
 EvoJava: A Tool for Measuring Evolving Software

Joshua Oosterman
1
, Warwick Irwin

2
, Neville Churcher

3

Department of Computer Science and Software Engineering

University of Canterbury

Private Bag 4800, Christchurch, New Zealand

jjo54@uclive.ac.nz , {warwick.irwin , neville.churcher }@canterbury.ac.nz

Abstract

This paper introduces EVOJAVA, a new tool for extracting

static software metrics from a Java source code

repository. For each version of a program, EVOJAVA

builds a comprehensive model of the semantic features

described by Java code (classes, methods, invocations,

etc), and tracks the identity of these features as they

evolve through sequential versions. This allows

traditional software metrics to be recorded over time

without losing traceability of software components, and

permits calculation of new metrics that characterise the

software evolution itself.

Keywords: Software metrics; software evolution; source

repository mining; software visualisation.

1 Introduction

Software systems are commonly too large and complex

for an individual to fully comprehend. Software product

metrics attempt to mitigate the problem by aggregating

and abstracting detail in order to expose salient

characteristics of programs. Static software product

metrics quantify aspects of programs that can be observed

in source code (or other static artefacts such as UML

diagrams). Examples include measures of size,

complexity, coupling, and so on.

Although many software metrics are proposed in the

literature, they have seen limited use in the software

development industry. Many developers remain sceptical

about their claimed benefits (Medha and Carolyn, 2008).

Further work is needed to make metrics more useful, and

new tools are needed to make measurement easier.

This paper describes EVOJAVA, a new tool that relies

on static analysis of Java source code to measure software

structure. EVOJAVA builds on earlier tools that could

measure a snapshot of source code at some point in time,

but which did not specifically support repeated

measurement of a program’s code as it evolved

(Oosterman J. and Churcher, 2010, Irwin, 2007). A

particular goal of EVOJAVA is the ability to preserve the

identity of semantic software features (classes, methods,

statements etc) across versions, despite renaming, moving

or refactoring of parts of the code.

By adding the dimension of time to our models, we

hope to enable further research that will clarify the

behaviour of metrics over time and lead to improvements

in the predictive power of metrics and ultimately increase

their usefulness for code comprehension and project

management. We would like to investigate, for example,

whether source code refactoring – which aims to improve

readability, understandability, extensibility or

performance of code without modifying its functionality

– does in fact lead to improved software quality

measurements.

The inclusion of time in our models also enables a

family of metrics that quantify aspects of software

evolution, such as the lifetime of features or their rate of

change. These evolution metrics should help to answer

questions such as whether software quality metrics can be

used to predict the likelihood that software maintenance

will later be required.

Information overload is already a challenge for

software engineers, and the inclusion of another

dimension of measurement data compounds the problem.

Visualisation techniques and software tool support are

essential for effectively communicating measurements to

developers. A visualisation prototype is included in this

paper.

The rest of the report is structured as follows:

Section 2 reviews related technologies in the literature.

Section 3 describes the design and implementation of

EVOJAVA. Section 4 presents results collected from real

world software by the tool, and related visualisations.

2 Background

2.1 Software Metrics

Among the best known metrics for Object-Oriented (OO)

programming are the Chidamber and Kemerer (CK)

metrics suite (Chidamber and Kemerer, 1994) and the

MOOD (and later MOOD2) suite (Abreu and Melo,

1996). Popular CK and MOOD metrics include Weighted

Methods per Class (WMC), Depth of Inheritance Tree

(DIT), Coupling Between Objects (CBO), and Attribute

Hiding Factor (MHF).

Many subsequent papers have addressed the CK and

MOOD suites, with particular focuses on extending the

set or validating their use (Chahal and Singh, 2009,

Nagappan et al., 2005). A criticism of these metrics (and

others), is that they are underspecified. The few industry

applications built to measure metrics differ in the way

they compute their values (Lincke et al., 2008). Even

counting the number of methods in a class is not trivial;

should inherited methods, constructors, or overloaded

methods be counted? In order to be reproducible, metrics

research must include precise specifications of metrics.

Copyright (c) 2011, Australian Computer Society, Inc.

This paper appeared at the Thirty-Fourth Australasian

Computer Science Conference (ACSC2011), Perth,

Australia. Conferences in Research and Practice in

Information Technology (CRPIT), Vol. TBA. M.

Reynolds, Ed. Reproduction for academic, not-for

profit purposes permitted provided this text is

included.

Older complexity metrics such as McCabe’s

cyclomatic complexity (McCabe, 1976) and NPATH

(Nejmeh, 1988) can be run on procedural programs or

functions, but remain applicable to OO programs. Both of

these metrics measure aspects of a program’s control flow

graph, an acyclic graph representation of the possible

control paths through a program. More nodes or paths in

this graph should indicate a higher complexity.

The type of metrics that can be calculated is limited by

the richness and completeness of the model used. This is

discussed further in Section 2.2.

2.1.1 Automatic OO Design Evaluation

Since the introduction of Object Oriented (OO)

programming, many informal OO guidelines have been

proposed to increase quality. Examples include OO

design heuristics (Riel, 1996) and Code Smells (Fowler,

1999). To varying degrees, these guidelines can be

measured with quantitative methods using software

metrics and rules. For example, the Large Class Smell

could possibly be detected by counting lines of code,

number of methods or number of instance variables. The

Acyclic Dependencies Principle could be enforced with a

topological sort algorithm. Others are impossible to

automate, such as Riel’s Model the Real World heuristic,

which requires semantic knowledge of the problem

domain.

A system called CODE CRITICK (OOSTERMAN J. AND

CHURCHER, 2010) was built in our previous work to

automate many of these rules. CRITICK evaluates Java

programs, and provides a ranked list of violations. These

metrics and rules were built on the JST semantic model

(Irwin, 2007), and can be used to quantify aspects of

quality in our software evolution research.

2.2 Static Analysis and Semantic Models

Static analysis involves the analysis of software artefacts,

such as source code. Most modern Integrated

Development Environments (IDEs) analyse source code

to provide features such as syntax highlighting, auto

completion and automated refactoring. Some compilers

such as the Java compiler also provide more complex

checking such as dead code detection. Raw source code

alone is not suitable for such complex static analysis, so it

must be processed first.

A file of source code in its simplest form is simply a

string of characters which represents some sentence in a

particular language’s grammar. A scanner and parser are

used to turn this string into a syntactic model, represented

as a syntax tree. Metrics such as cyclomatic complexity

or NPATH can be calculated from a syntax tree, but

others such as coupling and cohesion cannot.

The syntax tree, while useful, does not fully model the

high level concepts in OO source code such as packages,

classes and relationships. A semantic model of the code

can be built from the syntax trees, and this is in essence

what a compiler does. Depending on the richness and

accuracy of the semantic model, advanced analysis such

as relationship metrics and automatic design evaluations

can then occur.

We use the Java semantic model provided by JST

(Irwin, 2007). The model accurately describes the

relationships between packages, classes and methods in a

Java codebase.

2.3 Version Control Systems

The use of a Version Control System (VCS) such as

SUBVERSION
1
 or MERCURIAL

2
 is common practice in

team-based software engineering. These systems enable

multiple developers to concurrently read and modify the

same code base. The history of source code is maintained

in a repository so that developers can revert to an earlier

version at any time. Repository storage is usually highly

optimized using text compression techniques.

2.4 Source Repository Mining

As the VCS repository provides access to every past

version of the source code, it enables retrospective

analysis of the evolution of software. The process of

extracting and processing information from a repository

is known as Source Repository Mining (SRM). It has

become a significant area of research in recent years

(Robbes, 2007, Wedel et al., 2008). Two of the most

popular applications of repository mining are defect

prediction (Aversano et al., 2007, Nagappan et al., 2006),

and the characterisation of software evolution (Robles et

al., 2006). Our tool EVOJAVA builds on technology used

in both of these areas, and should subsequently allow us

to contribute back to this area, with detailed and accurate

data. When mining a repository, it is also possible to

extract the metadata about the change between each

version change, such as the time, author, or change

description (commit message). This can give information

such as the size of contributions per developer, or which

particular changes fixed a bug.

2.4.1 Defect Prediction

Defect prediction involves using software metrics to find

areas of code that are likely to contain defects or bugs.

Predictors are built in retrospect, by analysing both the

source code and historical defect information. In essence,

a predictor takes a collection of metric values from a

module and then estimates the number of defects it

contains using its internal model and past experience. In

order to build an effective predictor, the metrics must be

shown to have a strong empirical relationship to defect

rate.

Diverse metrics are used in the defect prediction

research, but they have common themes of measuring

size, quality, and complexity. Metrics from the CK suite

have been found to correlate with defect rates, as

documented in a summary of the area by (English et al.,

2009). Modules with more Lines of Code (LOC) have

been strongly correlated to higher defect rates; this is

hardly a surprising result.

A large scale study of Microsoft projects such as

INTERNET EXPLORER and DIRECTX found that other

metrics such as number of functions, fan in, cyclomatic

complexity and inheritance depth were correlated to

defect rates (Nagappan et al., 2006).

1
 http://subversion.apache.org/

2
 http://mercurial.selenic.com/

The EVOJAVA tool will enable us to collect these

metrics, to detect correlations not only against defect rate,

but refactoring and code rework.

2.4.2 Software Evolution

The other large area of SRM research is the

characterisation of software evolution, by means of

repository mining (Robles et al., 2006). For example, a

tool called SOURCERER was build and then run over 38

million lines of java code to collect many evolution

metrics (Bajracharya et al., 2009). Similarly, OHLOH
3
 is a

website which mines repositories of thousands of open

source projects to provide information about longevity of

projects, and popularity statistics for programming

languages. Although the existing work has a large

number of projects, the metrics and source code analysis

is too superficial for our analysis. These results are

perhaps suitable at project manager level, but are not fine-

grained enough to perform metrics research at the class,

method or line level.

Some researchers have focussed on designing and

implementing extensible research frameworks for

software evolution, in a similar vein to EVOJAVA. The

benefits of such frameworks are that researchers can

focus without specific questions without having to invest

significant development time on the tools. The ALITHEIA

CORE is such an extensible framework designed for

software engineering research (Gousios and Spinellis,

2009). In addition to source code repositories,

information is extracted from bug tracking systems and

email servers. This system is very heavy weight, designed

to have a distributed architecture. The KENYON

framework (Bevan et al., 2005) was designed for similar

reasons, with a focus on fact extraction, fact storage and

scalability. Both systems stored rich amounts of metadata

and integrated with multiple VCS systems. However,

they currently only support evolution measurement at a

higher level and plug-ins would need to be developed to

accurately collect our target metrics. While relevant, the

design goals for EVOJAVA are sufficiently different that

we have designed a new system.

2.5 Limitations of a VCS

EVOJAVA was designed to be a general purpose, accurate

tool for software evolution metric research. Mining from

a VCS repository, as in much previous SRM research, is

not the only option for such analysis. In fact, mining from

a VCS repository has several downfalls (Robbes, 2007).

In this section we discuss these reasons, and argue for our

choice to mine a VCS repository.

The primary shortcomings of VCS repositories are that

they are file-based and snapshot based. The term ‘file-

based’ means that version control systems store

information as files and folders the basic building blocks

in a file system. While this allows them to store a wide

range of information, it means that a significant amount

of pre-processing is required to abstract the content into

higher level semantic concepts such as classes, methods

and relationships. The term snapshot-based refers to the

granularity at which information is updated to the

3
 http://www.ohloh.net/

repository. The size of a changeset between any two

revisions can be arbitrary, and the actual number of code

level change actions such as refactorings is unknown. It is

not possible given two consecutive revisions (or

snapshots) to completely reconstruct the set of actual

actions that took place, thus data is lost.

Robbes’ proposed solution was a new technology

called a change based repository. This required an IDE

plug-in to be used, which would store semantic code level

actions in a domain specific repository, at a significantly

finer granularity. Although this approach reduced

information loss, we still argue for the use of classic VCS

repository mining in EVOJAVA for several reasons.

Previous work on static analysis has produced tools for

parsing and modelling software systems. We believe that

JST is accurate and powerful enough that the file-based

aspect of repositories is not a problem.

Also, the implemented change based repository was only

a prototype for one language (Smalltalk) and only worked

for a specific IDE. This made the assumption that all code

modification actions would occur using IDE actions,

which is not a universal reality. Real world software may

be developed using different tools or environments.

And lastly, VCS repository mining can be done after the

fact. Repository mining techniques allow us to analyse

the many existing open source projects over multiple

years of development.

3 EvoJava

3.1 Requirements

EVOJAVA was designed to meet the following

requirements:

1. Integrate with a SUBVERSION repository. The history

of code versions is the primary data source for

analysis.

2. Construct a temporal semantic model of Java

programs. Existing models such as JST describe the

static semantic concepts in software; EVOJAVA adds

a time dimension.

3. Compare consecutive models and deduce the actual

changes that occurred, without losing the identity of

software features. This is a necessary prerequisite to

building an accurate evolution model from a

snapshot based repository.

4. Provide an API that enables configurable calculation

of metrics, including traditional software metrics,

CODE CRITICK metrics and new evolution metrics.

5. Condense results into comprehensible forms using

visualisations.

System performance, in terms of memory usage and

processing time, was not a priority, due to the research

nature of this project.

3.2 System Architecture

The system was designed in a modular fashion so that it

would be extensible and could be used in future work.

The main modules of the system directly relate to each

requirement identified above: the repository integration

module, the evolution model, JSTDIFF, and the metric

framework. In this section, the system workflow,

architecture and interaction between modules are

discussed. Important modules are then explained in detail

in following sections.

The system requires two inputs items to run, the

address of a SUBVERSION repository and an XML query

file which specifies the metrics to collect. Once a run has

finished, an XML file is produced containing the results.

This workflow is that of the XML pipeline (Irwin and

Churcher, 2001) – the output could be transformed using

XSLT to XML input formats for our existing

visualisations. Thus, although the system is internally

complex, it can be viewed as a ‘black box’ for collecting

evolution data.

The internal architecture of the system is depicted in

Figure 1. The grey dotted rectangle represents the

EVOJAVA system, and the items outside of this rectangle

represent the input or output artefacts discussed above.

Figure 1: System Architecture

The repository integration module is responsible for

several tasks. When a run commences, it will query the

repository to fetch a list of version numbers, and

branches. It will then incrementally check-out a copy of

the code base at each version, allowing the rest of the

system to process one version at a time.

The evolution model is a semantic model of a Java

code base, modelling the concepts of classes, methods

and packages. It is similar to the JST, except that has the

dimension of time. The model is updated at each version

to reflect the current state of the code base, whilst still

remembering critical information from previous versions

(such as a historical list of changes).

The metric framework is responsible for querying the

evolution model to collect the metrics of interest. When

the metrics are collected depends on the category of

metric. PerRevision metrics, such as the traditional

metrics LOC and WMC are run as the model updates to

each version. Evolution metrics are those run only at the

end of processing, such as the Lifespan or

ModificationRate of a java method.

JSTDIFF is the last module of the system. JSTDIFF

uses a set of algorithms and heuristics to determine the

semantic changes that have occurred between two

consecutive code versions. At each version, it used to

calculate the semantic diff, which is used to update the

evolution model, whilst still preserving identity to

modified classes, methods and packages.

The JST is still the backbone to the system. It is richer

that the evolution model so it is used by many of the

PerRevision metrics. It is also used to parse each version

of the code base, and build the semantic model required

by JSTDIFF.

3.3 Subversion Integration
The EVOJAVA system interacts with a SUBVERSION

repository in order to extract data. We chose to support

SUBVERSION for the following several reasons. Firstly,

SUBVERSION is centralised, so history of versions is

stored on a single server. It would be harder to mine a

distributed system as there can be no identifiable ’canon’

repository. Secondly, SUBVERSION is one of the most

popular systems, used by open source giants such as the

Apache Software Foundation
4
, and GCC

5
. Finally, the

University of Canterbury Software Engineering

department uses SUBVERSION. This allows us to mine our

own projects, and apply context to the collected data.

Although we currently only support SUBVERSION,

generalising EVOJAVA at a later time should not prove

difficult.

An open source, pure Java SUBVERSION library called

SVNKIT was used in EVOJAVA as it provides an API for

all of the tasks required.

Unfortunately, the code history is complicated by

branching and merging in the repository. SUBVERSION

allows you to create a branch, which is a clone of the

entire code base, with its own parallel history. Typically

this is used in order to create an unstable feature branch,

or a stable release branch, which can be modified without

affecting the main branch, usually known as trunk. The

opposite, applying the changes from the history on one

branch to another branch, is known as merging. Due to

branching and merging, there may be many parallel

histories for any code object, and not a single linear

history.

Figure 2: SVN Branching

EVOJAVA addresses this problem by automatically

finding the logical path through the version tree from a

user-specified endpoint of interest. It will backtrack

through the tree, finding the branching revisions, and

locate the logical origin of the code. Figure 2 depicts a

nonlinear history, and the path of revisions used for

analysis, given the endpoint Release2.0. Until recently,

4
 http://www.apache.org/

5
 http://gcc.gnu.org/

SUBVERSION would not keep record of merges in the

repository. Consequently, when a set of changes from a

branch is merged back into the trunk it will appear to

EVOJAVA as a single large set of changes. This is

largely unavoidable.

3.4 Evolution Model
The evolution model is effectively a lightweight

version of the JST which models containment

relationships between Java feature nodes such as

packages, classes, interfaces and methods. However, each

node in the model stores evolution information such as

creation and deletion revisions as well as a history of

changes. It does not aim to fully replace the rich JST

model, but rather augment it with the time dimension.

Both JST and the evolution model are queried in the

same fashion. The metrics are able to visit the models

using the Visitor design pattern [GoF]. This allows the

metrics to touch the nodes of interest, and then call their

methods to collect data.

Each node in evolution model supports the concept of

identity, even if its name or content changes drastically

throughout its lifespan. Nodes are recognized using a

unique id, built from the fully qualified Java name at the

first version it appeared in.

3.5 JSTDiff

JSTDIFF is perhaps the most complex module in

EVOJAVA. Its purpose is to determine the semantic

changes that have occurred between two consecutive

code versions. It is based on the existing UMLDIFF

system, which required a custom semantic model, rather

than the JST.

It is important to distinguish a semantic diff from a

text diff. A text diff is produced by the VCS to display

the text-level changes that have occurred between two

versions, in terms of line and file additions and removals.

The text diff fails to capture higher level Java semantic

concepts. What is identified as a line addition in a text

diff, could semantically actually be the addition of a field

to a class, or statement to a method body.

JSTDIFF works by walking two JST models

simultaneously, comparing the ‘before’ and ‘after’ nodes.

The difficult part is determining which nodes in each are

actually the same, despite having been renamed or

modified between versions. When matching nodes,

JSTDIFF matches nodes with the following priorities:

1. Completely Identical

2. Different, but have the same name
6
. This corresponds

to a Modified change.

3. Structurally Similar, different name. This

corresponds to a Renamed change.

4. Unresolved. The remaining nodes are marked as

additions and deletions.

Several similarity heuristics are used to determine

matches. Priorities 1 and 2 use a simple text similarity

heuristic to determine name similarity.

6
 For example, it is a very unlikely a class is deleted and

another is added immediately with the same name.

Priority 3 uses two heuristics. The first one is the

percentage of identical or nearly identical lines in text

body. The other one compares the similarity of the

relationship sets of the two nodes. The set includes object

names, and their relationship type to the node, such as

containment, invocation, declaration, dependency etc.

The maximum value from these two heuristics is used, for

stability against different types of changes.

Once two nodes are matched, the actual changes are

determined by comparing the attributes on the before and

after node. The changes are combined into a tree model,

which is then applied to the evolution model.

3.6 Metrics
Different categories of metrics can be collected using

the metric framework in EVOJAVA.

The first category is the PerRevision metrics. These

metrics run only on a snapshot, and don’t account for

evolution themselves. However, as they are run on each

version, they can be used to describe evolution. The CK

and MOOD OO metrics, as well as the CODE CRITICK

system, are all PerRevision metrics.

The second category is the Evolution metrics, which

utilise the EVOJAVA evolution model. Evolution metrics

tell you something about the life span of an object, such

as how frequently it was modified.

The last category is Repository metrics. These are

enabled in EVOJAVA through the SVNKIT API, and could

include metrics such as commit frequency and developer

contribution size.

4 Results
We have used the EVOJAVA tool to gather data from

the repositories of real world software projects. In this

section we discuss the preliminary findings, to

demonstrate the power and utility of the EVOJAVA tool.

At the University of Canterbury, 3
rd

 year students can

elect to take a year-long course, in which they must

develop a large scale, real-world software project. The

class usually consists of about 6 teams, each containing 6

students. We chose to use the 2010 student projects as a

pilot study for our tool, for several reasons:

 The Scale of the projects is suitable for a pilot study.

Most have between 200-500 revisions, and about

5,000 LOC.

 The teams are building individual projects, but to

solve the same problem. This allows comparisons

between repositories.

 Feedback on the development habits of students is

useful for the department.

 The developers of the project are easily accessible,

which is of mutual benefit to us and the students.

Students are interested in the data collected by our

tool, and in return we are able to query them about

any irregularities in the data collected, to evaluate the

tool and refine it.

As mentioned previously, EVOJAVA fits into the

XML pipeline. XSLT transformations have been written

to transform the XML output into CSV files, which were

then graphed using Excel for this report.

0

5000

10000

15000

20000

0 100 200 300 400 500 600

Code Revision

Total LOC over Time

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

Code Revision

Mean WMC, RFC values over Time

wmc

rfc

4.1 Evolution Overview

Traditional ‘static’ metrics such as LOC, and the CK

suite, can be run automatically on each previous version

of the code. This is one of the features of EVOJAVA.

Figure 3 displays the total LOC of a group’s project, over

the first 550 revisions. Unsurprisingly, the graph is

gradually trending upward, eventually reaching about

15,000. Gathering this data is a trivial task, but it is

critical for deeper analysis, thus EVOJAVA is able to

collect it. Graphs of this sort are common in both the

literature and existing tools such as OHLOH.

Figure 4 shows some more detailed information.

Weighted Methods per Class (WMC) and Response for

Class (RFC) are two metrics in the CK OO Suite. These

metrics must be measured on a per-class basis, and

require a strong semantic model, such as the JST. This

graph shows that on average, the number of methods per

class, and the number of methods called per method, are

both increasing over time.

4.2 Code Critick

The CODE CRITICK System developed in our previous

work is now part of the EVOJAVA system, so we are able

to characterise software evolution in regards to OO

design.

CRITICK returns a ranked list of Violations to OO design

rules and heuristics, which are implemented using various

metrics and algorithms. Figure 6 displays the quantity of

violations found against several CRITICK rules, over a

project’s lifetime. Note that this graph is normalised for

project size, and the Y axis represents violations per

1,000 lines of code.

The presence of violations is common, and largely

unavoidable, due to the nature of conflicting forces in OO

design. Encapsulation related rules can also be very

conflicting, and tend to make up the majority of

violations found in student systems. For this graph,

several rules were removed.

The results for the first few revisions are bound to be

noisy due to the small, volatile nature of a project at this

point.

The overall violation trends for other groups’ projects

were quite different to the one depicted above. In

particular, another group frequently broke the

LargeClassSmell and LongParameterListSmell, rules, but

had no SwitchStatementSmells at all.

4.3 Change Metrics
The results discussed so far only measure software

metrics against individual snapshots.

The real power of the EVOJAVA system is that it

contains an evolution model, and preserves the identity of

semantic elements (such as classes, methods, and

packages) between versions, for a richer evolution

analysis.

In addition to tracking semantic elements, between

versions, the JSTDIFF subsystem of EVOJAVA serves to

characterise the actual semantic changes that occur during

an elements lifetime. Figure 5 shows the number of each

detected type of semantic change, over the lifespan of a

group’s project. The revisions have been grouped into 5

100 revision buckets, and the quantity of each change

type is shown as a bar.

Figure 3: LOC over Time

Figure 4: WMC, RFC over Time

0

5

10

15

20

25

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

V
io

la
ti

o
n

s
p

e
r

1
,0

0
0

LO
C

Code Revision

CodeCritick violations over Time

SwitchStatementSmell

MinimiseNumberOfMessages

MinimiseClassCollaborations

LongParameterListSmell

LongMethodSmell

LargeClassSmell

CommandQuerySeparation

ClassDependentOnUsers

AvoidVerbClasses

AllBaseClassesAbstract

AllAbstractClassesBase

AcyclicDependencies

In the first and last buckets, the primary type change

operation identified is MethodAdded. The change type

MethodsBodyChanged is detected when one or more lines

of code in the method have been added, removed, or

modified, as detected by a SVN textual diff.

MethodsSignatureChanged is detected when the name,

visibility, return type or parameters of a method are

changed. These change types are two of the most

common in each bucket, as can be seen by the red and

green bars in the graph.

In all buckets, the number of methods added

outweighs the methods deleted, and the same is true for

classes added and classes deleted. This is sensibly linked

to Figure 3, where we see a steady increase in LOC for

the same project.

In the last bucket, there were significantly more

methods added and deleted. This suggests that significant

code rework occurred at this point in development. This

likely explains the apparent dip in RFC displayed

between on Figure 4, during the same revision period.

Another interesting point is that throughout the entire

lifespan of the project, relatively few rename operations

were detected.

4.4 The Interactive heat map Visualisation

Although overview aggregate measures are useful for

characterising software evolution, EVOJAVA is able to

measure metrics, and track elements at a much finer

granularity. Displaying this amount of information

presents information overload issues, which need to be

addressed. The interactive heat map, as depicted in Figure

7, is able to display such detailed information in a

compact space. It is loosely based on CVSCAN (VOINEA

ET AL., 2005).

Each row in the display represents an element in the

system, depending on the selected granularity (in this

case, each row is a method). Each column in the display

represents a revision of the code, as extracted from

Subversion. The shaded (non-white) cells in a row

represent the versions that the particular element was

present in. For example, in the first revision 3 methods

0

100

200

300

400

500

600

700

800

0-100 101-200 201-300 301-400 401-500

C
o

u
n

t

Code Revision (Buckets)

Semantic Change Operations over Time

MethodsAdded

MethodsBodyChanged

MethodsSignatureChanged

MethodsRenamed

MethodsDeleted

ClassesAdded

ClassesRenamed

ClassesDeleted

Figure 6: CodeCritick over Time

Figure 5: Change Types over Time

were present. Several revisions later, 11 further methods

were added.

The actual colour of each shaded cell represents the

heat, or relative metric value, of that element at that

particular version. For example, this heat map is shading

cells based on the CyclomaticComplexity metric. The row

marked 1 represents a method that has is theoretically

quite complex. The method shown as the row marked 2

was mildly complex when it was added, but was modified

several times subsequently to become more complex.

The heat map is interactive, as it allows users to select

any cell in the display to view more information.

Selecting a cell will display all of the available metric

values for the selected element (row) at the selected

version (column) in a text box at the top right.

If available, the source code is retrieved and displayed

in a textbox to the bottom right.

4.5 Performance Considerations

As mentioned previously, EVOJAVA is primarily a

research tool, correctness was valued ahead of system

performance, and thus it was only identified as a

secondary goal.

For a project with 200 revisions, and 5,000LOC,

analysis took under 20 minutes on a modern desktop

computer (2.8Ghz Quad-core, with 4GB DDR3 RAM).

The same computer processed a 600 revision, 15,000LOC

project in just under 3 hours.

The memory footprint of the system is low, as it

processes versions incrementally, rather than in parallel.

This allows analysis to occur comfortably on a regular

desktop computer.

4.6 Future Work

The EVOJAVA system will be extended in our future work

to accommodate these features:

1. Extension of JSTDIFF to detect of composite

semantic change operations, such as refactorings.

2. Performance enhancements to the underlying JST

model, for faster analysis

3. Potential integration with our Process Metrics plug-

ins, to collect code change information at an even

finer level.

In addition to these tool features, the system will be used

for more in-depth software evolution analysis.

5 Conclusion

We have presented EVOJAVA, a new tool for extracting

static software metrics from a Java source code

repository. For each version of a program, EVOJAVA

builds a comprehensive model of the semantic features

described by Java code (classes, methods, invocations,

etc), and tracks the identity of these features as they

evolve through versions, using the novel JSTDIFF system.

We presented and discussed results collected from real

world software projects, developed by student teams at

the University of Canterbury. Traditional metrics, OO

design metrics, and change metrics were all collected

with the tool and discussed.

Finally, we presented a software evolution

visualisation called the interactive heat map, and mention

our future directions.

6 References

Abreu, F. B. E. & Melo, W. (1996): Evaluating the

Impact of Object-Oriented Design on Software

Quality. METRICS '96: Proceedings of the 3rd

International Symposium on Software Metrics.

Washington, DC, USA: IEEE Computer Society.

Aversano, L., Cerulo, L. & Del Grosso, C. (2007):

Learning from bug-introducing changes to

prevent fault prone code. IWPSE '07: Ninth

Figure 7: The Interactive heat map

international workshop on Principles of

software evolution. Dubrovnik, Croatia: ACM.

Bajracharya, S., Ossher, J. & Cristina Lopes (2009):

Sourcerer: An internet-scale software repository.

SUITE '09: Proceedings of the 2009 ICSE

Workshop on Search-Driven Development-

Users, Infrastructure, Tools and Evaluation.

Washington, DC, USA: IEEE Computer Society.

Bevan, J., Whitehead, E. J. J., Kim, S. & Godfrey, M.

(Year): Facilitating software evolution research

with kenyon. In: ESEC/FSE-13: Proceedings of

the 10th European software engineering

conference held jointly with 13th ACM

SIGSOFT international symposium on

Foundations of software engineering, 2005

Lisbon, Portugal. ACM, 177-186.

Chahal, K. K. & Singh, H. (2009): Metrics to study

symptoms of bad software designs. SIGSOFT

Softw. Eng. Notes, 34, 1-4.

Chidamber, S. R. & Kemerer, C. F. (1994): A Metrics

Suite for Object Oriented Design. IEEE Trans.

Softw. Eng., 20, 476-493.

English, M., Exton, C., Rigon, I. & Cleary, B. (2009):

Fault detection and prediction in an open-source

software project. PROMISE '09: Proceedings of

the 5th International Conference on Predictor

Models in Software Engineering. Vancouver,

British Columbia, Canada: ACM.

Fowler, M. (1999): Refactoring: Improving the Design of

Existing Code, Boston, MA, USA, Addison-

Wesley Longman Publishing Co., Inc.

Gousios, G. & Spinellis, D. (2009): Alitheia Core: An

extensible software quality monitoring platform.

ICSE '09: Proceedings of the 31st International

Conference on Software Engineering.

Washington, DC, USA: IEEE Computer Society.

Irwin, W. (2007): Understanding and Improving Object-

Orientated Software Through Static Software

Analysis.

Irwin, W. & Churcher, N. (Year): XML in the

visualisation pipeline. In, 2001. 67.

Lincke, R. U., Lundberg, J. & L\"Owe, W. (2008):

Comparing software metrics tools. ISSTA '08:

Proceedings of the 2008 international

symposium on Software testing and analysis.

Seattle, WA, USA: ACM.

Mccabe, T. J. (1976): A complexity measure. ICSE '76:

Proceedings of the 2nd international conference

on Software engineering. San Francisco,

California, United States: IEEE Computer

Society Press.

Medha, U. & Carolyn, S. (2008): Why do programmers

avoid metrics? Proceedings of the Second ACM-

IEEE international symposium on Empirical

software engineering and measurement.

Kaiserslautern, Germany: ACM.

Nagappan, N., Ball, T. & Zeller, A. (2006): Mining

metrics to predict component failures. ICSE '06:

Proceedings of the 28th international conference

on Software engineering. Shanghai, China:

ACM.

Nagappan, N., Williams, L., Vouk, M. & Osborne, J.

(2005): Early estimation of software quality

using in-process testing metrics: a controlled

case study. 3-WoSQ: Proceedings of the third

workshop on Software quality. St. Louis,

Missouri: ACM.

Nejmeh, B. A. (1988): NPATH: a measure of execution

path complexity and its applications. Commun.

ACM, 31, 188-200.

Oosterman J., I. W. & Churcher, N. (2010): Code Critick:

Using Metrics to Inform Design. ASWEC '10.

University of Canterbury, Christchurch, New

Zealand.

Riel, A. J. (1996): Object-Oriented Design Heuristics,

Boston, MA, USA, Addison-Wesley Longman

Publishing Co., Inc.

Robbes, R. (2007): Mining a Change-Based Software

Repository. MSR '07: Proceedings of the Fourth

International Workshop on Mining Software

Repositories. Washington, DC, USA: IEEE

Computer Society.

Robles, G., Gonzalez-Barahona, J. M., Michlmayr, M. &

Amor, J. J. (2006): Mining large software

compilations over time: another perspective of

software evolution. MSR '06: Proceedings of the

2006 international workshop on Mining

software repositories. Shanghai, China: ACM.

Voinea, L., Telea, A. & Van Wijk, J. J. (2005): CVSscan:

visualization of code evolution. SoftVis '05:

Proceedings of the 2005 ACM symposium on

Software visualization. St. Louis, Missouri:

ACM.

Wedel, M., Jensen, U. & G\"Ohner, P. (2008): Mining

software code repositories and bug databases

using survival analysis models. ESEM '08:

Proceedings of the Second ACM-IEEE

international symposium on Empirical software

engineering and measurement. Kaiserslautern,

Germany: ACM.

