
Experimental Evaluation of a Program Visualisation Tool for Use in
Computer Science Education

Kathryn Kasmarik, Joe Thurbon
School of Information Technologies

The University of Sydney 2006
Australia

kkasmari@it.usyd.edu.au, joet@it.usyd.edu.au

Abstract
This paper presents an experimental evaluation of a program
visualisation tool. Computer science students in an introductory
object oriented programming course in Java were asked to
respond to a series of questions regarding concepts common to
the writing and debugging of code at a novice level. Statistical
analysis of data collected from this experiment revealed that a
diagrammatic representation can significantly improve the
novice understanding of program code. .

Keywords: program visualisation, experimental evaluation.

1 Introduction
Representing the state of a computer program
diagrammatically is intuitively appealing. Such a
representation allows novices to ‘see’ what is happening as
their program executes. The appeal of such a system is
reflected in the range of low level program visualisation
prototypes that have been developed (Baskerville 1985,
Sangwan 1998, Norvell 2000, Sampson 2000, Evangelidis
2001).

(Baskerville 1985, Sangwan 1998 and Norvell 2000) are
visualisation systems for C/C++. (Baskervill 1985 and
Norvell 2000) are fully automated, (Sangwan 1998)
requires some preprocessing of code. (Sampson 2000)
presents a visualisation system for Java while (Evangelidis
2001) presents a system for a simple untyped teaching
language called X.

A range of other techniques for representing program
structure also exists. These include control structure
diagrams (Hendrix 2000 and Cross 1999), flow charts and
Nassie-Shneiderman diagrams (Nassi 1973). Studies such
as (Cross 1998 and Hendrix 2000) evaluate the usefulness
of these structures as an aid to improving understanding of
program code.

Experience reports exist which describe the usefulness of
some of the program visualisation tools described above in
qualitative language. However, none of the examples
discussed so far has made an empirical study of the value
of a program visualisation tool as an aid to improving

.Copyright (c)2003, Australian Computer Society, Inc.
This paper appeared at the Australasian Symposium on
Information Visualisation, Adelaide, 2003. Conferences in
Research and Practice in Information Technology, Vol 24.
Tim Pattison and Bruce Thomas, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this
text is included.

program comprehensibility. This paper addresses that gap
by developing a program visualisation tool and conducting
a usability study of the tool.

1.1 The Program Visualisation Tool
(Thurbon 2000) presents an implementation of a
diagrammatic programming system. The diagrams used to
represent a code state have the characteristics of the classic
‘box and arrow’ diagrams that might be drawn informally
to trace a code segment. An example is shown in Figure 1.

Figure 1. Diagrammatic representation of a ‘swap’
method.

A reverse implementation of this diagrammatic
programming system was performed for the purpose of
this project. The reverse implementation takes pure Java
code as input. It produces a visualisation of the execution
of the code as output. An example code fragment and
corresponding visualisation is shown in Figures 2 and 3.
This system can represent constants, declarations,
assignment, classes, arrays, constructor calls and method
calls.
public class Swap
{
 public static void main(String[] args)

{
 Integer a = new Integer(1);

 Integer b = new Integer(2);
 Integer tmp = a;
 a = b;

 b = tmp;
}

}
Figure 2. A Java program to swap the contents of two

variables.

The development of a working program visualisation tool
for the purpose of this study was considered important for
a number of reasons. Firstly, a working tool is more
realistic than a usability study of hand drawn trace
diagrams. Elements of a hand drawn trace diagram are
generally arranged to present the most readable and
aesthetically pleasing visualisation of code state. Layout

A

A

B

B

algorithms used in program visualisation tools are not able
to produce such an optimal visualisation in all cases.

Development of a working program visualisation tool also
provides the potential for its use as a teaching aid should
experimental results prove favourable. A usability study
of hand drawn diagrams would not conclusively identify a
specific tool as a beneficial teaching aid.

The tool developed for this study was also used to
investigate the application of a new layout algorithm
(Kasmarik 2001) (out of the scope of this paper) to the
program visualisation domain.

Figure 3. Trace of Swap.java

1.2 Experimental Goals
This study attempts to validate the intuitive appeal of a
software visualisation tool as an aid to understanding
program code. Specifically, it does this by answering the
following question about our diagrammatic program
representation:

• Does the diagrammatic representation improve
understanding of program functionality?

The operational hypothesis for this experiment is as
follows:

• The diagrams will have a positive effect on
program comprehensibility.

The null hypothesis is:

• The diagrams will not have a positive effect on
program comprehensibility.

2 Experimental Method

2.1 Selection of Participants
The participants in this study are computer science
students enrolled in an introductory object oriented
programming course in Java. They have limited or no
programming background, other than what they have
learnt in the course so far. Any previous programming
experience is usually in a different language such as Visual
Basic.

138 students participated in the study. The experiment
required that these students be divided into two groups. To
ensure the validity of a comparison between the results
produced by these groups, it was necessary that they be
approximately equal in terms of academic performance.
To facilitate this, the division was made based on marks
attained in the first assignment for the course. This
division is shown in Figure 4. While circumstances did
not permit the division of each mark bracket to be exactly
equal, the average mark obtained by students in different
groups differed by only 0.1. A t-test showed that this
difference is not significant at the 0.05 level.

Distribution of Marks Across Groups

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

Assignment Mark

N
um

be
r o

f S
tu

de
nt

s Without Diagrams
With Diagrams

Figure 4. Performance Balance of Groups.

2.2 Questions
The study consisted of nine questions. Each question
referred to a fragment of Java code. In order to make the
experiment realistic, the code fragments used were similar
to those used in lecture and tutorial material. The
questions addressed tasks common to the reading, writing,
debugging and testing of computer programs at a novice
level.

The questions addressed the following concepts:

• Generic code tracing (Q1)

• Object equality (Q2, Q3)

• Run-time errors (Q5)

• Data structures (Q4, Q6)

• Pass-by-reference (Q7, Q8)

• Recursion (Q9)

A majority of the questions covered concepts specifically
taught in the course the participants were completing. This
subset will be referred to as T for the remainder of this
paper. The questions relating to data structures and
recursion (Q4, Q6, Q9) were included to investigate the
impact of diagrams on the understanding of new concepts.
This subset will be referred to as T’.

The questions were designed to have a single,
unambiguous answer. In most cases they requested a
one-word answer or a true/false choice. Correctness was
decided on a ‘right or wrong’ basis. That is, a question
was either deemed correct or incorrect. A serious response
to the study was defined as one that attempted to answer all
nine questions. Responses that did not attempt to answer
all questions were disregarded.

2.3 Presentation of Questions
To facilitate accurate measurement of response times, and
to resemble as closely as possible the process of debugging
source code, the questions were presented automatically
by a computer program. Two systems were used to
present results. Each system consisted of a series of
screens containing a question, a code fragment, a text-field
or set of radio buttons and a submit button. Screens in one
of these systems also contained a diagrammatic
representation of the code fragment. An example is shown
in Figure 5. The corresponding screen in the other system
was identical other than the omission of the diagram on the
right of Figure 5. Response time was measured as the time
from when the question was displayed to when the
response was submitted.

Figure 5. Presentation of Questions.

2.4 Testing Procedure
The questions were presented to students as a tutorial
exercise. Collaboration was discouraged and distractions
and interruptions minimised. Due to the nature of a
tutorial it may not have been prevented entirely in all cases.
However it is not envisaged that these cases would impact
significantly on a statistical analysis of the results across a
group of this size.

Participants were divided into two equal groups according
to the performance balancing information in Figure 4.
Both groups were presented with source code and asked to

respond to a series of questions about its content as shown
in Figure 5. One group (the control) received only the
code, the other group received the code and corresponding
diagrams produced by the system. Before answering the
questions, both groups were given identical instructions
concerning the completion of the experimental tasks. The
group using the diagrams was given extra instructions to
introduce the basic symbols used by the system.

The independent variable for this experiment was whether
or not participants have access to the diagrams. Other
variables such as gender and English language ability were
not considered. It was assumed that the distribution of
these variables was even across both groups.

The task presented to the students was to answer each
question correctly in the shortest possible time. Response
time and correctness were thus the two dependent
variables. It was assumed that any effects of the diagrams
on program comprehensibility would be captured by these
statistics.

3 Results
There were 112 serious responses to the study. 53 were in
the group using the diagrammatic aid, henceforth referred
to as D. 59 were in the group without the aid of diagrams,
henceforth referred to as D’.

Analysis of the difference in performance of students in D
and D’ covered a number of areas. These include time,
correctness and efficiency. Analysis was done across all
questions and for the subset T defined in Section 2.2.
Analysis of the subset T' has been omitted as this subset
does not contain enough questions to draw significant
conclusions.

3.1 Time to Respond
Two time statistics were considered. These are average
total response time without regard for correctness and
average time for a correct response. These statistics have
been calculated across all questions and for the subset of
questions T.

Figure 6 graphs the average response time without regard
for correctness. The graph shows the mean response time
and the 95% confidence interval for D and D’ for each
question.

Average Response Time to Each Question

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Question Number

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

W
ith

 9
5%

 C
on

fid
en

ce

Mean without diagrams

Average Response Time to Each Question

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Question Number

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

W
ith

 9
5%

 C
on

fid
en

ce

Mean using diagrams
Figure 6. Average response time for each question.

The graph shows that the diagrams increased response
time for 5 of the 9 questions. However this increase was

only significant for Q1 and Q4 in which the confidence
intervals do not overlap. In the case of Q1, this may be
explained by the fact that this was the first question and
thus the first experience the students had with the diagrams.
As a result they studied it longer in order to become
familiar with the conventions used.

The large time difference in Q4 may be explained by the
fact that this is the first question from T’ and that the
diagram was significantly more complex than those in the
preceding questions.

The average total response time was increased by 9.6%.
However a t-test reveals that this increase is not
statistically significant at the 0.05 level. When the subset
T is considered alone, the average total response time is
increased by just 5.6% which is also insignificant at the
0.05 level.

Figure 7 graphs the average response time for correct
responses. Only Q1 and Q9 display significant time
increases as evidenced by the disjoint confidence intervals.
The difference in Q1 was explained above. The difference
in response times for Q9 should be considered in light of
the fact that it was the most complex question in the study
and there were no more than 10 correct responses by either
D or D’.

Average Time for Correct Response

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

Question Number

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

W
ith

 9
5%

 C
on

fid
en

ce

Mean using diagrams

Average Time for Correct Response

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

Question Number

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

W
ith

 9
5%

 C
on

fid
en

ce

Mean without diagrams

Figure 7. Average response time for correct answer to

each question.

The previous Figures show no significant differences in
the times taken by D and D’. Thus we cannot reject the
null hypothesis based upon the analysis so far. The next
section continues our analysis with respect to correctness.

3.2 Correctness of Responses
This section compares the percentage of correct answers
produced by students in D and D’.

Figure 8 graphs the percentage of each sample group to
achieve each mark out of 9. D is significantly higher than
D’ for Q1, the general code tracing question as evidenced
by the disjoint confidence intervals. Q7 and Q8, the two
questions covering the pass-by-reference concept show the
next most significant performance improvement as their
confidence intervals overlap only partially.

Finding the correct answer to these 3 questions involves
understanding the final state of the program after the code
fragment has executed. This is a task to which our

visualisation tool is particularly suited as it involves a
simple inspection of the final diagram from which variable
values may be obtained.

Percentage of Responses Correct

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Question Number

P
er

ce
nt

ag
e

C
or

re
ct

 in
 9

5%

C
on

fid
en

ce
 In

te
rv

al

Mean using diagrams

Percentage of Responses Correct

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

C
or

re
ct

 in
 9

5%

C
on

fid
en

ce
 In

te
rv

al

Mean without Diagrams

Figure 8. Percentage of students with correct response

for each question.

It was expected, for similar reasons, that D be higher than
D’ in Q5, which asked students to identify which variable
was causing a Java NullPointerException.
However this was not the case. This is most likely due to
the distinction that the diagrams make between a null
value, represented by a coloured box, and an ‘unknown’
value, represented by an empty box. The coloured box
may have lead students to believe that the null variable
actually had some value as this was not covered in the
initial explanatory session. This result, although
undesirable is still an interesting indication of the power of
a diagrammatic representation.

Q2, Q6 and Q9 had very low correct answer rates for both
D and D’. Q2 is in T while Q6 and Q9 are in T’. This
suggests that, regardless of whether a concept has been
taught or not, our diagrams could not improve
performance unless there was some initial understanding
of that concept.

Figure 9 shows the percentage mark distribution for D and
D’. There was a 9.5% improvement in the average mark of
students using the diagrammatic aid, however this is not
statistically significant at the 0.05 level.

Percentage of Sample With Each Mark

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9

Mark

%

Without Diagrams
With Diagrams

Figure 9. Percentage of students with each mark.

Figure 10 summarises the information presented above. It
shows a difference plot of the percentage of correct
responses in D and D’.

Difference in Percentage of Correct Responses

-35

-25

-15

-5

5

15

25

35

1 2 3 4 5 6 7 8 9

Question Number

Pe
rc

en
ta

ge
 D

iff
er

en
ce

 W
ith

 D
ia

gr
am

s

Dif ference

Upper Confidence Band

Low er Conficence Band

Figure 10. Difference plot for correctness.

Figure 10 emphasises that Q1, Q7 and Q8 display the most
significant increase in correctness. Q4 displays the most
significant decrease. The 95% confidence interval has
been included on this plot. Because this confidence
interval spans the x-axis or null-hypothesis line we
conclude that the evidence presented so far has not
rejected the null hypothesis. We now move our analysis
to the subset T.

Figure 11 graphs the mark distribution over the 6 questions
on taught material. There was an improvement of 18.2%
in the average mark of students using the diagrammatic aid.
This improvement is significant at the 0.05 level. It
continues to be significant down to the 0.01 level. This
result conclusively rejects the null hypothesis.

Percentage of Sample With Each Mark

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5 6

Mark

%

Without Diagram
With Diagram

Figure 11. Percentage of students with each mark for

questions on taught material.

Difference in Percentage of Correct Responses

-35

-25

-15

-5

5

15

25

35

1 2 3 5 7 8

Question Number

Pe
rc

en
ta

ge
 D

iff
er

en
ce

 W
ith

 D
ia

gr
am

s

Dif ference

Upper Confidence Band

Low er Confidence Band

Figure 12. Difference plot for correctness over T.

Figure 12 supports our rejection of the null hypothesis in
graphical form. It shows the relevant data points from

Figure 10 and recalculates the 95% confidence interval
which now barely spans the x-axis. The intersection that
remains is caused by the values for Q5. However the
decrease in correctness for this question is most likely due
to a lack of understanding of diagrammatic conventions
described earlier and may thus be ignored.

This section has rejected the null hypothesis by showing a
significant increase in correctness of responses over the
subset of questions pertaining to taught material. The next
section discusses this further with reference to the
efficiency with which students produce correct responses.

3.3 Participant Efficiency
We define efficiency as the number of correct answers
produced per minute for each question. Figure 13
compares the efficiency of students in D and D’ for each
question. It shows increased efficiency for Q5, Q7 and Q8,
all questions to which we believe our diagrams are
particularly well suited.

Efficiency

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 3 4 5 6 7 8 9

Question Number

Ef
fic

ie
nc

y
(#

co
rr

ec
t/m

in
)

Efficiency using
diagrams
Efficiency without
diagrams

Figure 13. Efficiency.

Figure 14 summarises the efficiency results presented
above as a difference plot. The 95% confidence interval
spans the null hypothesis. This is the case over all
questions and for the subset T shown in Figure 15. As a
result we conclude that our diagrams have not significantly
altered efficiency. We consider this in light of the fact that
the number of correct answers produced by students was
9.8% higher among those using diagrams and 18.2%
higher among those using diagrams in T. This means that
the use of our diagrammatic aid has produced a significant
increase in correctness without affecting efficiency.

Difference in Efficiency

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9

Question Number

E
ffi

ci
en

cy
 (#

co
rre

ct
/m

in
)

Difference

Upper Confidence Band

Lower Confidence Band

Figure 14. Efficiency difference.

It is also important to note that efficiency is dependent
upon time. As students become more familiar with the

diagrammatic conventions they will complete questions
more quickly. This will improve their efficiency levels.

Difference in Efficiency

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 5 7 8

Question Number

E
ffi

ci
en

cy
 (#

co
rr

ec
t/m

in
)

Difference

Upper Confidence Band

Lower Confidence Band

Figure 15. Efficiency difference over T.

4 Conclusion
A number of conclusions follow from the results presented
above. With regard to taught material, we have shown that
use of a diagrammatic aid increases correctness by 18.2%
without impacting significantly on the time required to
respond. In addition, we can expect that the time required
to answer a question would decrease as students become
more familiar with diagrammatic conventions. These facts
conclusively reject the null hypothesis and accept the
operational hypothesis that our diagrams improve code
comprehensibility.

With regard to new material, we accept the null hypothesis
that our diagrams do not improve code comprehensibility
as there was no significant change in either the time taken
to respond or the correctness of the responses.

In summary, our diagrams improved student
understanding of concepts specifically taught in the course
participants were completing. However initial instruction
is still required to provide a knowledge base for the
additional benefits of the diagrammatic representation.

5 Future Work
The data collected from this study suggests several
avenues for future work. Firstly, we have suggested that
greater familiarity with the diagrammatic conventions
would decrease the time required to use them. It would be
an interesting exercise to run a similar study with the
addition of a more substantial tutorial session for the
groups of students using the diagrammatic aid. This could
include formal instruction and a set of exercises that allow
student to experiment with the program visualisation tool.

Results have also suggested that our diagrams improve
understanding of material on some concepts more than
others. For example, the diagrams appeared particularly
effective when used as an aid to general code tracing
questions and questions relating to the pass-by-reference
concept. However, this study does not contain enough
questions on any topic to prove or disprove this claim. A
longer study, containing more questions of each type is
required for this.

Finally, the program visualisation tool developed for this
study is designed to function as a ‘graphical debugger’. A

user can load their program into the system and step
through the code line by line. Each step adds a new
diagram to the sequence of code states produced by the
program execution. In the interest of simplifying the study,
this functionality was not provided to participants. This
functionality could be included in future studies to explore
the additional benefits of such a tool.

6 References
BASKERVILLE, C. (1985): Graphic Presentation of data

structures in the dbx debugger, Technical Report
UCB/CSD 86/260 UCBerkeley.

CROSS, J., MAGHSOODLOO, S. and HENDRIX, T.
(1998): The Control Structure Diagram: An Initial
Evaluation, Empirical Software Engineering
3(2):131-156.

EVANGELIDIS, G., DAGDILELIS, V., SATRATZEMI,
M. and EFOPOULOS, V., (2001): X-Compiler: Yet
another integrated novice programming environment,
advanced learning technologies, 2001. Proceedings,
IEEE International Conference on, 2001, 166-169.

HENDRIX, D., CROSS, J. and MAGHSOODLOO, S.
(2000): An Experimental Validation of Control
Structure Diagrams, Proceedings of 11th Working
Confernece on Reverse Engineering, 2000, 224-240.

KASMARIK, K. and THURBON, J. (2002): Foresighted
Layout in Program Visualisation. OzViz 2002.

NASSI, I. and SHNEIDERMAN, B. (1973): Flowcharting
Techniques for Structured Programming, SIGPLAN
Notices, 8(8)12-26.

NORVELL, T. and BRUCE-LOCKHART, M. (2000):
Lifting the hood of the computer: Program animation
teaching machine, Electrical and computer engineering,
2000 Canadian conference on, 2:831-835.

SAMPSON, S. (2000): Software Visualisation Tools for
Java, MSc Thesis, Acadia University Canada, 2000.

SANGWAN, R. KORSH, J. and LAFOLLETTE, P.
(1998): A System for Program Visualisation in the
Classroom, ACM SIGCSE Bulletin, Proceedings of the
29th SIGCSE technical symposium on Computer
Science Education March 1998, 20(1).

THURBON, J. (2000): Programming with Pictures and
Homomorphic Planning, PhD Thesis, University of
New South Wales, 2000.

