
Efficiently Mining Frequent Subpaths

Sumanta Guha1

1 Computer Science & Information Management Program
Asian Institute of Technology

PO Box 4, Klong Luang, Pathumthani 12120, Thailand
Email:guha@ait.asia

Abstract

The problem considered is that of finding frequent sub-
paths of a database of paths in a fixed undirected graph.
This problem arises in applications such as predicting con-
gestion in network traffic. An algorithm based on Apriori,
called AFS, is developed, but with significantly improved
efficiency through exploiting the underlying graph struc-
ture, which makes AFS feasible for practical input path
sizes. It is also proved that a natural generalization of the
frequent subpaths problem is not amenable to any solution
quicker than Apriori.

Keywords:AFS, Apriori, data mining, frequent subpath,
frequent substructure, graph mining.

1 Introduction

Within the general problem of mining frequent patterns
from a database of transactions, an area of some recent
interest is where the transactions occur in a structured or
semi-structured set. The structure considered often is that
of a graph because objects under scrutiny in various appli-
cations can, in fact, be modeled as graphs, e.g., chemical
compounds, web links, virtual communities, XML speci-
fications and networks of different kinds. Finding frequent
subgraphs of a database of graph transactions has been an
area of particular activity. Apriori-based algorithms for
this problem have been given, amongst others, by (Vanetik
et al., 2002), (Inokuchi et al., 2000) and (Kuramochi and
Karypis, 2001), while (Yan and Han, 2002) give an al-
gorithm which uses a novel encoding scheme for graphs.
See (Cook and Holder, 2006) for a survey of graph mining
techniques.

The problem which we consider is a particular case of
the problem of finding frequent subgraphs. In particular,
in our case all transactions are paths in a fixed undirected
graph, and we are interested in determining those paths
in that graph which occur frequently as subpaths of the
transaction paths. This is a natural problem to consider.
For example, if each path in the database represents the
route taken by an object such as a message or vehicle,
then the frequent subpaths represent congested sections,
or hot spots. Related work includes (Chen et al., 1998) and
(Gudes and Pertsev, 2005), which both compute thewhole
paths themselves that are frequently traversed, rather then
the frequently traversed shared parts which we consider
(e.g., a set of paths may individually not be frequently
traveled, but particular shared edges could well be con-
gested).

Our algorithm is derived from Apriori (Agrawal and
Srikant, 1994) as well. However, a simple-minded appli-

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the Eigth Australasian Data Mining Conference (AusDM
2009), Melbourne, Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 101, Paul J. Kennedy,Kok-Leong
Ong and Peter Christen, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

cation of Apriori – say, by treating paths as itemsets of
vertices – fails because the feasibility of Apriori depends
on transactions being of small size. However, paths in
graphs arising from practical applications are not neces-
sarily short (e.g, consider vehicular traffic in a city), anda
straight Apriori-type solution runs into exponential com-
plexity. Instead, we exploit the graph structure for a sig-
nificant gain in efficiency which leads to a generally appli-
cable solution, which we call AFS (Apriori for Frequent
Subpaths). In fact, we analyze and compare the complex-
ities of Apriori and AFS to prove a theoretical gain in ef-
ficiency from exponential in input size to low polynomial.

Next, we show that, interestingly, there is no possibil-
ity of similarly leveraging the graph structure to improve
Apriori for a solution to a natural generalization of the
frequent subpaths problem – that of finding so-called fre-
quent strings of subpaths – because the general problem is
equivalent in complexity to that of finding frequent item-
sets.

2 Problem and Algorithm

2.1 Problem Statement

Let G = (V,E) be an undirected graph with vertex setV
and edge setE.

Here are some definitions related to paths in graphs
which we’ll use. Apath Pin G of lengthk from a vertex
u to u′ is a sequence(v0,v1, . . . ,vk) of vertices such that
v0 = u and vk = u′ and (vi−1,vi) ∈ E for i = 1,2, . . . ,k.
(We’ll also allow the empty sequence() to denote the
empty path of undefined length.) A pathQ in G is said to
be asubpathof P, denotedQCP, if Q= (w0,w1, . . . ,wk′),
where (w0,w1, . . . ,wk′) is a contiguous subsequence of
(v0,v1, . . . ,vk), i.e., if, for somei such that 0≤ i ≤ i +k′ ≤
k, we havew0 = vi ,w1 = vi+1, . . . ,wk′ = vi+k′ . In this case,
if i = 0, thenQ is called aprefix subpath ofP, and, if
i + k′ = k, then Q is called asuffix subpath ofP. For
a non-empty pathP = (v0,v1, . . . ,vk), f ront(P) denotes
the first vertexv0 andtail(P) denotes the suffix subpath
(v1, . . . ,vk). A path (or, subpath) of lengthk will often be
called ak-path (or,k-subpath).

Following are a few more definitions pertinent partic-
ularly to our problem. LetP be a given set of paths inG.
A pathQ in G is said to havesupportsupport(Q) = |{P∈
P : QC P}|, i.e., the number of paths inP of which Q is
a subpath. Moreover, suppose aminimum supportvalue
min supis specified. Ifsupport(Q) ≥ min sup, thenQ is
said to be afrequent subpath.

The statement of the problem is now straightforward:
Given a setP of paths in an undirected graph G, deter-
mine all frequent subpaths.

See Figure 1 for an example of three paths in a grid
graph.
Remark: In database terminology,P is a database of trans-
actions, where each transactionP is a path in a fixed graph
G.

Proc. of the 8th Australasian Data Mining Conference (AusDM'09)

Page 11

q

b c d ea f

g h i j k l

nm po r

Figure 1: A grid graph with three paths indicated by directedbroken
lines. If min sup= 2 then the frequent subpaths are(g), (h), (i), (j), (k),
(l), (g,h), (i, j) and(k, l).

2.2 Apriori Algorithm

As our algorithm to find frequent subpaths is derived from
the Apriori algorithm, and as we’ll be comparing the com-
plexities of the two, we’ll first describe Apriori in some
detail.

Let D be a database of transactions, where each trans-
actionT ∈D is a subset of a set of all itemsJ . The support
of an itemsetI ⊂ J is support(I) = |{T ∈ D : I ⊂ T}|. If
support(I)≥ min sup, for a specified valuemin sup, then
I is frequent. Following is pseudo-code for the Apriori
algorithm to determine all frequent itemsets (adapted
from (Agrawal and Srikant, 1994)).

Apriori
L1 = {frequent 1-itemsets};
for (k = 2;Lk−1 6= /0;k++)

{
Ck = join(Lk−1,Lk−1); // Generate candidates.
Ck = prune(Ck); // Prune candidates.
Lk = checkSupport(Ck); // Eliminate candidate

// if support too low.
}

return ∪kLk; // Returns all frequents itemsets.

We discuss next the routines in the Apriorifor loop
and how all three are implemented using a function
subset(X,T), whereX is a set of itemsets andT is an item-
set, which returns the subsetY of X consisting of those
itemsets which are contained inT (we’ll discuss imple-
mentingsubset(X,T) itself later).

Firstly, join(Lk−1,Lk−1) generates allk-itemsets of
the form{i1, i2, . . . , ik}, where both{i1, i2, . . . , ik−1} and
{i1, i2, . . . , ik−2, ik} belong toLk−1 (note that itemsets are
always assumed listed in lexicographic order), i.e., unions
of pairs of itemsets inLk−1 both of whose members share
the same firstk−2 items. Secondly,prune(Ck) deletes all
I ∈Ck such that some (k−1)-subset ofI does not belong
to Lk−1. It may be checked thatboth join(Lk−1,Lk−1)
andprune(Ck) are implemented by the following routine
which usessubset(Lk−1,∗):

pruneJoin
Ck = /0;
for each itemsetI = {i1, i2, . . . , ik−1} ∈ Lk−1

for each item j ∈ J such thatj > ik−1
{
I ′ = {i1, i2, . . . , ik−1, j};
for each (k−1)-subsetA of I ′

if (subset(Lk−1,A) = /0) goto reject;
// RejectI ′ if it has a (k−1)-subset
// not belonging toLk−1.

addI ′ to Ck;
reject:
}

return Ck; // Returnsprune(join(Lk−1,Lk−1)).

Finally, checkSupport(Ck) counts the support of each
itemset currently inCk to eliminate those which are not
frequent. It is straightforwardly implemented with the
help ofsubset(Ck,∗):

checkSupport
Lk = /0;
for each I ∈Ck

I .count = 0;
for each transactionT ∈ D

{
CT = subset(Ck,T);
for each I ∈CT

I .count++;
}

for each I ∈Ck
if (I .count≥ min sup) addI to Lk;

return Lk; // Returns members ofCk with support
// at leastmin sup.

Therefore, when implementing Apriori the calls tojoin
andprune in the for loop are replaced by a single call to
pruneJoin, while checkSupport is implemented as above.

The functionsubset(X,T) itself is implemented by
first storing the itemsets ofX in a trie (prefix tree) (Fred-
kin, 1960)T on the “alphabet”J of items ordered lex-
icographically, each itemset treated as an ordered string.
(Agrawal and Srikant, 1994) actually use a particular im-
plementation called a hash tree (Coffman Jr. and Eve,
1970), where pointers to children are stored in a hash ta-
ble keyed on items at each internal node (the use of a hash
tree in this case instead of a simple trie is justified by the
typically large size ofJ). See Figure 2 for an example.

{d, g}

5

n2n1 n3

n4

b

b d
{c, e, f}

{e, f}

{d, f, h}
{e, g, k}

root

a c

{c, d}
n

Figure 2: A hash treeT storing a set of six 4-itemsets
X = {{a,b,c,d},{{a,b,d,g},{a,d,e, f },{b,c,e, f },
{b,d, f ,h},{c,e,g,k}}, where each leaf can store at most two itemsets
(only the suffix of an itemset following the prefix defined by the path to
the leaf is stored).

The functionsubset(X,T) is then executed by calling
doSubset(root(T),T) using the recursive routine below:

doSubset(node, I)
{
Y = /0;
if (node is leaf) addcheckItemsets(node, I) to Y;
// FunctioncheckItemsets(node, I) returns those
// itemsets stored atnodethat are contained inI .

else if(I = /0); // Nothing is added toY.
else for each(i ∈ I)

if (node.ch(i) exists)
addi ∗doSubset(node.ch(i),{ j ∈ I : j > i}) to Y;
// For each itemi ∈ I recurse on the corresponding
// child of node. We denote byi ∗Z the union ofi
// with each itemset inZ.

return Y;

CRPIT Vol 101 AusDM'09

Page 12

}

For example, in Figure 2,
doSubset(root,{a,b,c,d,e, f}) makes three recur-
sive calls todoSubset with parameters(n1,{b,c,d,e, f}),
(n2,{c,d,e, f}) and (n3,{d,e, f}), respectively. The
first of these in turn callsdoSubset with parameters
(n4,{c,d,e, f}) and (n5,{e, f}), while the second and
third add {b,c,e, f} and nothing, respectively, to the
answerY, etc.

Though various technical improvements in implement-
ing Apriori have been suggested – see (Han and Kamber,
2005) for a discussion – we’ll not consider them here, but
use as our reference the basic implementation described
above. This is in the interests of making an apples-to-
apples comparison with AFS, whose basic implementa-
tion is described next.

2.3 Apriori for Frequent Subpaths

We present our algorithm AFS (Apriori for Frequent
Subpaths) in a manner as similar as possible to that for
Apriori in the previous section, so that it’s easy to see
exactly how the added structure in the setting of AFS
helps make it more efficient.

AFS
L0 = {frequent 0-subpaths};
for (k = 1; Lk−1 6= /0; k++)

{
Ck = AFSextend(Lk−1); // Generate candidates.
Ck = AFSprune(Ck); // Prune candidates.
Lk = AFScheckSupport(Ck);
// Eliminate candidate if support too low.
}

return ∪kLk; // Returns all frequents subpaths.

The gain from the graph structure is first seen in gener-
ating candidates: we obtainCk by simply extending each
path inLk−1 by every edge incident on its last vertex (in-
stead of potentially “joining” every pair of paths inLk−1).
This is justified as it may be seen that the set ofk-paths
obtained by so extending paths inLk−1 indeed contains
Lk. Pruning is simpler as well because, after extending
a pathP in Lk−1 to a k-pathP′, the only(k− 1)-subpath
of P′ whose membership inLk−1 need be checked is its
suffix k− 1-subpath. The reason is thatP′ has only two
k−1-subpaths: one prefix (P itself) and the other suffix.

E.g., in Figure 1,(g,h) ∈ L1 would generate four ex-
tensions for inclusion inC2: (g,h, i), (g,h,b), (g,h,g) and
(g,h,n). Moreover, in the prune step, e.g., for(g,h, i),
only (h, i) has to be checked if it belongs toL1.

Both AFSextend(Lk−1) and AFSprune(Ck) are
implemented by the routineAFSpruneExtend below,
which should be compared with the earlierpruneJoin
routine for Apriori. AFSpruneExtend uses the function
subpaths(X,P), whereX is a set of paths andT is a path,
which returns the subsetY of X consisting of those paths
which are subpaths ofT. Functionsubpaths(X,P), whose
implementation we’ll detail momentarily, is, of course,
the counterpart of the earliersubset(X,T).

AFSpruneExtend
Ck = /0;
for eachpathP = (v0,v1, . . . ,vk−1) ∈ Lk−1

for eachvertexv∈V adjacent tovk−1
{
P′ = (v0,v1, . . . ,vk−1,v);
if (subpaths(Lk−1,(v1, . . . ,vk−1,v) = /0)
goto reject;
// RejectP′ if its suffix (k−1)-subpath
// does not belong toLk−1.

addP′ to Ck;

reject:
}

return Ck; // ReturnsASFprune(ASFextend(Lk−1)).

The routineAFScheckSupport is a near copy of its
Apriori counterpartcheckSupport.

AFScheckSupport
Lk = /0;
for eachQ∈Ck

Q.count = 0;
for eachpathP∈ P

{
CP = subpaths(Ck,P);
for eachQ∈CP

Q.count++;
}

for eachQ∈Ck
if (Q.count≥ min sup) addQ to Lk;

return Lk; // Returns members ofCk with support
// at leastmin sup.

Therefore, when implementing AFS the calls toAF-
Sextend andAFSprune in the for loop are replaced by a
single call toAFSpruneExtend, while AFScheckSupport
is implemented as above.

It’s in implementingsubpaths(X,P) that we leverage
the graph setting of AFS to huge gain oversubset(X,T)
(we’ll see the actual calculations in the next section).
Paths inX are stored in a hash treeT as well, exactly
as for subset(X,T). It’s straightforward to use this
tree of paths to determine which are prefix subpaths
of P. Therefore, noting that a path inX is a subpath
of P if an only if it is a prefix subpath of some suf-
fix subpath of P, subpaths(X,P) is implemented by
calling doSubpaths(root(T),(w0,w1, . . . ,wk)), where
P = (w0,w1, . . . ,wk).

doSubpaths(node,{w0,w1, . . . ,wk})
{
Y = /0;
for (i = 0; i ≤ k; i++)

adddoPrefixSubpaths(node,(wi ,wi+1, . . . ,wk))
to Y;
// Iteratively callsdoPrefixSubpaths(node,Q) // on

each suffix ofQ of P = (w0,w1, . . . ,wk).

return Y
}

Compare the following withdoSubset.

doPrefixSubpaths(node,Q)
{
Y = /0;
if (node is leaf) addcheckPrefixPaths(node,Q) to Y;
// FunctioncheckPrefixPaths(node,Q) returns those
// paths stored atnodethat are prefix subpaths ofP.

else if(Q = ()); // Nothing is added toY.
else

if (node.ch(f irst(Q)) exists)
add f irst(Q) ∗

doPrefixSubpaths(node.ch(f irst(Q)),
tail(Q)) to Y;

// Descend fromnodealong the path labeled by
// successive vertices ofQ. We denote byv∗Z the
// concatenation ofv with each path inZ.

return Y;
}

For example, suppose the hash tree in Figure 2
represents a set of paths instead of itemsets. Then,

Proc. of the 8th Australasian Data Mining Conference (AusDM'09)

Page 13

the calldoSubpaths(node,(a,b,c,d,e, f)) spawns six it-
erations of the calldoPrefixSubpaths with parameters
(node,(a,b,c,d,e, f)),(node,(b,c,d,e, f)), . . . ,
(node,(f)), respectively. Each of thedoPrefixSubpaths
calls descends recursively from the root down a sin-
gle path of T . E.g., the one with parameters
(node,(a,b,c,d,e, f)) descends ton4 to finally call
doPrefixSubpaths(n4,(c,d,e, f)), which adds(a,b,c,d)
to the answerY.

2.4 Complexity: AFS vs. Apriori

Consider Apriori first. The recursion indoSubset(node, I)
yields a Fibonacci-type recurrence in running time of
t(k) = t(k−1)+ t(k− 2)+ . . . t(1), if I = {i1, i2, . . . , ik},
implying a time bound function of order exponential in
the size ofI , which we indicate byO(exp(|I |)) (We ig-
nore the cost of calls tocheckItemsets(node, I).) The size
of the hash tree rooted atnodeis an obvious upper time
bound as well ondoSubset(node, I).

Therefore, similar bounds apply tosubset(X,T) as
well. In particular, subset(Ck,T) and subset(Lk,T),
used to implement Apriori, are bounded in run-
ning time by O(min(exp(|T|),size ht(Ck))) and
O(min(exp(|T|),size ht(Lk))), respectively, where
size ht(X) denotes the size of the hash tree storingX.

It follows that the total time cost incurred by calls to
pruneJoin from Apriori is

O(|J |∑
k

k|Lk|min(exp(k),size ht(Lk)))

(the expectation that on the average there will beO(|J |)
items greater than the last one in an itemset justifies the
|J | factor) and by those tocheckSupport is

O(∑
k

(|Ck|+ ∑
T∈D

min(exp(|T|),size ht(Ck)))

Next, consider AFS. The routine
doPrefixSubpaths(node,Q) is bounded by time lin-
ear in |Q| as the recursion descends fromnode along
a path labeled by successive vertices ofQ. The height
height of the hash tree rooted atnode is a bound
as well. Consequently,doSubpaths(node,P) takes
time O(min(|P|,height) + min(|P| − 1,height) + . . . +
min(1,height)) = O(min(|P|2, |P|height)).

Therefore,subpaths(Ck,P) runs in time bounded by
O(min(|P|2, |P|heightht(Ck))), and subpaths(Lk,P) in
time bounded byO(min(|P|2, |P|heightht(Lk))), where
heightht(X) denotes the height of the hash tree storing
X, which represents a gain in efficiency over the corre-
sponding Apriori routinesubset(X,T) from exponential
to quadratic.

We have, therefore, that the total time cost incurred by
calls toAFSextendJoin from AFS is

O(∑
k

|Lk|min(k2
,heightht(Lk)))

(we assume that on the average each vertex hasO(1)
neighbors) and those toAFScheckSupport is

O(∑
k

(|Ck|+ ∑
P∈P

min(|P|2,heightht(Ck)))

Clearly, Apriori is vulnerable to exponential time
worst-case behavior. In fact, it’s evident from the com-
plexity expressions forpruneJoin andcheckSupport that
the feasibility of applying Apriori lies in assuming that (a)
the size of individual transactions in the database isO(1),
and (b) the size ofCk decreases rapidly withk. Fortu-
nately, both assumptions are justified in various practical
scenarios, e.g., market basket analysis.

In case of AFS though (a) is not a reasonable assump-
tion: transactions in the database, i.e., paths in a graph,
may not be short, orO(1) in length. In practical ap-
plications, e.g., vehicles traveling in a network of roads,
paths taken may even be of size comparable to that of the
graph itself. However, we see from the last two expres-
sions above that, even then, AFS has a worst-case behav-
ior quadratic in the total length of the input paths, making
it practically applicable.
Experimental Verification: The theoretical advantage of
AFS can be tested in practical situations by using existing
test data, or by generating random paths in large graphs,
and then finding frequent subpaths using both Apriori (ig-
noring the graph structure and treating paths as itemsets
of vertices) and AFS. We are currently in the process of
setting up such experiments.

2.5 A Generalization and its Hardness

The intersection of a set of paths in an undirected graph
G is not necessarily a path, but a union of paths. We’ll
call such an intersection astring of subpaths, or, simply,
string. Therefore, a natural generalization of the frequent
subpaths problem considered in the previous section is as
follows: Given a setP of paths in an undirected graph G,
determine all frequent strings of subpaths.

For example, in Figure 1,(g,h)∪ (i, j) and (k, l) are
the two maximal frequent strings. Observe that knowing
all frequent strings evidently implies knowing all frequent
subpaths. However, the converse is not true – e.g., it’s
not possible to deduce from the fact that(g,h), (i, j) and
(k, l) are frequent subpaths in Figure 1, that(g,h)∪ (i, j)
is a frequent string. Therefore, the problem of finding fre-
quent strings is at least as hard as that of finding frequent
subpaths.

Surely, an Apriori-type algorithm may be implemented
to find all frequent strings, but, interestingly, no improve-
ment in efficiency over Apriori (as in AFS) can be ex-
pected because, as we’ll see momentarily, the problem of
finding frequent itemsets is equivalent to that of finding
frequent strings. Firstly, we’ll reduce the first problem to
the second in time linear in the size of the input.

Let D be a database of transactions, each transaction
T being a subset of the set of all itemsJ . Let G be the
complete graph on the set of verticesV = J . Represent
each transactionT ∈ D, whereT = {i1, i2, . . . , ik}, by the
path PT = (i i , i2, . . . , ik), the items inT being in lexico-
graphic order. It may be seen that, given the set of paths
P = {PT : T ∈ D}, the set of frequent strings corresponds
exactly to the set of frequent itemsets for the databaseD,
which completes the reduction claimed and proves that
finding frequent strings is at least as hard as finding fre-
quent itemsets.

rice

eggs

milk
soap

beer

Figure 3: The database of two transactions{beer, eggs, milk, soap} and
{eggs, milk, rice, soap} over the set of itemsJ = {beer, eggs, milk, rice,
soap} is represented by two corresponding paths in the complete graph
on J .

E.g., for the database of Figure 3, ifmin sup= 2,
then the one maximal frequent itemset is{eggs, milk,
soap} and the corresponding one maximal frequent string
is (eggs, milk)∪ (soap).

CRPIT Vol 101 AusDM'09

Page 14

We’ll omit details here of the reduction in the opposite
direction. The equivalence of the two problems means that
there is no hope of leveraging the graph structure to find
a more efficient variation of Apriori to determine frequent
strings. However, this should not be an issue in practi-
cal applications where it is enough to simply identify the
congested subpaths.

3 CONCLUSIONS

We have developed the AFS algorithm to find frequent
subpaths which, though derived from Apriori, exploits the
underlying graph structure for a gain in efficiency that
makes it applicable to practical input sizes for this particu-
lar problem. We believe that similar improvements may be
found for related problems, e.g., finding frequent subtrees
of a collection of trees.

The development of a general framework in which to
place the problem of finding frequent substructures of a
collection of structures belonging to a family with certain
given inheritance properties would be significant as well.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining associ-
ation rules. InVLDB’94, Proceedings of 20th International Con-
ference on Very Large Data Bases, pages 487–499.

Chen, M. S., Park, J. S., and Yu, P. S. (1998). Efficient data mining
for path traversal patterns.IEEE Transactions on Knowledge and
Data Engineering, 10:209–221.

Coffman Jr., E. G. and Eve, J. (1970). File structures using hashing
functions.Communications of the ACM, 13:427–432.

Cook, D. J. and Holder, L. B. (2006).Mining Graph Data. Wiley Inter-
science.

Fredkin, E. (1960). Trie memory.Communications of the ACM, 3:490–
499.

Gudes, E. and Pertsev, A. (2005). Mining module for adaptivexml path
indexing. InProceedings of the 16th International Workshop on
Database and Expert Systems Applications, pages 1015–1019.

Han, J. and Kamber, M. (2005).Data Mining Concepts and Techniques,
2nd Ed.Morgan Kaufmann.

Inokuchi, A., Washio, T., and Motoda, H. (2000). An apriori-based algo-
rithm for mining frequent substructures from graph data. InPro-
ceedings of the 4th European Conference on Principles of Data
Mining and Knowledge Discovery (Lecture Notes In Computer
Science, Vol. 1910), pages 12–23.

Kuramochi, M. and Karypis, G. (2001). Frequent subgraph discovery. In
Proceedings of the 2001 IEEE International Conference on Data
Mining, pages 313–320.

Vanetik, N., Gudes, E., and Shimony, S. E. (2002). Computingfrequent
graph patterns from semistructured data. InProceedings of the
2002 IEEE International Conference on Data Mining, pages 458–
465.

Yan, X. and Han, J. (2002). gspan: Graph-based substructurepattern
mining. In Proceedings of the 2001 IEEE International Confer-
ence on Data Mining, pages 721–724.

Proc. of the 8th Australasian Data Mining Conference (AusDM'09)

Page 15

