The k-MBESP algorithm is used to
find the top-k BESPs from DN to DP . We deter-
mine an appropriate specification for the parame-
ters: min supP =14%, min supN = 14%, k = 10,
Min GR=25.0, Min GRN=3.0, δ = 0.65, ρ = 8.0.
With this specification, the algorithm finds top-10
BESPs within 2835 seconds. The top-1,2 and 7 BE-
SPs are shown in Fig.4. The value in every bracket is
the GR of a pattern. Several bases are found for each
gi, among which only a couple of them are shown in
Fig.4. For g7, a weakening breaker pattern, wbr7−1,
is discovered. We see that the growth rate of g7 de-
creases from 88.76 to 8.82 (GR change = 10.06) when
three bonds attached to atom S are broken as shown
by the three dashed line in Fig.4. This information

3http://dtp.nci.nih.gov/docs/aids/aids data.html
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Figure 4: top-k BESPs discovered from the real
dataset

is heuristic and important for domain experts to dis-
cover the factors that could weaken the activity of the
compounds. It should be noted that breaker patterns
are not necessarily underlying in the datasets. No
breaker patterns can be found if no breaker patterns
exist in the datasets to be mined. For example, no
reverse breakers are found in the AIDS dataset when
the parameters are specified as above.

In this dataset, MDSP-Miner (α = 14%, α/β =
Min GR = 25) only finds the minimum ESPs, and
misses some more discriminative patterns. For exam-
ple, some bases of g1, g2 are found as MDSPs and g1,
g2 are excluded. However, MCSP-Miner is not able to
finish the mining process within an acceptable time.

6.2 Synthetic Datasets

In order to evaluate the performance of the algo-
rithm, we generated a series of synthetic datasets by
a synthetic graph generator (Kuramochi et al. 2001)
with fixed parameters I5T20L200V6E4 and varying
D, where I denotes the average size of frequent pat-
terns (in terms of edge number), T denotes the aver-
age size of graph transactions, L denotes the number
of potentially frequent subgraphs, V denotes the num-
ber of distinct vertex labels, E denotes the number of
distinct edge labels, and D denotes dataset size (the
number of graphs in the dataset).

6.2.1 Performance Study

To compare the time efficiency, the three miners are
performed on a series of datasets with the size vary-
ing from 20 to 100k. The parameters for k-MBESP
are specified as: Min GR = 25.0, min supP = 5%, δ
(at most 2 vertices or edges are different), ρ = 30.0,
Min GRN = 10.0, min supN = 5% and k = 10.
For MDSP-Miner, the parameter α = 5%, and the
value of α/β is fixed at 25.0, which is as same as
Min GR. However, when the dataset size is 20 or
100, Min GR = 5.0, min supP = 10%, α = 30%,
and β = 6%. Figure 5(a) shows a performance com-
parison of the three miners on datasets of 20 to 10000
graphs. As shown in Fig.5(a), k-MBESP is more ef-
ficient than two previous miners. When the dataset
size is over 10k, both MCSP-Miner and MDSP-Miner
are not able to finish the mining process in 3 hours.
In contrast, k-MBESP can finish within 1000 seconds
even on large datasets of up to 100k graphs. Fig.5(b)
shows the runtime when D=5k and min supP for
k-MBESP (α for MDSP-Miner) varies from 1% to
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Figure 5: A performance comparison of the three min-
ers

6%. We see that k-MBESP has better scalability on
min sup than MDSP-Miner.

The high efficiency and good scalability of our al-
gorithm benefit from the constraints, the compact
data structure and the pruning strategies that we
introduced. Firstly, the min sup and closed con-
straints greatly reduce the search space of subgraph
candidates. Secondly, the high compact layered graph
contributes to the high efficiency. All candidates are
stored in the layered graph which can be loaded into
main memory prior to the computation of GR. Thus
only one scan of the datasets is needed to compute
GR for all candidates. In contrast, a large number
of scans are required in the other two miners. In
MDSP-Miner, one scan of the dataset is needed for
each MDSP candidate, therefore the minimal num-
ber of scans is the number of MDSP candidates. In
MCSP-Miner, for each graph in DP , one scan of DN
is required for discovering the maximal common edge
sets (Ting et al. 2006). consequently, for a dataset of
5k graphs, at least 5k scans are needed for MCSP-
Miner. Thirdly, the pruning strategies further reduce
the time complexity.

6.2.2 A Comparison of Discovered Patterns

We also compare the patterns discovered by the three
miners to evaluate their informativeness, accuracy
and discriminating power. Figure 6(a)(b)(c) show the
patterns discovered by the three miners from datasets
D5I5T20L200V6E4, which are denoted by bpi, cpi and
dpi respectively. In Fig.6(a) bai−j denotes the jth

base of gi. The patterns in Fig.6(a)(c) are sorted
according to GR values of CESPs and MDSPs re-
spectively in descending order. As shown in Fig.6(a),
for g1 and g2, two weakening breakers, wbr1−1 and
wbr2−1, are discovered, and both GR change values
are ∞. For g4, a reverse breaker, rbr4−1, is discov-
ered and GRN = 12.8. This indicates that g4 loses
the strong (GR = ∞) positive property and exhibits
the negative property to some extent (GRN = 12.8).

It is obvious that the top-k BESPs are more in-
formative with the information of CESPs and their
bases and breakers. Comparing bp1 to cp1 and dp1 in
Fig.6, we see that the CESP g1 in bp1 is just cp1 and
dp1. The information of MCSPs (except disconnected
subgraphs) and MDSPs are included in BESPs.

To test the accuracy of the miners, we introduce
two noises in Fig.6(d) into the datasets: (1) a noi1
is added into DP , (2) a noi2 is introduced into DN
by modifying a edge label of a subgraph in DN from
e to f . The result of K-MBESP is not affected by
noi1, and for bp1, g1’s growth rate is changed to
countP (g1)=1364. However, the noi1 is found as
a MCSP, cp1

∗, by MCSP-Miner since GR(noi1) =
1/0 = ∞, and when noi2 appears, cp1, i.e., g1, can
not be found by MCSP-Miner since GR(cp1) 6= ∞.
The result of MDSP-Miner is affected as same as that
of k-MBESP by noi1 and noi2. In addition, MDSP-
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Figure 6: A comparison of patterns discovered by
three miners

Miner could miss important patterns in the following
two cases. First, as shown in Fig.6(c), g2 is among the
most discriminative patterns with infinite GR, but it
is missed by MDSP-Miner since it is replaced by dp19.
It is clear that g2 is more discriminative than dp19, but
g2 is replaced by dp19 as GR(dp19) = 36.1 > 25.0 and
dp19 ⊂ g2. Similarly, g3 and g4 are missed. Second,
as shown in Fig.5(b), MDSP-Miner can not finish the
mining process in an acceptable time when min supP
(i.e., α) is specified a very low value. Therefore, some-
times those MCSPs with low supP could not be found
by MDSP-Miner. In contrast, K-MBESP can accept
a relatively lower min supP value. In addition, the
constraints in BESPs filters some redundant patterns.
Compared with the other two miners, k-MBESP is
more accurate as it filters redundant patterns and
false patterns corrupted by noise with low frequen-
cies and does not miss more discriminative patterns.

As for discriminating power, the top-k BESPs are
the top-k most discriminative patterns in terms of
grow rate. In contrast, MDSPs are not necessarily the
most discriminative, and some more discriminative
patterns could be missed as examined above.

As for mining power, k-MBESP is more powerful
than the other two miners. Figure 6(a) shows that k-
MBESP is capable of discovering top-k BESPs. The
other two miners can not discover them. One ex-
ception is that disconnected subgraph patterns such
as cp4 and cp5 in Fig.6(b) are not considered in our
miner since we only aim at detecting individual sub-
graph patterns of high discriminating power.

Another advantage is that, with relatively small
number of patterns, top-k BESPs are more conve-
nient for domain experts to select, examine and anal-
yse. Furthermore, the change information of pattern
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structure and growth rate values kept in the bases and
breakers provide heuristic information for the experts
and help them discover important knowledge. In con-
trast, a relatively large number of MDSPs are not
convenient for manual examination and analysis, and
no change information is contained in both MCSPs
and MDSPs.

In summary,the discovered top-k breaker emerg-
ing patterns are more informative, more discrimina-
tive and more accurate than the MCSPs and MDSPs
extracted from the same datasets.

7 Conclusions and Future Work

In this paper, we introduced a new type of discrimi-
native subgraph pattern, breaker emerging subgraph
pattern, which consists of three important subpat-
terns: (1) the top-k CESPs that reflect the top-k most
significant individual structural differences between
two classes of graphs, (2) the bases that indicate
structural bases of the discriminative patterns, and
(3) the breakers that indicate triggers to weaken the
growth rates of the patterns. We also proposed an effi-
cient miner, k-MBESP, for the discovery of top-k BE-
SPs. The experimental results show that the miner is
capable of finding the top-k BESPs efficiently, more
efficient, more powerful and more accurate than two
previous miners. Compared with the complete sets of
MSCPs and MDSPs discovered by previous miners,
the top-k BESPs extracted by our algorithm have at
least the following 4 advantages: (1) more informative
(2) more discriminative in terms of growth rate, (3)
more accurate, (4) more convenient and more useful
for experts’ further examination and analysis.

The BESP extends the application of discrimina-
tive subgraph patterns. It can be applied to: (1) de-
tecting the difference between two contrasting classes
of graphs, (2) exploring the inner structural mech-
anism of the property of a class of graphs, and (3)
helping domain experts to discover ways to activate
(strengthen) the desired properties, such as the ac-
tivity to AIDS, and to break (weaken) the undesired
properties, such as the toxicity.

Some future work needs to be done. First, more ef-
fective noise filtering strategies should be introduced
to enhance the robustness of the top-k-BESP miner
on data with various noise. Second, study the ap-
plications of the BESP. For example, use BESPs to
detect differences between two contrasting classes of
compounds or drugs (eg. high curative effects vs. low
curative effects, high toxicity vs. low toxicity), to ex-
plore the molecular mechanism and to discover ways
to design drugs of high curative effects and low toxic-
ity. Based on the differences of website access behav-
iors between the males and the females represented
by BESPs, modify the organization of a website to
obtain a male-style website and a female-style one.
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