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Abstract

Grid services often consist of remote sequential or
rigid parallel application executions. However, mold-
able parallel applications, linear algebra solvers for
example, are of great interest but requires dynamic
tuning which has mostly to be done interactively if
performances are needed. Thus, their grid execution
depends on a remote and transparent submission to
a possibly different batch scheduler on each site, and
means an automatic tuning of the job according to
the local load.

In this paper we study the benefits of having a
middleware able to automatically submit and reallo-
cate requests from one site to another when it is also
able to configure the services by tuning their num-
ber of processors and their walltime. In this con-
text, we evaluate the benefits of such mechanisms on
two multi-cluster Grid setups, where the platform is
either composed of several heterogeneous dedicated
clusters, or non dedicated ones. Different scenarios
are explored using simulations of real cluster traces
from different origins.

Results show that a simple method is good and
often the best. Indeed, it is faster and thus can take
more jobs into account while having a small execution
time. Moreover, users can expect more jobs finishing
sooner and a gain on the average job response time
between 10% and 40% in most cases if this realloca-
tion mechanism combined to auto-tuning capabilities
is implemented in a Grid framework. The implemen-
tation and the maintenance of this heuristic coupled
to the migration mechanism in a Grid middleware is
also simpler because less transfers are involved.

Keywords: batch schedulers; computational grids;
meta-schedulers; moldable tasks; reallocation

1 Introduction

In order to meet the evergrowing needs in computing
capabilities of scientists of all horizons, new comput-
ing paradigms have been explored including the Grid.
The Grid is the aggregation of heterogeneous comput-
ing resources connected through high speed wide area
networks.
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Computing resources are often parallel architec-
tures managed by a local resource manager, called
batch scheduler. In such a case, the local submission
of a job requires at least a number of processors and
a walltime. The walltime is the expected execution
time for this job, given by the user or computed using
data mining techniques. In most local resource man-
agement systems, when the walltime is reached, the
job is killed, so users tend to over-evaluate the wall-
time to be sure that their job finishes its execution.
Furthermore, giving an estimation of the execution
time of a job is not an easy task and is influenced by
the number of processors, which is generally chosen
depending on external parameters such as the clus-
ter load. Errors made at the local resource level may
have a great impact on the global scheduling as shown
by Beltrán & Guzmán (2009). Errors can come from
mistakes on the walltime as well as a burst of submis-
sion as shown by Sonmez et al. (2009). Thus, having a
mechanism to accommodate bad scheduling decisions
is important.

The context of this work, described in detail
by Caniou et al. (2010b), takes place in a heteroge-
neous multi-cluster Grid connected through a high
bandwidth network: We propose a reallocation mech-
anism that takes into account scheduling errors by
moving waiting jobs between clusters. The mech-
anism we propose can be used to connect different
clusters together while each cluster keeps its local
scheduling or resource allocation policies. Each job
submitted onto the platform is executed automati-
cally without any intervention from the user.

Two reallocation algorithms are studied with two
heuristics each. We evaluate each couple (algorithm,
heuristic) by comparing them on different metrics
to an execution where reallocation is not performed.
We extend the simulations realized by Caniou et al.
(2010a) by focusing on moldable tasks instead of par-
allel rigid tasks. The middleware is able to determine
the number of processors and the walltime automat-
ically for each task. Furthermore, we study the al-
gorithms on dedicated platforms as well as non dedi-
cated platforms. We aim at showing the expectations
in terms of performance with regard to the increased
complexity of the jobs management done by the mid-
dleware. We analyze the results on different metrics,
and we show that obtained gains are very good in the
majority of the simulations we perform. Gains are
larger on dedicated platforms than on non dedicated
platforms. We show that in most cases reallocating
jobs will let jobs to finish sooner and diminish their
average response time between 10% and 40%. Fur-
thermore, results definitely confirm the counter intu-
itive fact that even for moldable jobs, whose number
of processors varies if migrated, the simplest heuris-
tic, both algorithmically and in implementation com-
plexity, is the best to use. Results presented in
this work are only for heterogeneous platforms. A



more complete analysis, with results for both homo-
geneous and heterogeneous platforms, each with dif-
ferent batch scheduler policies, is available in research
report (Caniou et al. 2010b).

The remainder of the paper is as follows. In Sec-
tion 2, we present related work. In Section 3 we
describe mechanisms and the scheduling algorithms
used in this work. Then we explain the experimental
framework in Section 4, giving information about the
simulator we developed, on the platforms simulated
with real-world traces, scenarios of experiments that
were conducted as well as the metrics on which re-
sults are compared in Section 5. Finally we conclude
in Section 6.

2 Background

Parallel applications are characterized by Feitelson
et al. (1997) as rigid, moldable or malleable. A rigid
application has a fixed number of processors. A mold-
able application can be executed with different num-
ber of processors, but once the execution started, this
number can not change. Finally, the most permissive
applications are malleable. The number of processors
used can be modified “on the fly” during execution.

Cirne & Berman (2002) use moldable jobs to im-
prove the performance in supercomputers. The user
provides the scheduler SA with a set of possible re-
quests that can be used to schedule a job. Such a
request is represented by a number of processors and
a walltime. SA chooses the request providing the ear-
liest finish time. The evaluation of SA is done using
real traces from the Parallel Workload Archive and
their results show an average improvement on the re-
sponse time of 44%, thus justifying the use of mold-
able jobs instead of rigid ones. In our work, we use the
same kind of technique to choose the number of pro-
cessors and the walltime of jobs. However, the user
does not provide any information. The middleware
is able to automatize everything thus facilitating the
user’s actions and can choose to migrate jobs from on
site to another one.

Guim & Corbalán (2008) present a study of dif-
ferent meta-scheduling policies where each task uses
its own meta-scheduler to be mapped on a parallel
resource. Once submitted, a task is managed by the
local scheduler and is never reallocated. In order to
take advantage of the multi-site environment consid-
ered in our work, we use a central meta-scheduler to
select a cluster for each incoming task because we
place ourselves in the GridRPC context where clients
do not know the computing resources. Also, once a
task is submitted to the local scheduler, our approach
let us cancel it and resubmit it elsewhere.

Yue (2004) presents the Grid-Backfilling. Each
cluster sends a snapshot of its state to a central sched-
uler at fixed intervals. Then the central scheduler
tries to back-fill jobs in the queue of other clusters.
The computation done by the central scheduler is
enormous since it works with the Gantt chart of all
sites. All clusters are homogeneous in power and size.
In our work, the central scheduler is called upon ar-
rival of each job in order to balance the load among
clusters. During the reallocation phase, it gathers
the list of all the waiting tasks and asks the local
schedulers when a job would complete, but it does
not perform complex computations. Furthermore, in
our work, clusters are heterogeneous in size and power
and we consider moldable jobs.

Huang et al. (2009) present a study of the benefits
of using moldable jobs in an heterogeneous computa-
tional grid. In this paper, the authors show that using
a Grid meta-scheduler to choose on which site to ex-
ecute a job coupled with local resource management

schedulers able to cope with the moldability of jobs
improves the average response time. In our work, in-
stead of letting the local schedulers decide of the num-
ber of processors for a job, we keep existing infras-
tructure and software and we add a middleware layer
that takes the moldability into account. Thus, our
architecture can be deployed in existing Grids with-
out modifications of the existing. Furthermore, this
middleware layer renders reallocation between sites
possible.

3 Task Reallocation

In this section, we describe the proposed tasks real-
location mechanism. First, we present the architec-
ture of the Grid middleware (Section 3.1). Then we
present the different algorithms used for the tasks re-
allocation (Section 3.2).

3.1 Architecture of the Middleware

Caniou et al. (2010b) describe the architecture that
we use in this work. It is very close to the
GridRPC (Seymour et al. 2004) standard from the
Open Grid Forum1. Thus it can be implemented in
GridRPC compliant middleware such as Diet (Caron
& Desprez 2006) or Ninf (Sato et al. 1997). Because
such a middleware is deployed on existing resources
and has limited possibilities of action on the local
resource managers, we developed a mechanism that
only uses simple queries such as submission, cancel-
lation, and estimation of the completion time.

The architecture relies on three main components:
the client has computing requests to execute, and
contacts an agent in order to obtain the reference of
a server able to process the request. In our proposed
architecture, one server is deployed on the front-end
of each parallel resource, in which case it is in charge
of interacting with the batch scheduler to perform the
submission, cancellation or estimation of the comple-
tion date of a job. The server is also in charge of
deciding how many processors should be used to exe-
cute the request, taking into account the load of the
parallel resource. Benefiting from servers estimations,
the agent maps every incoming requests using a MCT
strategy (Minimum Completion Time (Maheswaran
et al. 1999)), and decides of the reallocation with a
second scheduling heuristic.

The process of submission of a job is depicted in
Figure 1. 1) When a client wants to execute a request,
it contacts the agent. 2) The agent then contacts each
server where the service is available. 3) Each server
able to execute the request computes an estimation of
the completion time and 4) sends it back to the agent.
5) The agent sends the identity of the best server to
the client which then 6) submits its request to the
chosen server. 7) Finally, the server submits the task
to the batch scheduler of the cluster. 8) When the
agent orders a server to reallocate a task, the latter
submits it to the other server provided by the agent.

3.2 Algorithms

This section presents the algorithm used to decide of
the number of processors and walltime for each task
(Section 3.2.1), the two versions of the reallocation
mechanism (Section 3.2.2), and the scheduling heuris-
tics used for reallocation (Section 3.2.3).

1http://www.ogf.org
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Figure 1: Architecture of the middleware layer for
reallocation.

3.2.1 Tuning Parallel Jobs at Submission
Time

The choice of the number of processors and walltime
is done by the server each time a request arrives, ei-
ther for the submission of a job or for an estimation
of completion time. To determine the number of pro-
cessors to allocate to the job, the server performs sev-
eral estimations with different number of processors
and returns the best size, i.e., the one giving the ear-
liest completion time. To estimate the completion
time, the server can directly query the batch sched-
uler (but this capability is generally not present) or
have it’s own mechanism to compute the estimated
completion time by simulating the batch algorithm
for example.

The simplest idea to obtain the best size for the
job is to perform an exhaustive search: For all possi-
ble number of processors (from one to the number of
processors of the cluster), the estimation method pro-
vides a completion time as regard to the current load
of the cluster. This method is simple and will choose
the best size for jobs, however, it is time consuming.
Indeed, each estimation is not instantaneous. Thus,
for a large cluster, the estimation must be done a lot
of times and the finding of the number of processors
can require a long time.

Sudarsan & Ribbens (2010) benchmark different
sizes of the LU application from the NAS parallel
benchmarks2. Their study show a strictly increasing
speedup up to 32 processors (adding processors al-
ways decreases execution time). But after this point,
the execution time increases. It is due to the compu-
tation to communication ratio of the job becoming too
small. This kind of job is not uncommon, thus we con-
sider moldable jobs with strictly increasing speedups
until a known number of processors.

Thus, in order to improve the speed in choosing
the number of processors of a task, we can restrict
the estimation from one processor to the limit of pro-
cessors of the job. For jobs that don’t scale very well,
this will greatly reduce the number of calls to the esti-
mation method thus reducing the time needed to find
the most suitable number of processors.

Because of the hypothesis that speedup is strictly
increasing until a maximum number of processors, we
propose to perform a binary search on the number of
processors to find how many of them to allocate to
the job. Instead of estimating the completion time
for each possible number of processors, we start by

2http://www.nas.nasa.gov/Resources/Software/npb.html

estimating the time for 1 processor and for the maxi-
mum number of processors. Then, we perform a clas-
sical binary search on the number of processors. This
reduces the number of estimations from n to log2n.

In particular cases the binary search will not pro-
vide the optimal result because of the back-filling. Let
us consider an example in order to illustrate this be-
havior. Consider a cluster of 5 processors and a job
needing 7 minutes to be executed on a single proces-
sor. With a perfect parallelism, this jobs needs 3.5
minutes to run on 2 processors, 2.33 on 3, 1.75 on 4
and 1.4 on 5. Upon submission, the cluster has the
load represented by hatched rectangles in Figure 2.
First, the binary search evaluates the completion time
for the job on 1 and 5 processors (top of the figure)
and obtains completion times of 7 and 7.4 minutes
respectively. Then, the number of processors is set to
3 (middle of 1 and 5). The evaluation returns a com-
pletion time of 7.33 (bottom left of the figure). The
most promising completion time was obtained with 1
processor, thus the binary search looks between 1 and
3. Finally, the best completion for the tested values
time is obtained for 2 processors: 6.5 minutes (bot-
tom right). However, the best possible completion
time the job could have is 1.75 minutes with 4 pro-
cessors. Indeed, with 4 processors, the jobs can start
as soon as submitted, but this value was disregarded
by the binary search. During our tests to verify the
behavior of the binary search on thousands jobs, the
results were the same as the exhaustive search which
means that the “bad” cases are rare.
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Figure 2: Estimations made by the binary search.

If the maximum number of processors of a job is
large, using the binary search reduces enormously the
number of estimations to do, potentially by orders of
magnitude. For example, if a job can be executed
on 650 processors the exhaustive search performs 650
estimations of completion time and the binary search
performs only 10. The binary search in this case is
thus 65 times faster.

3.2.2 Reallocation Algorithms

The first algorithm, regular, works as follows: It
gathers the list of all jobs in the waiting queues of
all clusters; it selects a job with a scheduling heuris-
tic; if it is possible to submit the job somewhere else
with a better estimated completion time (ECT) of
at least a minute, it submits it on the other cluster
and cancels the job at its current location; finally, it
starts again with the remaining jobs. The one minute
threshold is here to consider some small data transfer
that can take place, and to diminish the number of
reallocations bringing almost no improvement.

To have a better idea of what is done, consider an
example of two batch systems with different loads (see



Figure 3). At time t, task f finishes before its wall-
time, thus releasing resources. Task j is then sched-
uled earlier by the local batch scheduler. When a re-
allocation event is triggered by the meta-scheduler at
t1, it reallocates tasks h and i to the second batch sys-
tem because their expected completion time is better
there. To reallocate the tasks, each one is sequentially
submitted to the second batch and canceled on the
first one. In this example, the two clusters are identi-
cal so the tasks have the same execution time on both
clusters, and the tuning of the parallel jobs (choice of
number of processors to allocate to task h and i) is
the same due to the same load condition. In an het-
erogeneous context, the length and even the number
of processors allocated to the tasks would change be-
tween the clusters. Note that a task starting earlier
on a cluster does not imply that it will also finish
earlier.
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Figure 3: Example of reallocation between two clus-
ters.

The second algorithm, all-cancellation, starts by
canceling all waiting jobs of all clusters. The agent
keeps a reference for all jobs. Then, it selects a job
with a scheduling heuristic. Finally, it submits the job
to the cluster giving the minimum estimated comple-
tion time and loops on each of the remaining jobs.

Note that it does not mean that all parallel jobs
will be tuned in the maximum of their performance
since platforms are not necessarily dedicated to the
Grid middleware, each cluster has its own load. It
may be better to use less resources, thus have a longer
execution time, but start earlier.

The reallocation event in both versions of the al-
gorithm is triggered periodically every hour, based
on previous works conducted by Caniou et al. (2009)
where a smaller period did not change the results but
required more network transfers and potentially more
reallocations.

Because both reallocation algorithms use an esti-
mation of the completion time, it is mandatory that
clusters use a batch scheduling algorithm able to give
some guaranty on the completion time to guaranty
the results. Feitelson et al. (2004) present the two
main algorithms offering these guaranties are First-
Come-First-Served (FCFS) and Conservative Back-
Filling (CBF). Both algorithms make reservations for
each job and jobs can never be delayed once the reser-
vation done. However, jobs can be scheduled earlier
if new resources become available. Batch schedulers
using one of these algorithms are common. Other al-
gorithms such as Easy Back-Filling (EBF) introduced
by Lifka (1995) or the well-known Shortest Job First
(SJF) presented by Feitelson et al. (1997) do not guar-
anty a completion time and thus should not be used
without adding specialized prediction mechanisms to
the servers.

3.2.3 Scheduling Heuristics for Reallocation

We focus on two heuristics to use to select a job at
each iteration. With the first one, jobs are processed
in their submission order. In the remainder of the
paper, we refer to this policy as MCT because jobs are
submitted in their original submission order and the
jobs are submitted to the cluster with the Minimum
Completion Time (MCT).

The second policy executes the MinMin heuristic
on a subset of the jobs. MinMin asks the estimated
completion time of all jobs and selects the job with
the minimum of the returned values. In this paper,
MinMin is executed on the 20 oldest jobs. We use this
limit to avoid a too long reallocation time. Indeed,
MinMin has to update the estimations of completion
times of all the remaining jobs at each iteration to
select the job with the minimum of the ECTs. Be-
cause the all-cancellation algorithm needs to resubmit
all jobs, it executes MinMin on the 20 oldest jobs and
then the remaining jobs are processed in their original
submission order, leading to a MCT policy.

We have two scheduling heuristics, MCT and Min-
Min, as well as two reallocation algorithms, namely
regular and all-cancellation. Thus, we have four cou-
ples of algorithm that we refer in the remainder of
this paper as MCT-reg, MCT-can, MinMin-reg, and
MinMin-can.

4 Experimental Framework

In this section we depict the experimental frame-
work by presenting the simulator we implemented to
run our experiments (Section 4.1), the description of
the jobs (Section 4.2), the simulated platforms (Sec-
tion 4.3), and the metrics used to compare the heuris-
tics (Section 4.4). Finally, the experiments are de-
scribed (Section 4.5).

4.1 Simulator

In order to simulate task reallocation in a distributed
environment composed of several clusters, we use
SimGrid (Casanova et al. 2008), a discrete events
simulation toolkit designed to simulate distributed
environments, and Simbatch (Caniou & Gay 2009),
a batch systems simulator built on top of SimGrid.
Simbatch, which has been tested against real life ex-
periments, can simulate the main algorithms used in
batch schedulers described by Feitelson et al. (2004).
In this study, we use the Conservative Back-Filling
(CBF) algorithm for the batch schedulers. Mu’alem
& Feitelson (2001) introduces the CBF algorithm.
It tries to find a slot in the queue (Back-filling)
where the job can fit without delaying already sched-
uled jobs (Conservative). If it does not, the job is
added at the end of the queue. CBF is available in
batch systems such as Maui (Jackson et al. 2001),
Loadleveler (Kannan et al. 2001), and OAR (Capit
et al. 2005) among others.

The simulator is divided using the same compo-
nents as the ones in the GridRPC standard intro-
duced in Section 3.1:

The client requests the system for a service execu-
tion. It contacts the meta-scheduler that will answer
with the reference of a server providing the desired
service.

The meta-scheduler matches incoming requests to
a server according to a scheduling heuristic (we use
MCT in this paper) and periodically reallocates jobs
in waiting queues on the platform using one of the
reallocation scheduling heuristic described in Sec-
tion 3.2.3.



The server is running on the front-end of a clus-
ter and interacts with the batch system. It receives
requests from the client and can submit jobs to the
batch scheduler to execute the requests. It can also
cancel a waiting job, return an estimation of the com-
pletion time of a request and return the list of jobs in
the waiting state. For submission and estimation, the
server uses an estimation function that automatically
chooses the number of processors and the walltime
of the request using the technique described in Sec-
tion 3.2.1.

4.2 Jobs

We built seven scenarios of jobs submission, where
for six of them, jobs come from traces of different
clusters on Grid’5000 for the first six months of 2008.
Table 1 gives the number of jobs per month on each
cluster. The seventh scenario is a six month long
simulation using two traces from the parallel workload
archive (CTC and SDSC) and the trace of Bordeaux
on Grid’5000. The trace from Bordeaux contains
74647 jobs, CTC has 42873 jobs and SDSC contains
15615 jobs. Thus, there is a total of 133135 jobs. In
the remainder of the paper, we refer at the different
scenarios by the name of the month of the trace for the
jobs from Grid’5000 and we refer to the jobs coming
from CTC, SDSC, and Grid’5000 as “PWA-G5K”.

Month/Cluster Bordeaux Lyon Toulouse Total

January 13084 583 488 14155
February 5822 2695 1123 9640

March 11673 8315 949 20937
April 33250 1330 1461 36041
May 6765 2179 1573 10517
June 4094 3540 1548 9182

Table 1: Number of jobs per month and in total for
each site trace.

In our simulations, we do not consider advance
reservations (present in Grid’5000 traces). They are
considered as simple submissions so the batch sched-
uler can start them when it decides to. To evalu-
ate the heuristics, we compare simulations together so
this modification does not impact the results. How-
ever, we can not compare ourselves with what hap-
pened in reality. Furthermore, note that we add a
meta-scheduler to map the jobs onto clusters at sub-
mission time, as if a grid middleware is used. On the
real platform, users submit the cluster of their choice
(usually they submit to the site closest to them) so
the simulations already diverge from reality.

The traces taken from the Parallel Workload
Archive were taken in their standard original format,
i.e., they also contain “bad” jobs described by Fei-
telson & Tsafrir (2006). We want to reproduce the
execution of jobs on clusters, so we need to keep all
the “bad” jobs removed in the clean version of the
logs because these jobs were submitted in reality.

4.2.1 Moldable Jobs

The jobs contained in the trace files are parallel
rigid jobs. So, in order to simulate the moldable
jobs, we defined 4 types of jobs using Amdahl’s law
(speedup = 1

(1−P )+ P
N

with P the fraction of parallel

code and N the number of processors). The law states
that the expected speedup of an application is strictly
increasing but the increase rate diminishes. The exe-
cution time of an application tends to the execution
time of the sequential portion of the application when
adding more processors.

To obtain the 4 types of moldable jobs, we vary
the parallel portion of the jobs that is sequential as
well as the limit of processors until the execution time
decrease. The different values for the parallel portion
of code are 0.8, 0.9, 0.99 and 0.999. Figure 4 plots
the speedups for the different values of parallel code
for different number of processors. Note that the y-
axis is log-scaled. The figure shows that there is some
point where the speedup increase becomes negligible.
For the limits, we chose to use 32, 96, 256, and 650
processors. These values were chosen in accordance
to the gain on the execution time of adding one pro-
cessor. When the gain becomes really small, chances
are that the internal communications of the job will
take most of the time and slow down the task. Fur-
thermore, the 650 limit is given by the size of the
largest cluster of our simulations. So, the 4 types of
jobs we consider are 4 couples (parallel portion, limit
of processors): t1:(0.8, 32), t2:(0.9, 96), t3:(0.99, 256)
and t4:(0.999, 650).
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Figure 4: Speedups for the Amdahl’s law for different
parallelism portions.

In the traces, there are more tasks using a small
number of processors than tasks using a lot of proces-
sors. Thus, each job from the trace files was given a
moldable type. In each simulation we present, there
are 50% of jobs of type t1, 30% of type t2, 15% of
type t3 and 5% of type t4. The type of a job is cho-
sen randomly. In order to keep a more realistic set
of jobs, we decided to keep the sequential jobs of the
traces sequential.

4.2.2 Simulating Realistic Parallel Jobs

During the simulations, the server uses information
from both the traces and the type of the job to choose
a suitable number of processors and a walltime for
the job. In order to do so, the server uses the bi-
nary search described in Section 3.2.1 to choose a
number of processors and follows the following pro-
cess to choose the walltime: First, it computes the
speedup of the job in the trace file using Amdahl’s
law, the type of the job and the number of proces-
sors: spd = amdahl(p, nt) with p the parallel portion
of the code and nt the number of processors used in
the trace file. Second, the server computes the wall-
time of the job on one processor: w1 = wnt

∗ spd.
Third, the server computes the speedup of the job for
the current number of processors chosen by the binary
search: spdb = amdahl(p, nb). Then, the server com-
putes the walltime for the job: wb = w1

spdb
. Finally,

the runtime and walltime are modified in accordance
with the speed of the cluster given in Section 4.3.1.

To obtain the actual execution time for the mold-
able jobs, we keep the same difference ratio as the



one in the trace file. Thus if the runtime of a job was
twice smaller than walltime in the trace file, it will
also be twice smaller than the walltime in the sim-
ulations, independently of the number of processors
chosen for the job.

4.3 Platform Characteristics

4.3.1 Computing Resources

We consider two sets of resources, composed of three
sites, each with a different number of cores, and man-
aged with a CBF policy.

The first set corresponds to the simulation of three
clusters of Grid’5000 (Bolze et al. 2006). The three
clusters are Bordeaux, Lyon, and Toulouse. Bordeaux
is composed of 640 cores and is the slowest cluster.
Lyon has 270 cores and is 20% faster than Bordeaux.
Finally, Toulouse has 434 cores and is 40% faster than
Bordeaux.

The second set corresponds to experiments mixing
the trace of Bordeaux from Grid’5000 and two traces
from the Parallel Workload Archive3. The three clus-
ters are Bordeaux, CTC, and SDSC. Bordeaux has
640 cores and is the slowest cluster. CTC has 430
cores and is 20% faster than Bordeaux. Finally, SDSC
has 128 cores and is 40% faster than Bordeaux.

4.3.2 Dedicated Vs. Non Dedicated

On real life sites, tasks can be either submitted by a
Grid middleware or by local users. Thus, we inves-
tigate the differences in behavior of our mechanism
depending on heuristics: on dedicated platforms,
where all tasks have been submitted through our mid-
dleware; on non dedicated platforms where two
third of the jobs issued from the traces are directly
submitted through batch schedulers by simulated lo-
cal users. Both setups will be investigated in Sec-
tions 5.1 and 5.2 for the dedicated case and for the
non dedicated platform respectively.

4.4 Evaluation Metrics

We choose the following metrics to compare the
performance of reallocation depending on platforms,
mechanisms and scheduling heuristics:

The percentage of jobs impacted by reallo-
cation is the percentage of jobs whose completion
time is changed compared to an execution without
reallocation. In this study, we are only interested by
these jobs.

We also study the number of reallocations rel-
ative to the total number of jobs. We give the
percentage of reallocations in comparison of the num-
ber of jobs. A job can be counted several times if it
migrated several times so it is theoretically possible
to have more than 100% reallocations. A small value
is better because it means less transfers.

On a user point of view, the percentage of jobs
finishing earlier with reallocation than without
is very important. This percentage is taken only from
the jobs whose completion time changed with reallo-
cation. A value higher that 50% means that there are
more jobs early than late.

Feitelson & Rudolph (1998) presents the notion
of response time. It corresponds to the duration be-
tween submission and completion. Complementary to
the previous one, the average job response time
of the jobs impacted by reallocation relatively to the
scenario without reallocation defines the average ra-
tio that the duration of a job can issue. A ratio of 0.8

3http://www.cs.huji.ac.il/labs/parallel/workload/

means that on average, jobs spent 20% less time in
the system, thus giving the results faster to the users.

Figure 5 illustrates why jobs can be delayed and
others finishing earlier onto a platform composed of
two clusters. At time 0 a reallocation event is trig-
gered. A task is reallocated from cluster 2 to cluster
1 with a greater number of processors allocated to
it according to our algorithm. Thus, some tasks of
cluster 2 are advanced in the schedule. On cluster 1,
as expected, the task is back-filled. However, assume
the task finishing at time 6 finishes at time 2 because
the walltime was wrongly defined (see the task with
the dashed line). Thus, because of the newly inserted
task, the large task on cluster 1 is delayed. Note that,
even with FCFS, reallocation can also cause delay. If
a job is sent to a cluster, all the jobs submitted after
may be delayed. Inversely, the job that was reallo-
cated to another cluster now leaves some free space
and it may be used by other jobs to diminish their
completion time.
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Figure 5: Side effects of a reallocation.

4.5 Experiment

An experiment is a tuple (reallocation algorithm,
heuristic, platform-trace, dedicated, seed) where the
seed is used to draw the type of a job in the trace, and
concerning non dedicated platform, to draw if a job is
submitted to the middleware or directly to the local
scheduler. We used 10 different random seeds, hence,
in addition to the reference experiment using MCT
without reallocation, we conducted 14+2*2*7*2*10,
i.e., 574 experiments in total.

5 Results

First, we present the results on dedicated platforms
in Section 5.1. Then, Section 5.2 contains the results
for non dedicated platforms. Finally, some concluding
remarks on the results are given in Section 5.3.

Figures in this section show the minimum, the
maximum, the median, the lower, and higher quar-
tiles and the average of the 10 runs of each experi-
ment. Concerning the figures in non dedicated plat-
forms, results only take into account the jobs submit-
ted to the Grid middleware. External jobs are not
represented in the plots.

5.1 Dedicated Platforms

In this section, clusters are heterogeneous in number
of processors and in speed (cf. Section 4.3). All re-
quests are done to our Grid middleware, thus there
are no local jobs submitted.

The percentage of jobs impacted is shown in Fig-
ure 6. In six experiments for the two traces March and
June, extreme cases were almost 100% of the jobs that



were impacted by reallocation appear. This happens
when the platform has a few phases with no job. If
there are always jobs waiting, the reallocation is able
to move jobs more often thus impacting a bigger por-
tion of the jobs. Apart from these cases, the number
of jobs impacted varies between the traces from 25
to 95%. All-cancellation algorithms usually impacts
more jobs. MinMin-can impacts more jobs on average
than the other heuristics. MCT-reg and MinMin-reg
have close results.
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Figure 6: Jobs impacted on dedicated platforms.

The number of reallocations relative to the total
number of jobs is plotted in Figure 7. All-cancellation
algorithms always produce more reallocations. The
regular algorithms give results inferior than 15% so
the number of reallocations is quite small compared
to the total number of jobs. However, with the all-
cancellation algorithms, it is possible to go to a value
as high as 50%. Because all-cancellation empties the
waiting queues, more jobs have the opportunity to be
reallocated. With the regular algorithms, jobs close
to execution have a very small chance of being real-
located. The regular version of the reallocation algo-
rithm is better on this metric.
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Figure 7: Reallocations on dedicated platforms.

Figure 8 plots the percentage of jobs early. In
this case, 3 experiments produce more jobs late than
early. In April without all-cancellation there are al-
ways more jobs late (less than 4%) when reallocation
is performed. However in most cases, it is better to
reallocate. MinMin-reg gives the worst results. It is
followed by MCT-reg, then MinMin-can and finally
MCT-can is the best with up to 64% of tasks early!

Concerning the average relative response time, the
plot in Figure 9 shows a clear improvement in most
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Figure 8: Percentage of jobs early on dedicated plat-
forms.

cases. Excluding MinMin-reg, most gains are com-
prised between 10% and 40%. On average, MCT-can
is the best heuristic. The reallocation without all-
cancellation can worsen the average response time.
It happened in 6 experiments (3 with MCT-reg and
3 with MinMin-reg). The loss is small for MCT-reg
(less than 5%) thus it is not a problem. The all-
cancellation versions are always better than their cor-
responding regular algorithm except in February for
MCT-reg. Some experiments present a gain on the
average response time while there were more jobs late
than early (MCT-reg in April for example): The gains
were high enough to compensate for the late jobs.
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Figure 9: Relative average response time on dedicated
platforms.

5.2 Non Dedicated Platforms

In this section, we present the results on non dedi-
cated platforms where 33% of the jobs executed on
the Grid platform are moldable and submitted to the
Grid middleware.

The percentage of jobs impacted by reallocation is
plotted in Figure 10. The two all-cancellation heuris-
tics impact more jobs than the regular ones, but the
difference is really small. There is one experiment
in March where MinMin-reg impacts almost all jobs:
a scheduling decision taken at the beginning of the
experiment impacts all the following job completion
dates. For a given trace, the number of impacted jobs
usually does not vary a lot.

Figure 11 plots the number of reallocations relative
to the total number of moldable jobs. The number of
reallocations is very small. In most cases, there are
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Figure 10: Jobs impacted on non dedicated platforms.

only a few dozens reallocations. The all-cancellation
algorithms always reallocates more than the regular
versions, but not by far. In a lot of cases, the number
of reallocations corresponds to less than 1% of the
number of jobs. Thus, on a non dedicated platform,
the reallocation mechanism does not produce many
transfers.
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Figure 11: Reallocations on non dedicated platforms.

Most experiments except the worst case for PWA-
G5K and March with MinMin-reg result in more than
half of the jobs early as we can see in Figure 12. The
90% jobs late in March with MinMin-reg are from
the same experiment where almost all jobs were im-
pacted in Figure 10. Most experiments exhibit a per-
centage of jobs early close to 70%. All-cancellation
again produces less jobs early than regular. MCT-reg
and MinMin-reg are the two heuristics of choice, but
MinMin-reg gives mitigate results for PWA-G5K so
MCT-reg is a better choice.

Figure 13 shows that the different heuristics give
results close to one another on the relative average re-
sponse time. All-cancellation heuristics usually have
a smaller difference between the minimum and the
maximum gains. Depending on the experiment, re-
sults vary a lot. In some experiments, the average
response time is divided by more than two, but in
other it is augmented with a maximum of 40%. How-
ever on all experiments, the average gain is positive.
Thus reallocation is expected to provide a gain.

5.3 Remarks on Results

MCT-reg and MinMin-reg usually give similar results
on non dedicated platforms, often in favor of MCT-
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Figure 12: Percentage of jobs early on non dedicated
platforms.
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Figure 13: Relative average response time on non ded-
icated platforms.

reg. On dedicated platforms however, MCT-reg is
clearly better than MinMin-reg. MinMin-reg may
give better results if it is able to take more jobs into
account during reallocation. But, if it takes more jobs
into account, its execution time grows exponentially.
Furthermore, the two algorithms with all-cancellation
also give very similar results with a small advantage
for the MCT-reg on dedicated platforms.

The all-cancellation algorithms can cause starva-
tion. In a non dedicated platform, it is obvious that
starvation can happen. Indeed, when canceling jobs,
jobs from the external load (for the Grid middleware)
will be rescheduled in front of the moldable jobs man-
aged by the middleware system. This may explain the
worst cases peaks in Figure 13. Even in a dedicated
environment with MinMin-can, it is possible for a job
to be delayed indefinitely. If the job is long, it will
always be resubmitted after others and may never
start execution. However, such cases did not happen
in our simulations because there are always phases of
low load where the queues can be emptied.

The results presented in this paper show that
the heuristic of choice is MCT with or without all-
cancellation whether the platform is dedicated or not.
Indeed, MinMin is too complex in time to react in
a decent time regarding the submission rate of jobs
onto the platform. In a previous study Caniou et al.
(2010a), we used several other selection heuristics
such as MaxMin, Sufferage, MaxGain, and MaxRel-
Gain but these heuristic did not prove better than
MCT or MinMin. Because these algorithms have the
same complexity than MinMin, we argue that they
may also give poor results, especially because of worst



cases.
In this paper, due to space constraints, we present

only results on heterogeneous platforms, since they
are the most common in real life. But results on ho-
mogeneous platforms are presented in detail in the
research report (Caniou et al. 2010b), where clusters
have different sizes, but their speed is the same. Gains
obtained by the reallocation are usually better by
a few percents on homogeneous platforms than the
one presented in this paper. The same patterns as
the ones we see in this paper emerge: on dedicated
platform, MCT-can and MinMin-can give the best re-
sults. MCT-reg produces less gains, and the worst is
MinMin-can. On non-dedicated platform, all heuris-
tics give similar results.

6 Conclusion and Perspectives

In this paper, we presented a reallocation mechanism
that can be implemented in a GridRPC middleware
and used on any multi-cluster Grid without modifying
the underlying infrastructure. Parallel jobs are tuned
by the Grid middleware each time they are submitted
to the local resource manager (which implies also each
time a job is migrated). We achieve this goal by only
querying batch schedulers with simple submission or
cancellation requests. Users ask the middleware to
execute some service and the middleware manages the
job automatically.

We have investigated two reallocations algorithms,
the key difference between them being that one, reg-
ular, cancels a task once it is sure that the expected
completion time is better on another cluster, and the
other, all-cancellation, cancels all waiting jobs before
testing reallocation. We also considered two schedul-
ing heuristics to make the decision of migrating a job
to another site. We conducted 564 experiments and
analyzed them on 4 different metrics.

On dedicated clusters, the cancellation of all the
waiting jobs proves to be very efficient to improve
the average job response time. On the other hand
in an non dedicated environment, the algorithm that
does not cancel waiting jobs behaves better. On both
platforms, surprisingly, there is not a great number
of migrating tasks, but all tasks take benefit of those
migrations since the percentage of impacted tasks is
high. In term of performances, users can expect more
jobs finishing sooner, and an improvement of the jobs
response time from a few percents to more than 50%!
Only a few cases give bad results leading to an in-
crease of the average job response time.

The next step of this work is the implementation
of the reallocation mechanism in the Diet GridRPC
middleware. Diet already provides most of the
needed features. The missing features are the can-
cellation of a job in batch schedulers (numerous are
supported) which is easy to implement and the re-
allocation mechanism itself. This last point should
be quite straightforward because all communications
are already handled by the middleware. We intend to
implement both reallocation mechanisms with MCT.
Indeed, we need the regular algorithm to work on non
dedicated platforms. We plan also to implement the
all-cancellation mechanism because Diet can be used
in a dedicated environment. Furthermore, we could
use this in the SPADES4 project where we plan to
maintain a set of reserved resources on a site which
are managed by our own embedded batch scheduler.

4ANRProject08-ANR-SEGI-025
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