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Abstract 

This paper introduces EVOJAVA, a new tool for extracting 

static software metrics from a Java source code 

repository.  For each version of a program, EVOJAVA 

builds a comprehensive model of the semantic features 

described by Java code (classes, methods, invocations, 

etc), and tracks the identity of these features as they 

evolve through sequential versions. This allows 

traditional software metrics to be recorded over time 

without losing traceability of software components, and 

permits calculation of new metrics that characterise the 

software evolution itself. 

Keywords:  Software metrics; software evolution; source 

repository mining; software visualisation. 

1 Introduction 

Software systems are commonly too large and complex 

for an individual to fully comprehend. Software product 

metrics attempt to mitigate the problem by aggregating 

and abstracting detail in order to expose salient 

characteristics of programs. Static software product 

metrics quantify aspects of programs that can be observed 

in source code (or other static artefacts such as UML 

diagrams).  Examples include measures of size, 

complexity, coupling, and so on. 

Although many software metrics are proposed in the 

literature, they have seen limited use in the software 

development industry. Many developers remain sceptical 

about their claimed benefits (Medha and Carolyn, 2008).  

Further work is needed to make metrics more useful, and 

new tools are needed to make measurement easier. 

This paper describes EVOJAVA, a new tool that relies 

on static analysis of Java source code to measure software 

structure. EVOJAVA builds on earlier tools that could 

measure a snapshot of source code at some point in time, 

but which did not specifically support repeated 

measurement of a program’s code as it evolved 

(Oosterman J. and Churcher, 2010, Irwin, 2007). A 

particular goal of EVOJAVA is the ability to preserve the 

identity of semantic software features (classes, methods, 

statements etc) across versions, despite renaming, moving 

or refactoring of parts of the code. 

By adding the dimension of time to our models, we 

hope to enable further research that will clarify the 

behaviour of metrics over time and lead to improvements 

in the predictive power of metrics and ultimately increase 

their usefulness for code comprehension and project 

management. We would like to investigate, for example, 

whether source code refactoring – which aims to improve 

readability, understandability, extensibility or 

performance of code without modifying its functionality 

– does in fact lead to improved software quality 

measurements. 

The inclusion of time in our models also enables a 

family of metrics that quantify aspects of software 

evolution, such as the lifetime of features or their rate of 

change. These evolution metrics should help to answer 

questions such as whether software quality metrics can be 

used to predict the likelihood that software maintenance 

will later be required. 

Information overload is already a challenge for 

software engineers, and the inclusion of another 

dimension of measurement data compounds the problem. 

Visualisation techniques and software tool support are 

essential for effectively communicating measurements to 

developers. A visualisation prototype is included in this 

paper. 

 
The rest of the report is structured as follows: 

Section 2 reviews related technologies in the literature. 

Section 3 describes the design and implementation of 

EVOJAVA.  Section 4 presents results collected from real 

world software by the tool, and related visualisations. 

2 Background 

2.1 Software Metrics 

Among the best known metrics for Object-Oriented (OO) 

programming are the Chidamber and Kemerer  (CK) 

metrics suite (Chidamber and Kemerer, 1994) and the 

MOOD (and later MOOD2) suite (Abreu and Melo, 

1996). Popular CK and MOOD metrics include Weighted 

Methods per Class (WMC), Depth of Inheritance Tree 

(DIT), Coupling Between Objects (CBO), and Attribute 

Hiding Factor (MHF). 

Many subsequent papers have addressed the CK and 

MOOD suites, with particular focuses on extending the 

set or validating their use (Chahal and Singh, 2009, 

Nagappan et al., 2005). A criticism of these metrics (and 

others), is that they are underspecified. The few industry 

applications built to measure metrics differ in the way 

they compute their values (Lincke et al., 2008). Even 

counting the number of methods in a class is not trivial; 

should inherited methods, constructors, or overloaded 

methods be counted? In order to be reproducible, metrics 

research must include precise specifications of metrics. 
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Older complexity metrics such as McCabe’s 

cyclomatic complexity (McCabe, 1976) and NPATH 

(Nejmeh, 1988) can be run on procedural programs or 

functions, but remain applicable to OO programs. Both of 

these metrics measure aspects of a program’s control flow 

graph, an acyclic graph representation of the possible 

control paths through a program. More nodes or paths in 

this graph should indicate a higher complexity. 

The type of metrics that can be calculated is limited by 

the richness and completeness of the model used. This is 

discussed further in Section 2.2. 

2.1.1 Automatic OO Design Evaluation 

Since the introduction of Object Oriented (OO) 

programming, many informal OO guidelines have been 

proposed to increase quality. Examples include OO 

design heuristics (Riel, 1996) and Code Smells (Fowler, 

1999). To varying degrees, these guidelines can be 

measured with quantitative methods using software 

metrics and rules. For example, the Large Class Smell 

could possibly be detected by counting lines of code, 

number of methods or number of instance variables. The 

Acyclic Dependencies Principle could be enforced with a 

topological sort algorithm. Others are impossible to 

automate, such as Riel’s Model the Real World heuristic, 

which requires semantic knowledge of the problem 

domain. 

A system called CODE CRITICK (OOSTERMAN J. AND 

CHURCHER, 2010) was built in our previous work to 

automate many of these rules. CRITICK evaluates Java 

programs, and provides a ranked list of violations. These 

metrics and rules were built on the JST semantic model 

(Irwin, 2007), and can be used to quantify aspects of 

quality in our software evolution research. 

2.2 Static Analysis and Semantic Models 

Static analysis involves the analysis of software artefacts, 

such as source code. Most modern Integrated 

Development Environments (IDEs) analyse source code 

to provide features such as syntax highlighting, auto 

completion and automated refactoring. Some compilers 

such as the Java compiler also provide more complex 

checking such as dead code detection. Raw source code 

alone is not suitable for such complex static analysis, so it 

must be processed first. 

A file of source code in its simplest form is simply a 

string of characters which represents some sentence in a 

particular language’s grammar. A scanner and parser are 

used to turn this string into a syntactic model, represented 

as a syntax tree. Metrics such as cyclomatic complexity 

or NPATH can be calculated from a syntax tree, but 

others such as coupling and cohesion cannot. 

The syntax tree, while useful, does not fully model the 

high level concepts in OO source code such as packages, 

classes and relationships. A semantic model of the code 

can be built from the syntax trees, and this is in essence 

what a compiler does. Depending on the richness and 

accuracy of the semantic model, advanced analysis such 

as relationship metrics and automatic design evaluations 

can then occur. 

We use the Java semantic model provided by JST 

(Irwin, 2007). The model accurately describes the 

relationships between packages, classes and methods in a 

Java codebase.  

2.3 Version Control Systems 

The use of a Version Control System (VCS) such as 

SUBVERSION
1
 or MERCURIAL

2
 is common practice in 

team-based software engineering. These systems enable 

multiple developers to concurrently read and modify the 

same code base. The history of source code is maintained 

in a repository so that developers can revert to an earlier 

version at any time. Repository storage is usually highly 

optimized using text compression techniques. 

2.4 Source Repository Mining 

As the VCS repository provides access to every past 

version of the source code, it enables retrospective 

analysis of the evolution of software. The process of 

extracting and processing information from a repository 

is known as Source Repository Mining (SRM). It has 

become a significant area of research in recent years 

(Robbes, 2007, Wedel et al., 2008). Two of the most 

popular applications of repository mining are defect 

prediction (Aversano et al., 2007, Nagappan et al., 2006), 

and the characterisation of software evolution (Robles et 

al., 2006). Our tool EVOJAVA builds on technology used 

in both of these areas, and should subsequently allow us 

to contribute back to this area, with detailed and accurate 

data. When mining a repository, it is also possible to 

extract the metadata about the change between each 

version change, such as the time, author, or change 

description (commit message). This can give information 

such as the size of contributions per developer, or which 

particular changes fixed a bug. 

2.4.1 Defect Prediction 

Defect prediction involves using software metrics to find 

areas of code that are likely to contain defects or bugs. 

Predictors are built in retrospect, by analysing both the 

source code and historical defect information. In essence, 

a predictor takes a collection of metric values from a 

module and then estimates the number of defects it 

contains using its internal model and past experience. In 

order to build an effective predictor, the metrics must be 

shown to have a strong empirical relationship to defect 

rate. 

Diverse metrics are used in the defect prediction 

research, but they have common themes of measuring 

size, quality, and complexity. Metrics from the CK suite 

have been found to correlate with defect rates, as 

documented in a summary of the area by (English et al., 

2009). Modules with more Lines of Code (LOC) have 

been strongly correlated to higher defect rates; this is 

hardly a surprising result. 

A large scale study of Microsoft projects such as 

INTERNET EXPLORER and DIRECTX found that other 

metrics such as number of functions, fan in, cyclomatic 

complexity and inheritance depth were correlated to 

defect rates (Nagappan et al., 2006). 
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The EVOJAVA tool will enable us to collect these 

metrics, to detect correlations not only against defect rate, 

but refactoring and code rework. 

2.4.2 Software Evolution 

The other large area of SRM research is the 

characterisation of software evolution, by means of 

repository mining (Robles et al., 2006). For example, a 

tool called SOURCERER was build and then run over 38 

million lines of java code to collect many evolution 

metrics (Bajracharya et al., 2009). Similarly, OHLOH
3
 is a 

website which mines repositories of thousands of open 

source projects to provide information about longevity of 

projects, and popularity statistics for programming 

languages. Although the existing work has a large 

number of projects, the metrics and source code analysis 

is too superficial for our analysis. These results are 

perhaps suitable at project manager level, but are not fine-

grained enough to perform metrics research at the class, 

method or line level. 

Some researchers have focussed on designing and 

implementing extensible research frameworks for 

software evolution, in a similar vein to EVOJAVA. The 

benefits of such frameworks are that researchers can 

focus without specific questions without having to invest 

significant development time on the tools. The ALITHEIA 

CORE is such an extensible framework designed for 

software engineering research (Gousios and Spinellis, 

2009). In addition to source code repositories, 

information is extracted from bug tracking systems and 

email servers. This system is very heavy weight, designed 

to have a distributed architecture. The KENYON 

framework (Bevan et al., 2005) was designed for similar 

reasons, with a focus on fact extraction, fact storage and 

scalability. Both systems stored rich amounts of metadata 

and integrated with multiple VCS systems. However, 

they currently only support evolution measurement at a 

higher level and plug-ins would need to be developed to 

accurately collect our target metrics. While relevant, the 

design goals for EVOJAVA are sufficiently different that 

we have designed a new system. 

2.5 Limitations of a VCS 

EVOJAVA was designed to be a general purpose, accurate 

tool for software evolution metric research. Mining from 

a VCS repository, as in much previous SRM research, is 

not the only option for such analysis. In fact, mining from 

a VCS repository has several downfalls (Robbes, 2007). 

In this section we discuss these reasons, and argue for our 

choice to mine a VCS repository. 

The primary shortcomings of VCS repositories are that 

they are file-based and snapshot based. The term ‘file-

based’ means that version control systems store 

information as files and folders the basic building blocks 

in a file system. While this allows them to store a wide 

range of information, it means that a significant amount 

of pre-processing is required to abstract the content into 

higher level semantic concepts such as classes, methods 

and relationships. The term snapshot-based refers to the 

granularity at which information is updated to the 
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repository. The size of a changeset between any two 

revisions can be arbitrary, and the actual number of code 

level change actions such as refactorings is unknown. It is 

not possible given two consecutive revisions (or 

snapshots) to completely reconstruct the set of actual 

actions that took place, thus data is lost. 

Robbes’ proposed solution was a new technology 

called a change based repository. This required an IDE 

plug-in to be used, which would store semantic code level 

actions in a domain specific repository, at a significantly 

finer granularity. Although this approach reduced 

information loss, we still argue for the use of classic VCS 

repository mining in EVOJAVA for several reasons. 

Previous work on static analysis has produced tools for 

parsing and modelling software systems. We believe that 

JST is accurate and powerful enough that the file-based 

aspect of repositories is not a problem. 

Also, the implemented change based repository was only 

a prototype for one language (Smalltalk) and only worked 

for a specific IDE. This made the assumption that all code 

modification actions would occur using IDE actions, 

which is not a universal reality. Real world software may 

be developed using different tools or environments. 

And lastly, VCS repository mining can be done after the 

fact. Repository mining techniques allow us to analyse 

the many existing open source projects over multiple 

years of development. 

3 EvoJava 

3.1 Requirements 

EVOJAVA was designed to meet the following 

requirements: 

1. Integrate with a SUBVERSION repository. The history 

of code versions is the primary data source for 

analysis. 

2. Construct a temporal semantic model of Java 

programs. Existing models such as JST describe the 

static semantic concepts in software; EVOJAVA adds 

a time dimension. 

3. Compare consecutive models and deduce the actual 

changes that occurred, without losing the identity of 

software features. This is a necessary prerequisite to 

building an accurate evolution model from a 

snapshot based repository. 

4. Provide an API that enables configurable calculation 

of metrics, including traditional software metrics, 

CODE CRITICK metrics and new evolution metrics. 

5. Condense results into comprehensible forms using 

visualisations. 

System performance, in terms of memory usage and 

processing time, was not a priority, due to the research 

nature of this project. 

3.2 System Architecture 

The system was designed in a modular fashion so that it 

would be extensible and could be used in future work. 

The main modules of the system directly relate to each 

requirement identified above: the repository integration 

module, the evolution model, JSTDIFF, and the metric 



framework. In this section, the system workflow, 

architecture and interaction between modules are 

discussed. Important modules are then explained in detail 

in following sections. 

The system requires two inputs items to run, the 

address of a SUBVERSION repository and an XML query 

file which specifies the metrics to collect. Once a run has 

finished, an XML file is produced containing the results. 

This workflow is that of the XML pipeline (Irwin and 

Churcher, 2001) – the output could be transformed using 

XSLT to XML input formats for our existing 

visualisations. Thus, although the system is internally 

complex, it can be viewed as a ‘black box’ for collecting 

evolution data. 

The internal architecture of the system is depicted in 

Figure 1. The grey dotted rectangle represents the 

EVOJAVA system, and the items outside of this rectangle 

represent the input or output artefacts discussed above.  

 

Figure 1: System Architecture 

The repository integration module is responsible for 

several tasks. When a run commences, it will query the 

repository to fetch a list of version numbers, and 

branches. It will then incrementally check-out a copy of 

the code base at each version, allowing the rest of the 

system to process one version at a time. 

The evolution model is a semantic model of a Java 

code base, modelling the concepts of classes, methods 

and packages. It is similar to the JST, except that has the 

dimension of time. The model is updated at each version 

to reflect the current state of the code base, whilst still 

remembering critical information from previous versions 

(such as a historical list of changes). 

The metric framework is responsible for querying the 

evolution model to collect the metrics of interest. When 

the metrics are collected depends on the category of 

metric. PerRevision metrics, such as the traditional 

metrics LOC and WMC are run as the model updates to 

each version. Evolution metrics are those run only at the 

end of processing, such as the Lifespan or 

ModificationRate of a java method. 

JSTDIFF is the last module of the system. JSTDIFF 

uses a set of algorithms and heuristics to determine the 

semantic changes that have occurred between two 

consecutive code versions. At each version, it used to 

calculate the semantic diff, which is used to update the 

evolution model, whilst still preserving identity to 

modified classes, methods and packages.  

The JST is still the backbone to the system. It is richer 

that the evolution model so it is used by many of the 

PerRevision metrics. It is also used to parse each version 

of the code base, and build the semantic model required 

by JSTDIFF. 

3.3 Subversion Integration 
The EVOJAVA system interacts with a SUBVERSION 

repository in order to extract data. We chose to support 

SUBVERSION for the following several reasons. Firstly, 

SUBVERSION is centralised, so history of versions is 

stored on a single server. It would be harder to mine a 

distributed system as there can be no identifiable ’canon’ 

repository. Secondly, SUBVERSION is one of the most 

popular systems, used by open source giants such as the 

Apache Software Foundation
4
, and GCC

5
. Finally, the 

University of Canterbury Software Engineering 

department uses SUBVERSION. This allows us to mine our 

own projects, and apply context to the collected data. 

Although we currently only support SUBVERSION, 

generalising EVOJAVA at a later time should not prove 

difficult. 

An open source, pure Java SUBVERSION library called 

SVNKIT was used in EVOJAVA as it provides an API for 

all of the tasks required. 

Unfortunately, the code history is complicated by 

branching and merging in the repository. SUBVERSION 

allows you to create a branch, which is a clone of the 

entire code base, with its own parallel history. Typically 

this is used in order to create an unstable feature branch, 

or a stable release branch, which can be modified without 

affecting the main branch, usually known as trunk. The 

opposite, applying the changes from the history on one 

branch to another branch, is known as merging. Due to 

branching and merging, there may be many parallel 

histories for any code object, and not a single linear 

history. 

  

 

Figure 2: SVN Branching 

EVOJAVA addresses this problem by automatically 

finding the logical path through the version tree from a 

user-specified endpoint of interest. It will backtrack 

through the tree, finding the branching revisions, and 

locate the logical origin of the code. Figure 2 depicts a 

nonlinear history, and the path of revisions used for 

analysis, given the endpoint Release2.0. Until recently, 
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SUBVERSION would not keep record of merges in the 

repository. Consequently, when a set of changes from a 

branch is merged back into the trunk it will appear to 

EVOJAVA as a single large set of changes. This is 

largely unavoidable. 

3.4 Evolution Model 
The evolution model is effectively a lightweight 

version of the JST which models containment 

relationships between Java feature nodes such as 

packages, classes, interfaces and methods. However, each 

node in the model stores evolution information such as 

creation and deletion revisions as well as a history of 

changes. It does not aim to fully replace the rich JST 

model, but rather augment it with the time dimension. 

Both JST and the evolution model are queried in the 

same fashion. The metrics are able to visit the models 

using the Visitor design pattern [GoF]. This allows the 

metrics to touch the nodes of interest, and then call their 

methods to collect data. 

Each node in evolution model supports the concept of 

identity, even if its name or content changes drastically 

throughout its lifespan. Nodes are recognized using a 

unique id, built from the fully qualified Java name at the 

first version it appeared in. 

3.5 JSTDiff 

JSTDIFF is perhaps the most complex module in 

EVOJAVA. Its purpose is to determine the semantic 

changes that have occurred between two consecutive 

code versions. It is based on the existing UMLDIFF 

system, which required a custom semantic model, rather 

than the JST. 

It is important to distinguish a semantic diff from a 

text diff. A text diff is produced by the VCS to display 

the text-level changes that have occurred between two 

versions, in terms of line and file additions and removals. 

The text diff fails to capture higher level Java semantic 

concepts. What is identified as a line addition in a text 

diff, could semantically actually be the addition of a field 

to a class, or statement to a method body. 

JSTDIFF works by walking two JST models 

simultaneously, comparing the ‘before’ and ‘after’ nodes. 

The difficult part is determining which nodes in each are 

actually the same, despite having been renamed or 

modified between versions. When matching nodes, 

JSTDIFF matches nodes with the following priorities: 

 

1. Completely Identical 

2. Different, but have the same name
6
. This corresponds 

to a Modified change. 

3. Structurally Similar, different name. This 

corresponds to a Renamed change. 

4. Unresolved. The remaining nodes are marked as 

additions and deletions. 

 

Several similarity heuristics are used to determine 

matches. Priorities 1 and 2 use a simple text similarity 

heuristic to determine name similarity. 
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 For example, it is a very unlikely a class is deleted and 

another is added immediately with the same name.  

Priority 3 uses two heuristics. The first one is the 

percentage of identical or nearly identical lines in text 

body. The other one compares the similarity of the 

relationship sets of the two nodes. The set includes object 

names, and their relationship type to the node, such as 

containment, invocation, declaration, dependency etc. 

The maximum value from these two heuristics is used, for 

stability against different types of changes. 

Once two nodes are matched, the actual changes are 

determined by comparing the attributes on the before and 

after node. The changes are combined into a tree model, 

which is then applied to the evolution model. 

3.6 Metrics 
Different categories of metrics can be collected using 

the metric framework in EVOJAVA. 

The first category is the PerRevision metrics.  These 

metrics run only on a snapshot, and don’t account for 

evolution themselves. However, as they are run on each 

version, they can be used to describe evolution. The CK 

and MOOD OO metrics, as well as the CODE CRITICK 

system, are all PerRevision metrics. 

The second category is the Evolution metrics, which 

utilise the EVOJAVA evolution model. Evolution metrics 

tell you something about the life span of an object, such 

as how frequently it was modified. 

The last category is Repository metrics. These are 

enabled in EVOJAVA through the SVNKIT API, and could 

include metrics such as commit frequency and developer 

contribution size.  

4 Results 
We have used the EVOJAVA tool to gather data from 

the repositories of real world software projects. In this 

section we discuss the preliminary findings, to 

demonstrate the power and utility of the EVOJAVA tool. 

At the University of Canterbury, 3
rd

 year students can 

elect to take a year-long course, in which they must 

develop a large scale, real-world software project. The 

class usually consists of about 6 teams, each containing 6 

students. We chose to use the 2010 student projects as a 

pilot study for our tool, for several reasons: 

 

 The Scale of the projects is suitable for a pilot study. 

Most have between 200-500 revisions, and about 

5,000 LOC. 

 The teams are building individual projects, but to 

solve the same problem. This allows comparisons 

between repositories. 

 Feedback on the development habits of students is 

useful for the department. 

 The developers of the project are easily accessible, 

which is of mutual benefit to us and the students. 

Students are interested in the data collected by our 

tool, and in return we are able to query them about 

any irregularities in the data collected, to evaluate the 

tool and refine it. 

 

As mentioned previously, EVOJAVA fits into the 

XML pipeline. XSLT transformations have been written 

to transform the XML output into CSV files, which were 

then graphed using Excel for this report. 
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4.1 Evolution Overview 

Traditional ‘static’ metrics such as LOC, and the CK 

suite, can be run automatically on each previous version 

of the code. This is one of the features of EVOJAVA. 

Figure 3 displays the total LOC of a group’s project, over 

the first 550 revisions. Unsurprisingly, the graph is 

gradually trending upward, eventually reaching about 

15,000. Gathering this data is a trivial task, but it is 

critical for deeper analysis, thus EVOJAVA is able to 

collect it. Graphs of this sort are common in both the 

literature and existing tools such as OHLOH. 

 

Figure 4 shows some more detailed information. 

Weighted Methods per Class (WMC) and Response for 

Class (RFC) are two metrics in the CK OO Suite. These 

metrics must be measured on a per-class basis, and 

require a strong semantic model, such as the JST. This 

graph shows that on average, the number of methods per 

class, and the number of methods called per method, are 

both increasing over time.  

4.2 Code Critick 

The CODE CRITICK System developed in our previous 

work is now part of the EVOJAVA system, so we are able 

to characterise software evolution in regards to OO 

design.  

CRITICK returns a ranked list of Violations to OO design 

rules and heuristics, which are implemented using various 

metrics and algorithms. Figure 6 displays the quantity of 

violations found against several CRITICK rules, over a 

project’s lifetime. Note that this graph is normalised for 

project size, and the Y axis represents violations per 

1,000 lines of code. 

The presence of violations is common, and largely 

unavoidable, due to the nature of conflicting forces in OO 

design. Encapsulation related rules can also be very 

conflicting, and tend to make up the majority of 

violations found in student systems. For this graph, 

several rules were removed. 

The results for the first few revisions are bound to be 

noisy due to the small, volatile nature of a project at this 

point.  

The overall violation trends for other groups’ projects 

were quite different to the one depicted above. In 

particular, another group frequently broke the 

LargeClassSmell and LongParameterListSmell, rules, but 

had no SwitchStatementSmells at all.   

4.3 Change Metrics 
The results discussed so far only measure software 

metrics against individual snapshots. 

The real power of the EVOJAVA system is that it 

contains an evolution model, and preserves the identity of 

semantic elements (such as classes, methods, and 

packages) between versions, for a richer evolution 

analysis. 

In addition to tracking semantic elements, between 

versions, the JSTDIFF subsystem of EVOJAVA serves to 

characterise the actual semantic changes that occur during 

an elements lifetime. Figure 5 shows the number of each 

detected type of semantic change, over the lifespan of a 

group’s project. The revisions have been grouped into 5 

100 revision buckets, and the quantity of each change 

type is shown as a bar. 

Figure 3: LOC over Time 

Figure 4: WMC, RFC over Time 
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In the first and last buckets, the primary type change 

operation identified is MethodAdded. The change type 

MethodsBodyChanged is detected when one or more lines 

of code in the method have been added, removed, or 

modified, as detected by a SVN textual diff. 

MethodsSignatureChanged is detected when the name, 

visibility, return type or parameters of a method are 

changed. These change types are two of the most 

common in each bucket, as can be seen by the red and 

green bars in the graph. 

In all buckets, the number of methods added 

outweighs the methods deleted, and the same is true for 

classes added and classes deleted. This is sensibly linked 

to Figure 3, where we see a steady increase in LOC for 

the same project. 

In the last bucket, there were significantly more 

methods added and deleted. This suggests that significant 

code rework occurred at this point in development. This 

likely explains the apparent dip in RFC displayed 

between on Figure 4, during the same revision period. 

Another interesting point is that throughout the entire 

lifespan of the project, relatively few rename operations 

were detected.  

4.4 The Interactive heat map Visualisation 

Although overview aggregate measures are useful for 

characterising software evolution, EVOJAVA is able to 

measure metrics, and track elements at a much finer 

granularity. Displaying this amount of information 

presents information overload issues, which need to be 

addressed. The interactive heat map, as depicted in Figure 

7, is able to display such detailed information in a 

compact space. It is loosely based on CVSCAN (VOINEA 

ET AL., 2005). 

Each row in the display represents an element in the 

system, depending on the selected granularity (in this 

case, each row is a method). Each column in the display 

represents a revision of the code, as extracted from 

Subversion. The shaded (non-white) cells in a row 

represent the versions that the particular element was 

present in. For example, in the first revision 3 methods 
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Figure 5: Change Types over Time 



were present. Several revisions later, 11 further methods 

were added. 

The actual colour of each shaded cell represents the 

heat, or relative metric value, of that element at that 

particular version. For example, this heat map is shading 

cells based on the CyclomaticComplexity metric. The row 

marked 1 represents a method that has is theoretically 

quite complex. The method shown as the row marked 2 

was mildly complex when it was added, but was modified 

several times subsequently to become more complex. 

The heat map is interactive, as it allows users to select 

any cell in the display to view more information. 

Selecting a cell will display all of the available metric 

values for the selected element (row) at the selected 

version (column) in a text box at the top right. 

If available, the source code is retrieved and displayed 

in a textbox to the bottom right. 

4.5 Performance Considerations 

As mentioned previously, EVOJAVA is primarily a 

research tool, correctness was valued ahead of system 

performance, and thus it was only identified as a 

secondary goal. 

For a project with 200 revisions, and 5,000LOC, 

analysis took under 20 minutes on a modern desktop 

computer (2.8Ghz Quad-core, with 4GB DDR3 RAM). 

The same computer processed a 600 revision, 15,000LOC 

project in just under 3 hours. 

The memory footprint of the system is low, as it 

processes versions incrementally, rather than in parallel. 

This allows analysis to occur comfortably on a regular 

desktop computer. 

4.6 Future Work 

The EVOJAVA system will be extended in our future work 

to accommodate these features: 

 

1. Extension of JSTDIFF to detect of composite 

semantic change operations, such as refactorings. 

2. Performance enhancements to the underlying JST 

model, for faster analysis 

3. Potential integration with our Process Metrics plug-

ins, to collect code change information at an even 

finer level. 

 

In addition to these tool features, the system will be used 

for more in-depth software evolution analysis. 

5 Conclusion 

We have presented EVOJAVA, a new tool for extracting 

static software metrics from a Java source code 

repository.  For each version of a program, EVOJAVA 

builds a comprehensive model of the semantic features 

described by Java code (classes, methods, invocations, 

etc), and tracks the identity of these features as they 

evolve through versions, using the novel JSTDIFF system. 

We presented and discussed results collected from real 

world software projects, developed by student teams at 

the University of Canterbury. Traditional metrics, OO 

design metrics, and change metrics were all collected 

with the tool and discussed. 

Finally, we presented a software evolution 

visualisation called the interactive heat map, and mention 

our future directions. 
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