
Formal Approach for Generating Privacy Preserving User
Requirements-Based Business Process Fragments

Mohamed Anis Zemni1 Amel Mammar2 Nejib Ben Hadj-Alouane3

1 Ecole Nationale des Sciences de l’Informatique (ENSI), UR/OASIS
Campus Universitaire de la Manouba,

2010 Manouba, Tunisia,
Email: mohamedaniszemni@gmail.com

2 Institut Mines-Telecom/Telecom SudParis, CNRS UMR 5157 SAMOVAR
9 Rue Charles Fourier,
91011 Evry, FRANCE,

Email: amel.mammar@telecom-sudparis.eu

3 Ecole Nationale d’Ingenieurs de Tunis (ENIT), UR/OASIS
BP 37, Le Belvedere,
1002 Tunis, Tunisia,

Email: nejib bha@yahoo.com

Abstract

A business process fragment is a portion of a business
process, more commonly designed for reuse purposes.
Fragments are intended to be declared as safe from
a privacy perspective, when manipulated in an open
context. Privacy is related to the authority to have a
view on some sensitive information. A business pro-
cess privacy-preserving fragmentation is the task of
decomposing business processes into significant frag-
ments, which can be reused in the future in order to
build new business processes while preserving the sen-
sitive information from leakage. This paper presents
a design-time two-phases approach to decomposing
existing business processes into significant fragments
while preserving the integrity of data items that nav-
igate within the process. The first phase is based on
the so-called Formal Concept Analysis (FCA) tech-
nique handling semantic activity clustering according
to designers requirements, while dealing with the pri-
vacy constraints. The second phase manipulates clus-
ters of activities and generates ready-for-reuse frag-
ments. Some experiments that demonstrate the fea-
sibility of the proposed approach are also provided.

Keywords: Business Process, Fragmentation, Reuse,
Privacy, Semantics, Requirements-Driven.

1 Introduction

In the industry of business process management
(Ter Hofstede et al. (2003)), organizations and busi-
ness entities are more and more focused on improving
the quality of their services. At the same time, they
experience a need to maintain a high degree of effi-
ciency, with respect to delivery deadlines and produc-
tivity; all this, within the context of a continuously
increasing competition. A key strategy consists in ef-
ficiently implementing and developing modern busi-

Copyright c⃝2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

ness processes relying on new Web technologies. A
business process, as defined by Ouyang et al. (2007),
consists of a set of operations, more commonly called
activities, organized in a given manner so as to pro-
duce a specific service. Implementing new activities
and business processes completely from scratch may
be a very tedious and time consuming task. Reusing
already existing business process fragments can re-
duce the business process development time and en-
hance its robustness (Schumm et al. (2010)). In fact,
the reuse of business process fragments can be an im-
portant component of any flexible design strategy re-
sulting in a reduction of process development periods
(Markovic & Pereira (2008)). Schumm et al. (2010)
cite two ways to design business process fragments:
(1) from scratch (Eberle et al. (2009)) or (2) extracted
from existing process models. In our work we focus
on the second approach which is used to be done es-
sentially manually. The work introduced by Schumm
et al. (2011) demonstrates that, apart from improving
the quality of the resulting business processes, reusing
the fragments allows to avoid (i) the redesign of cer-
tain existing fragments, and (ii) the implementation
and optimization of all business process artifacts from
scratch.

Business process developers, however, need to pay
special attention to the data privacy concerns. In-
deed, nowadays, the individuals are becoming more
and more concerned about the privacy of their per-
sonal data that may appear within the process bound-
aries. As defined by Sweeney (2002), privacy is re-
lated to the authority to receive some sensitive infor-
mation, e.g., personal information. Such important
information is called sensitive and should not be dis-
closed. Though sensitive information may occur in a
business process for the purpose of performing its key
functionalities, they are not intended for sharing or
publishing. Consequently, the fragments that are to
be reused, must be individually and conjointly safe.
One has to make sure that (i) each fragment produced
from a business process decomposition approach is
safe, and (ii) two fragments from which sensitive in-
formation can be inferred should not be coupled to-
gether when a new business process is built.

In a previous work (Zemni et al. (2012a,b)), we
have presented an initial and informal approach for
business process decomposition while maintaining the

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

89



privacy of sensitive information. The approach gen-
erates any fragment whose activities involve common
functionalities. Fragments may contain superfluous
activities which are not interesting for the designer.
Moreover, the approach relies mainly on grouping se-
mantically close activities while structural concerns
still early stage. In this paper, we seek to improve on
the fragmentation mechanism by attempting to pro-
vide requirements-driven algorithms, as well as for-
mal definitions that make the approach formal. We
also prove the correctness of the privacy-preserving
mechanism. Here, a requirements-driven approach
is presented in order to provide useful and reusable
business process fragments. Indeed, approach re-
lies on the fragmentation of existing business pro-
cesses to retrieve fragments that may suit design-
ers’requirements.

The structure of the paper is articulated as fol-
lows: in the next section, we give a motivating ex-
ample with a detailed illustration of reuse issues that
may occur during the fragmentation process (Section
2). Section 3 provides formal definitions for business
processes and business process fragments along with
privacy and semantics concerns that allow us to for-
malize and prove the decomposition approach. Sec-
tion 4.1 introduces our requirements-driven clustering
mechanism to generate clusters of semantically close
activities, and deals with privacy. A detailed proof
is also given in section 4.2 to show that the privacy
is well respected. We then present an algorithm to
generate privacy-aware and reusable fragments from
the composition of the previous clusters 4.3. Section
5 evaluates the effectiveness of the proposed approach
and gives the description of the most significant re-
lated statistics. We finally conclude with the related
work and the results summary in sections 6 and 7,
respectively.

2 Working Example

In this part, we specify in details the main issues
related to the fragmentation through a practical case
study. For this, we consider an inter-department col-
laboration scenario where a business process designer,
from a given department, desires to provide relevant
fragments of his own process to third designers, from
another department, who needs to build a new pro-
cess. Figure 1 depicts a “surgery performing” process
case study.

Represented in Business Process Model and No-
tation (BPMN)1, this process is roughly defined as a
set of activities, represented with rounded boxes, a
set of data items, represented with note boxes, a set
of events, represented with circles, and, a set of gate-
ways, represented with diamonds. Activities, gate-
ways, and events are linked to each other with con-
trol flows, i.e., represented with solid arrows, and data
items are linked to activities by means of data flows,
i.e., represented with dashed arrows. Control flows
depict the execution order of the elements they link,
while dashed arrows represent the data items routed
in between activities, i.e., as either inputs or outputs.

The process represented in figure 1 performs as fol-
lows: a surgery order triggers the process execution.
Indeed, a message event, i.e., which is a start event,
receives a ’surgery order number’. Activity (a1) uses
the ’surgery order number’ to retrieve the surgery
information as well as the patient′s SSN (Social Se-
curity Number). Note that the surgery information
contains the type of surgery, whether it is urgent

1http://www.omg.org/spec/BPMN/2.0/

or not, etc. Activity (a2) receives the patient′s
SSN and retrieves the patient′s information. Af-
ter that, two branches are called concurrently: (i)
selecting a free surgeon (activity (a5)) and selecting
a free surgery room (activity (a6)), and (ii) asking
for patient’s history (activity (a3)) and compiling pa-
tient’s record (activity (a4)). Activities (activity (a5))
and (activity (a6)) use the surgery information
and check the surgeon and surgery room availabil-
ities, while activities (activity (a3)) and (activity
(a4)) check for surgery and history inconsistencies,
e.g., whether any contraindication exists between the
surgery information and the patient′s record, or if
the patient take some drugs he must stop before the
surgery. The process terminates immediately if any
inconsistency is detected. Once both branches finish
their execution, activity (a7) confirms the patient for
surgery. When the receive message event receives the
surgery report, the patient’s record (activity (a8))
is updated (i.e., using the surgery information, the
patient′s SSN , and the surgery report), the order
patient follow up activity (activity (a9)) is executed,
and the process is ended.

Generally speaking, this process can be published
in an open context to be reused as part of a new busi-
ness process to perform more complex functionalities.
For instance, the process may be part of a “Surgery
Performing and Reimbursement” process to perform
the costs reimbursement tasks by the social security in
addition to the functionalities involved by the surgery
performing process.

This process, however, is not necessarily safe while
it may reveal some sensitive information compiled
from data associations. For instance, the association
between the data item patient′s information (activ-
ity a2 output) and the data item patient′s record
(activity a3 output), is sensitive. Indeed, this associ-
ation may lead to patient′s illnesses disclosure. In
this paper, it is dealt with information, more specif-
ically data items, that are routed between activities.
Recall that information enclosed within the activi-
ties cannot be viewed, as activities are seen as black
boxes and are then safe. More specifically, it is dealt
with non-sensitive data items that are safe when they
are considered separately, but turn out to be critical
when they are associated together. Note that activ-
ities, also, are safe when they are taken separately,
where for a given activity, inputs and outputs do not
form sensitive associations. Indeed, it is the asso-
ciation between data items which may be sensitive.
Consequently, when the process is coupled with ma-
licious activities, the latter may probably make use
of the data items and infer sensitive information. For
example, some additional activities (or even a single
one) may be added to the surgery performing pro-
cess, using the patient′s information data item and
the patient′s record data item manipulates them and
generating the patient′s illnesses.

Moreover, the process may be uninteresting for
reuse, as a whole. For example, let the designer be
interested only in preparing surgery and manipulat-
ing patient’s record (i.e., history) within the desired
“Surgery Performing and Reimbursement” process.
The designer already has his own patient’s follow up
activities, and thus do not need them from the cur-
rent process. Consequently, it would be wiser to catch
only portions that semantically match the designer’s
requirements. Therefore, activities a9, should not be
kept for reuse. This solution, however, is intuitive, es-
sentially manual, and needs business investigations,
as for many existing decomposition approaches (as
stated by Khalaf (2008)). This task also requires a

CRPIT Volume 147 - Computer Science 2014

90



e1
g1

a3: Ask for 

patient’s 
record

a4: Compile 

patient’s 
record

a5: Select a 

free 
surgeon

a6: Select a 

free surgery 
room

g3
a8: Update 
patient’s 

record

e4a2: Retrieve 

patient’s 
information

Patient’s Information

Patient’s SSN

Surgeon information Surgery room 

number

Patient’s record

Relevant patient’s 

record

Surgery report

Surgery order 

number

e3a1: Retrieve 

surgery 
information

Surgery information

a7: Confirm 
patient for 

surgery

a9: Order 
patient 

follow up

e2

g2

Figure 1: An Example of Surgery Performing Process.

good understanding of the initial process to enable re-
trieving the interesting portion for the designer. This
turns out to be a difficult task and thus needs au-
tomation especially to deal with big and complex pro-
cesses.

3 Fragmentation Preliminaries

In this section, we present the necessary for-
mal notions needed to understand and perform the
fragmentation task, in order to generate well-formed
and privacy-aware fragments whose functionalities
are consistent with those required by the designer.

3.1 Business Process and Business Process
Fragment Models

As stated by Mancioppi et al. (2011), a complete
process model definition is an important artifact in
order to enable performing the fragmentation task.

Ouyang et al. (2007) have introduced a business
process (process for short) as a directed graph that is
defined as a collection of activities, events, and gate-
ways, linked with control flows. For our purposes,
this definition is further refined, to clearly specify the
various parts and aspects of a process, namely data
elements, i.e., consisting of data items and data flows.
We formally define a business process as follows:

Definition 1 (Business Process) A Business
Process is a tuple P=(O, A, G, Cf , D, Df ), where
O ⊆ (A ∪ G) is a set of objects composed of a set
of activities and events A, and a set of gateways,
G. Cf ⊆ (O × O) is the control flow relation to
link objects to each other, D is the set of data items
handled by the activities, and Df ⊆ (Dfin ∪ Dfout)
is the data flow relation to link objects to their
corresponding input data items Dfin ⊆ (O ×D), and
activities to their output data items Dfout ⊆ (A×D).

The relation Dfout does not involve gateways as
they generate no data items. Note that events and
activities are set in the same activity set A as they
act alike. In the rest, we use “activities” instead of
“activities and events”.

We define a path as a linear and connected portion
of a business process describing a set of sequential

activities, i.e., whose execution is sequential, start-
ing from a given activity, traversing a set of sequen-
tial activities, and leading to another activity, and
where each couple of consecutive activities are linked
by means of a control flow. Let Paths be the set
of all possible paths defined in a process such that
Paths = {(act1, ..., actn)|

∧
i=1..n ai ∈ A∧∀i.(1 ≤ i ≤

(n − 1) => (acti, acti+1) ∈ Cf}. A process should
contain no unconditional control flow cycles leading
the process to run indefinitely. Consequently, there
should not exist any path ending with an activity it
has started by.

Let the following formally defined property that
each business process has to respect:

Property 1 (Unconditional Cycle Free)
∀(a1, ..., an).((a1, ..., an) ∈ Paths⇒ a1 ̸= an).

A business process fragment (fragment for short)
as defined by Schumm et al. (2010) is a connected sub-
process designed for reuse purposes. It is composed
of at least one activity, and of several edges, repre-
senting control and data flows. A fragment involves
some functionalities and is intended to be composed
with other ones to build new processes. A fragment
can depict dangling control flows, i.e., with either no
source or sink activities specified. More formally:

Definition 2 (Business Process Fragment) A
Business Process Fragment is a tuple f = (O, A,
G, Cf , D, Df , fn), with O, A, G, D, and Df as
in Definition 1. Cf ⊆ (O ∪ {⊥})2 − {(⊥,⊥)} is the
complete and/or dangling control flow relation to link
objects to each other, and fn is a set of terms that
describe the fragment’s involved functionalities.

Note that character ⊥ is used to denote dangling
control flows, i.e., representing missing start or end of
a control flow.

As for the case of a complete process, a fragment
should contain no unconditional cycles. This property
is necessary to ensure that business processes that are
made of fragments also respect property 1.

Let the following connectivity property that
should be ensured when generating fragments:

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

91



Property 2 (Connectivity) A fragment f is con-
nected iff ∀(a1, a2).(a1, a2 ∈ f.A ⇒ (a1, ..., a2) ∈
Paths ∨ (a2, ..., a1) ∈ Paths ∨ ∃a3.((a3, ..., a1) ∈
Paths ∧ (a3, ..., a2) ∈ Paths)).

That is, a fragment is connected if and only if each
couple of activities belong to a path when they are
placed on the same branch or belong to two different
paths with a common activity when they are placed
on different branches. The connectivity condition is
necessary to ensure that when a fragment is used in
a new process, all activities can be executed.

Generally speaking, a fragment denotes a complete
process when it encloses no dangling control flows,
i.e., Cf ⊆ O2.

3.2 Privacy-Preserving Mechanism

As we have already tackled in the motivating ex-
ample, when publishing a fragment, the association
between some non-sensitive data items, involved in
this fragment, can disclose some sensitive informa-
tion. For example, “patient’s illnesses” can be in-
ferred from the association between the data items
“patient’s information” and “patient’s record”. The
association between such couples of data items are
called sensitive and should never be published in an
open context. Therefore, data items that are involved
in a sensitive association are called in conflict. To get
over such issues, we propose the following privacy con-
straint definition that should be taken into account
when performing the fragmentation task.

Definition 3 (Privacy Constraints) Privacy
constraints, denoted CN ⊆ D2, is a set of data item
couples that should not figure in the same fragment.

Consequently to the definition, activities that out-
put conflicting data items should never figure in the
same fragment ; they are called in conflict with each
other. To assert that two activities are conflicting,
only the data they produce are taken into account.
Indeed, when an activity is selected for a fragment,
its input data, i.e., that are in conflict with other ones
in the fragment, are not yet received and then may
be substituted with other ones.

For instance, CN = {(surgery information, pa-
tient’s information), (patient’s information, patient’s
record), (patient’s information, relevant patient’s
record)}, in Figure 1, depicts the privacy constraint
set. Then, activities a1 and a2, activities a2 and a3,
and activities a2 and a4 are pairwise in conflict.

The proposed privacy constraints leads to the fol-
lowing privacy-awareness property that we have to
ensure on each fragment f :

Property 3 (Privacy-awareness) A fragment f
is safe iff ∀(a1, a2).(a1 ∈ f.A ∧ a2 ∈ f.A ⇒
((f.Dfout [{a1}]2 × f.Dfout [{a2}]) ∪ (f.Dfout [{a2}] ×
f.Dfout [{a1}])) ∩ CN = ∅).

That is, each fragment should not contain any cou-
ple of activities that output conflicting data items.

3.3 Activities to Functional Requirements
Similarity

In our work, we are interested in any fragment ver-
ifying Definition 2 and whose activities verify some

2Given the relation R ⊆ X × Y , then, R[X1] = {y|y ∈ Y ∧
∃x.(x ∈ X1 ∧ (x, y) ∈ R)}, and R−1[Y1] = {x|x ∈ X ∧ ∃y.(y ∈
Y1 ∧ (x, y) ∈ R)}.

given functional requirements, denoted Q, in addi-
tion to privacy concerns. To this aim, we focus on
any activity textual description that gives the main
functionalities involved by the activities. If no activ-
ity description is provided, then, activities’ labels and
data items’ labels are retrieved. Generally speaking,
activity descriptions are made of a set of terms that
describe the functionalities involved by the activity.

Let â be the textual description of activity a,
and Q̂ be the textual description of requirements
Q. In our work, activity descriptions, â, as well as
the functional requirements, Q̂, are pretreated (e.g.,
by removing stopwords (Fox (1992)), by stemming
terms (Porter (1997)), and by unifying synonyms),
and weighted (e.g., using term weighting mechanisms
(e.g., TF/IDF3 (Salton & Buckley (1988)))). This re-
spectively generates weighted description vectors −→a
and

−→
Q . Let w(t,−→a ) be a function that returns the

weight of term t in the activity description â. Note
that function, w, returns 0 if term, t, does not be-
long to the activity description, â. For example, â5
= {’select’, ’free’, ’surgeri’, ’surgeri’, ’inform’, ’surg-
eri’, ’inform’} is an activity description, and −→a5 =
((0.105, select), (0.105, free), (0.037, surgeri), (0.056,
inform)) its corresponding vector, where w(surgeri,−→a5) = 0.037.

To include or not an activity a in a fragment, we
have to compute the similarity between the activity
vector −→a and the requirements vector

−→
Q . To this

aim, we use Vector Space Model (VSM), introduced
bySalton et al. (1975). Let α be a similarity thresh-
old fixed by the designer, above which, the activity
would be part of the fragment. Guidelines for fixing
an appropriate threshold is out of the scope of this
paper.

Generally speaking, an activity may correspond
to all the query terms or only part of them. The
latter occur when the query terms involve complex
functionalities which cannot all be met by a single
activity. Consequently, it would be wiser considering
only terms of the activity descriptions for the similar-
ity computation instead of the union of both query
and activity description terms, as set in the litera-
ture. This enables to focus on the functionalities in
Q that are involved in a given activity. The similarity
function is formally defined as follows.

Definition 4 (Similarity Function) Given a

functional requirement vector
−→
Q and an activity

vector −→a , the similarity between
−→
Q and −→a is defined

by:

sim(
−→
Q,−→a ) =

∑
j∈dist(â) w(j,

−→
Q)× w(j,−→a )√∑

j∈dist(â) w(j,
−→
Q)2 ×

√∑
j∈dist(â) w(j,−→a )2

with dist(â) is a function which returns distinct terms
in â.

For instance, sim(
−→
Q,−→a5) =

0 ∗ 0.105 + 0 ∗ 0.105 + 2 ∗ 0.037 + 0 ∗ 0.056
√
22 ∗

√
0.1052 + 0.1052 + 0.0372 + 0.0562

= 0.36

where
−→
Q = ((2, patient), (2, surgeri), (2, record), (2,

reimburs)) is the requirements vector. Note that the
requirement terms are all weighted 2 meaning that
they are as important as each other.

3TF/IDF is a term weighting method which reflects the impor-
tance of a term for a document among a corpus of documents.
Higher weights are assigned to terms occurring frequently in a par-
ticular document, but rarely on the remainder of the document
collection. In our work, documents represent activities.

CRPIT Volume 147 - Computer Science 2014

92



4 Privacy-Aware Business Process Fragmen-
tation

In this section, we propose a two-phases
requirement-driven fragmentation. The first phase
involves an algorithm in which we incorporate pri-
vacy constraints and semantics to generate seman-
tically close and privacy-aware clusters of activities.
A cluster of activities is a group of coupled activ-
ities that cooperate together closely to achieve the
same goal. We also provide a proof demonstrating
the correctness of the approach w.r.t. Property 3.
The second phase involves an algorithm that derives,
from clusters, reusable fragments. Indeed, clusters
of activities are garnished with structural concerns
(gateways, flows, etc...) so as to draw connected and
reusable fragments.

4.1 Clustering Algorithm

The process clustering consists in selecting activ-
ities that are semantically close to the functional re-
quirements and classifying them w.r.t. the function-
alities they are involving, and this, while maintain-
ing the sensitive information privacy. The cluster-
ing is based on the so-called Formal Concept Anal-
ysis (FCA) (Ganter & Wille (1999)). The latter is
a data analysis technique, used for classifying similar
objects within object collections, w.r.t. their common
attributes. Our work adapts the FCA to the process
activity clustering. That is, activities are mapped
onto objects, and activity descriptions are mapped
onto attributes. We extend this technique so as to
compute the similarity between the activities and the
required functionalities. This enables forming clusters
consisting of activities that cooperate to involve the
same functionalities. We also constrain the technique
with the privacy constraints.

The following are the extended FCA element def-
initions that the clustering algorithm, Algorithm 1,
relies on.

Definition 5 (Formal Context) A formal context
is a triplet, C = (A, T,w) involving a set of process
activities, A, a set of terms, T , that has been retrieved
from the process activity descriptions, and a weight
function, w : T × A → R, that returns the weight of
a term, t ∈ T , for an activity a ∈ A.

Definition 6 (Clustering System) S =
(C,Dfout , CN ) is a clustering system where C
is the formal context, Dfout

is the output data flow
relation, and CN are the privacy constraints.

Definition 7 (Galois Correspondence) A Galois
correspondence involves two functions, Θ and ∆, for
a clustering system S = (C,Dfout , CN ) and functional
requirements Q.

Θ : P(A) → P(T ∩ Q) is defined over the power
set P(A), and returns the maximal set of terms,
among Q, that are shared by all the activities, where
Q is the set of requirements’ terms. That is, for a
given Ai ∈ P(A), where ∀(a1, a2).(a1 ∈ Ai ∧ a2 ∈
Ai ⇒ ((Dfout [{a1}] × Dfout [{a2}]) ∪ (Dfout [{a2}] ×
Dfout [{a1}])) ∩ CN = ∅)), then, Θ(Ai) = {t ∈
(T ∩Q)|w(t,−→a ) ̸= 0, ∀a ∈ Ai}.

∆ : P(T ∩Q)→ P(A) is defined over the power set
P(T ∩Q), and returns relevant-enough activities (that
are maximal), according to a fixed threshold α, that
share all the terms in (T ∩ Q). That is, for a given

Tj ∈ P(T ∩Q), ∆(Tj) = {a ∈ A|sim(
−→
Q,−→a ) ≥ α}.

Definition 8 (Formal Concept/Cluster) Given
a clustering system S = (C,Dfout , CN ), a formal
concept is a tuple Con = (Tj , Ai), where Θ(Ai) = Tj,
and, ∆(Tj) = Ai. Ai is called a cluster made of
relevant-enough activities collaborating to process the
functionalities represented with Tj.

Algorithm 1 depicts the requirement-driven
privacy-aware clustering process. It takes as input
parameters a clustering system S (Definition 6), and
the functional requirementsQ. The algorithm returns
the set of formal concepts conSet from which clusters
are derived.

Algorithm 1 Requirement-driven Privacy-aware
clustering

1: function clustering(FormalContext C,
Output Dfout , Privacy CN , Requirements
Q):FormalConceptSet

2: declare FormalConceptSet conSet ← new
FormalConceptSet()

3: begin
4: for all Ai ∈ P(C.A) do
5: if notConflicting(Ai, CN , Dfout

) then
6: TermSet Ti ← Θ(Ai)
7: if ∆(Ti) = Ai then
8: conSet ← conSet ∪ {new Formal-

Concept (Ti, Ai)}
9: end if
10: end if
11: end for
12: return conSet
13: end
14: end function

The formal context, depicted in definition 5, rep-
resents the clustering basis. It involves the activities
to classify, the classification criteria, i.e, the terms,
and the weights of terms for a given activity. Note
that we have extended the relation between terms
and activities from binary relations to values ones,
i.e, given by the function w. The clustering system in-
volves the process corresponding formal context, the
privacy constraints it is subject to, as well as output
data flows to decouple conflicting activities during the
clustering task.

Given that the clustering task is activity-centric,
the algorithm applies on every element of the power
set P(C.A)4. The algorithm uses the Galois corre-
spondence functions (Definition 7), Θ and ∆ (lines
6,7), that we have extended with semantic concerns.
Function Θ returns a set of terms that represent
the functionalities that may probably be involved by
the activities (e.g., Θ({e1, a1, a5, a6}) = {surgeri}).
The Θ parameter is privacy-aware as the privacy
is checked when selecting the subset Ai by means
of function notConflicting (line 5) which returns
true if the activities in Ai are not conflicting given
CN . Function ∆ applies over (T ∩ Q). This per-
mits to focus the similarity computation on the terms
in Q that may be involved by the process activi-
ties. ∆ returns the activities that are close to the
functional requirements Q, w.r.t. threshold α. For
instance, ∆({surgeri}) = {e1, a1, a5, a6}, where ac-
tivities a4, a7, e2, a9, a8 are not returned, i.e., even if
they involve the term surgeri in their description, as
they are not relevant enough according to threshold
α = 0.35 (e.g., sim(

−→
Q,−→a9) = 0.114 < α). Note

4C.A is the activity set, A, for a formal context, C. The same
thing applies to similar notations.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

93



that ∆, as it exists in the literature, would return
{e1, a1, a5, a6, a4, a7, e2, a9, a8} for ∆({surgeri}).

Using functions Θ and ∆, we generate the for-
mal concepts (Definition 8). A formal concept in
our work represents a cluster of close activities, that
share the same functionalities. Indeed, for a given
formal concept, all activities involve the functional-
ities described by the terms in Q or part of them,
and the terms are significant enough for only those
activities according to the fixed threshold α. For
instance, ({patient, sergeri}, {a1, a7, a8}) is a formal
concept, but ({patient, sergeri}, {a1, a4, a7, a8, a9})5
is not a formal concept as ∆({patient, sergeri}) =
{a1, a7, a8} does not contain a4 nor a9.

Note that, without considering the privacy con-
straints, the clustering task would return the cluster
{a2, a3, a4, a7, a8}, i.e., involving patient’s manipula-
tion, while a2 should not be put in the same cluster
as a3 and a4, as explained in section 3.2.

In the following subsection, we demonstrate that
Algorithm 1 verifies property 3.

4.2 Correctness of the Clustering Algorithm

In order to validate the proposed approach, we
have verified the correctness of Algorithm 1 using the
B formal method and its refinement concept. Before
describing how we used this method to prove the cor-
rectness of the algorithm, we give a brief introduction
of the B method.

Introduced by Abrial (1996), B is a formal method
for safe project development. B specifications are or-
ganized into abstract machines that encapsulate state
variables on which operations are expressed. The set
of the possible states of the system are described us-
ing an invariant which is a predicate in a simplified
version of the ZF-set theory, enriched with many rela-
tional operators. Refinement is the process of trans-
forming a specification into a less abstract one. In B,
we distinguish behavioral and data refinement. The
behavioral refinement, used in this paper, includes
weakening of preconditions, the replacement of par-
allel substitution with a sequence one, etc. To ensure
the correctness of a B specification, a set of proof
obligations is generated for each B component. At
the abstract level, these proofs aim at verifying that
the invariant of the system is satisfied after the exe-
cution of each operation. Refinement proofs permit
us to check the correctness of each concrete operation
with respect to its abstraction. We assume that read-
ers are familiar with B method and more details can
be found in Abrial (1996).

To establish the correctness of Algorithm 1, we
have adopted the B architecture depicted in Figure 2:

• At the abstract level, we build a B machine Frag-
Process that defines a set of types which cor-
respond to Activities, Objects (Data items) and
Terms. The process is described through 3 vari-
ables defined as follows:

1. output: this function gives the data items
used by an activity as output.

2. desc: this function gives the set of terms
corresponding to each activity (it corre-
sponds to â).

3. conflict: this relation stores the sets of the
data items couples that are in conflict (pri-
vacy constraints CN ).

5This formal concept is generated using the FCA technique as
it exists in the literature

Figure 2: B Architecture for Algorithm 1 and its Cor-
rectness.

Finally, a B operation is specified in order to per-
form the fragmentation of the process. This op-
eration is expressed in an abstract manner by
giving the properties that the returned fragments
should verify. Functions, Θ and ∆ are declared
as definitions

• According to the B refinement technique, prov-
ing that algorithm 1 is correct comes down to
establish that it is a possible implementation of
the previous B machine. To do that, we cre-
ate a B implementation component of the previ-
ous machine in which operation Fragmentation,
verifying the privacy awareness and maximality
properties, is implemented by the instructions of
algorithm 1. This implementation component
imports a B machine in which function Θ and
∆ are also described as operations in order to be
called from the implementation component.

To validate these B components, we have gener-
ated and proved a set of proof obligations. Not sur-
prising, components FragProcess and Theta Delta do
not generate any proof obligation because their opera-
tions do not modify their variable. Consequently, the
invariant remains true. Component FragProcess Imp
generates 61 proof obligations : 53 have been dis-
charged automatically where the others require the
human intervention in order to help the prover find
the right deduction rules to establish them. Re-
call that the proof obligations of this component
aims at proving that the implementation of operation
Fragmentation is correct with respect to its abstract
specification. In this way, we prove the correctness of
algorithm 1.

4.3 Fragments’ Structure Building Algo-
rithm

Although we ensured the relevance and privacy-
awareness of the derived clusters, the clustering phase
lefts the structural concerns away. Indeed, some
clusters depict disconnected structures, when recon-
structed into fragments. This is not conform to prop-
erty 2. For instance, the cluster {e1, a1, a5, a6} is dis-
connected and would not lead to a correct fragment.
Moreover, the result may further be improved by at-
tempting to merge fragments, i.e., that do not re-
veal sensitive information, into coarser-grained ones.
This permits to involve more complex functionalities.
For instance, the cluster {e1, a1, a5, a6}, the cluster

CRPIT Volume 147 - Computer Science 2014

94



Algorithm 2 Fragment Building

1: function buildFrag(FormalConceptSet
conSet, Process P , Privacy CN ):FragmentSet

2: declare FragmentSet F ← new Frag-
mentSet()

3: begin
4: for all (superT, superCl) ∈
{(T,A)|∃((T1, A1), (T2, A2)).({(T1, A1), (T2, A2)} ⊆
conSet ∧ (∀(a1, a2).(a1 ∈ A1 ∧ a2 ∈ A2 ⇒
notConflicting({a1, a2}, CN ))) ∧ (A1 ∪ A2) ⊆
A ∧ (T1 ∪ T2) ⊆ T )} do

5: Fragment f ← new Fragment()
//Insert activities and data elements

6: f.A← superCl
7: f.D ← P.Dfin [superCl] ∪

P.Dfout [superCl]
8: f.Dfin ← superCl ▹ P.Dfin
9: f.Dfout ← superCl ▹ P.Dfout

//Insert gateways and the corresponding in-
put data elements

10: f.G ← ran((superCl ▹ Cf ) ◃ G) ∪
dom((G▹ Cf )◃ superCl)6

11: f.D ← f.D ∪ P.Dfin [f.G]
12: f.Dfin ← f.Dfin ∪ f.G▹ P.Dfin
13: f.O ← f.A ∪ f.G
14: f.Df ← f.Dfin ∪ f.Dfout

15: f.Cf ← f.O ▹ (P.Cf ◃ f.O)//Insert com-
plete control flows

16: f.Cf ← (f.C−1
f [∅] ∗ ⊥) ∪ (⊥ ∗

f.Cf [∅])//Insert dangling control flows
17: f.fn ← superT//Insert fragment’s func-

tionalities
18: F ← F ∪ splitIntoConnected(f)
19: end for
20: return F
21: end
22: end function

{a1, a7, a8}, and the cluster {a3, a4, a7, a8}, that were
generated from the clustering phase, can be melted
together in a single cluster to involve both surgery
preparation and patient’s record manipulation.

Algorithm 2, buildFrag, takes as parameters the
input process, P , the formal concepts, conSet, that
are generated during phase 1, and the privacy-
constraints CN . The algorithm returns a set of con-
nected and privacy-aware fragments.

The algorithm applies on each super-formal con-
cept that is made of the union of formal concepts
whose cluster activities are not conflicting (line 4).
For example, given two formal concepts (T1, A1)
and (T2, A2), where activities from A1 are not con-
flicting with activities from A2, their super-formal
concept is (T1 ∪ T2, A1 ∪ A2). The merge aims
at assembling clusters involving different functional-
ities in order to provide coarser-grained fragments
making easier their integration into new processes.
A super-cluster corresponds to a connected frag-
ment when all its activities can be connected. It
corresponds to multiple connected fragments other-
wise. For instance, {e1, a1, a3, a4, a5, a6, a7, a8} is
the super-cluster made from clusters {e1, a1, a5, a6},
{a1, a7, a8}, and {a3, a4, a7, a8}.

Given a super-cluster, the algorithm builds a new
fragment consisting of the super-cluster activities.
The latter are garnished with the corresponding data
elements, i.e., namely data items (either inputs or
outputs), and data flows (lines 5-9).

6Given the relation R ⊆ X×X′, dom(R) = {x|x ∈ X∧∃x′.(x′ ∈

e1

Patient’s SSN

Surgery order 

number

a1: Retrieve 

surgery 

information

Surgery information

Figure 3: Example 1 of a Connected Frag-
ment Generated from the Super-Cluster
{e1, a1, a3, a4, a5, a6, a7, a8}.

Next, the algorithm inserts the gateways that are
linked to the selected activities, i.e., in the initial pro-
cess. Gateways’ data elements are also picked and re-
ported in the new fragment (lines 10-12). After that,
the algorithm draws the control flows. Indeed, com-
plete control flows are imported from the original pro-
cess P , and this, when both source objects and sink
objects belong to the fragment’s objects, f.O (line
15). Control flows, that were broken during the clus-
tering phase, are replaced with dangling ones (line
16). Dangling control flows represent gluing points
regarding the new process.

The algorithm, then, tags each fragment with the
terms, superT , describing the fragment involved func-
tionalities (line 17).

Finally, the algorithm uses function
splitIntoConnected, according to property 2, in
order to split the fragment f into multiple connected
fragments when activities cannot be connected to
each other. It keeps the fragment’s structure as it
is otherwise. Function splitIntoConnected is not
detailed within this paper. Indeed, it is straightfor-
ward to check whether a cluster is connected or not
respectively to property 2, e.g., using existing tree
navigation algorithms (Nuutila & Soisalon-Soininen
(1994)).

Note that the generated fragments also fulfill the
property 1. Indeed, given that processes are assumed
respecting such property and fragments are portions
of those processes then fragments respect property 1,
too.

Figure 3 and figure 4 illustrate gener-
ated fragment examples from the super-cluster
{e1, a1, a3, a4, a5, a6, a7, a8}. According to algorithm
2, the fragments deal with both surgery preparation
and patient’s record manipulation. Note that the
fragment in figure 3 involves, in fact, only surgery
preparation. Assigning the specific functionalities to
the fragments will be handled in future works. The
privacy-preserving is well preserved, w.r.t property 3
as clusters whose output activities may form sensitive
associations are dissociated. The activities of both
fragment examples are semantically relevant enough
for parts of the functional requirements Q. Note
that the reimburs term, i.e., part of the requirements
Q, are left away as there are no activities involving
such functionality. Moreover, the fragment structure
is correct respectively to definition 2 and dangling

X′ ∧ x 7→ x′ ∈ R)} and ran(R) = {x′|x′ ∈ X′ ∧ ∃x.(x ∈ X ∧ x 7→
x′ ∈ R)}

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

95



a3: Ask for 

patient’s 

record

a4: Compile 

patient’s 

record

a5: Select a 

free 

surgeon

a6: Select a 

free surgery 

room

g3

Patient’s Information

Patient’s SSN

Surgeon information Surgery room 
number

Patient’s record
Relevant patient’s 

record

Surgery information

a7: Confirm 

patient for 

surgery

g2

Figure 4: Example 2 of a Connected Frag-
ment Generated from the Super-Cluster
{e1, a1, a3, a4, a5, a6, a7, a8}.

control flows play gluing points in the new process.
Therefore, the generated fragments can be reused in
building new business processes.

5 Implementation and Results

We have implemented a tool that corresponds
to the proposed algorithms. Our approach plays
on existing FCA mechanisms adaptability. Indeed,
a Colibri-java library7, for classical Formal Concept
Analysis, has been extended with a prototypical cod-
ing of the semantics and privacy extensions. The tool
receives as input an XML document containing the
activity descriptions of each selected process, an XML
document containing the process organization (as pre-
sented in definition 1), and the set of privacy con-
straints. It produces a set of privacy-aware fragments
as presented in definition 2. We have implemented
activity description preparation classes based on Fox
(1992) and Porter (1997), respectively for removing
stopwords and stemming terms, as well as a weighting
class implementing TF/IDF Salton & Buckley (1988)
weighting mechanism.

To evaluate our decomposition algorithm, we have
directed the tests to check (i) the granularity of the
resulted fragments and (ii) the scalability of the al-
gorithm. To evaluate the granularity of the resulted
fragments, we ran the algorithm over a set of 5 pro-
cesses from SAP library (Industry Specific Business)
while varying the value of the similarity threshold α
and counting the average number of activities within
the resulted fragments. We took a set of 3 terms,
having the same weight, for the functional require-
ments

−→
Q . The decomposition of each process leads

to 2 fragments, on average. The statistical results are
depicted in table 1.

Note that more the similarity threshold increases
more the granularity decreases. This means that some
activities were removed as their similarity were below
α. The similarity may be further improved when ac-
tivities have rich description. The granularity is not
high compared to the size of the processes which re-
flects the weak activities interdependency. This may

7http://code.google.com/p/colibri-
java/source/browse/#svn%2Ftrunk%2Fcolibri

size 0 0.1 0.2 0.3 0.4 0.5
P1 10 3.5 2.5 1.5 1 1 0
P2 20 3.25 3.25 3 2.66 2 1.5
P3 9 3.5 3.5 2.25 1.75 1.33 1
P4 5 1.5 1.5 1.5 1.5 1 1
P5 7 2.33 2.33 1.75 2 1 0

size 0.6 0.7 0.8 0.9 1
P1 10 0 0 0 0 0
P2 20 1.5 1 0 0 0
P3 9 0 0 0 0 0
P4 5 1 1 0 0 0
P5 7 0 0 0 0 0

Table 1: Fragments Granularity.

be improved by considering some terms similar, e.g.,
drug, medicine.

We finally evaluated the scalability of our decom-
position algorithm. The tests were conducted on a
laptop with Core Intel i5 processor, (2.27GHz*2),
4 GB memory, running Microsoft Seven. We have
tested the execution on 3 processes: the first one
containing 270 activities performs in 1.605 seconds,
the second process containing 90 activities performs
in 0.875 seconds, and the third process containing 3
activities performs in 0.531 seconds. Thus, the algo-
rithm can be performed with big processes with a fair
execution time.

6 Related Work

Several approaches have been proposed in the area
of reusing business process fragments. Nevertheless,
it is not well explored when it is about automatically
retrieving reusable fragments and even less when it
comes to ensure the privacy of sensitive information
that may be inferred intentionally or not. In the
following, we present some existing approaches re-
lated to business process decomposition and privacy-
preserving in business process reuse.

Huang et al. (2010) propose a workflow decom-
position mechanism for reuse purposes. Their tech-
nique aims to provide reusable fragments in a bottom-
up fashion. Following Huang et al. (2010), processes
are organized into a hierarchy of reusable fragments.
The approach then computes the interdependence be-
tween each fragment activities. This approach, how-
ever, lacks semantics where it manipulates the co-
occurrence of activity pairs enclosed within each frag-
ment.

In the same thinking, Rosa et al. (2010) have pro-
posed an approach for merging a set of processes in
a pairwise fashion. The merge consists in captur-
ing the common connected activity regions of the ini-
tial processes and adds independent parts. This pro-
vides a unique version of multiple processes that share
some elements. Common regions may be retrieved
and reused as part of new processes. While regions
structurally fit the fragment’s definition, they may
however enclose irrelevant elements for the designer.
Business process patterns are addressed by La Rosa
et al. (2011) to reduce the complexity of business pro-
cess structures. Four out of twelve proposed patterns
foster the reusability of the reduced portions. This
approach is also essentially structure-centric and does
not provide semantics grouping concerns.

Smirnov et al. (2011) provides a semantic approach
to abstract business process models into high level
views. This consists in generating coarse-grained ac-
tivities, a.k.a. clusters, sharing the same property

CRPIT Volume 147 - Computer Science 2014

96



values over several property types. The proposed ap-
proach is based on a binary VSM handling property
values, i.e., only property types are weighted. Our
approach permits such manipulations. Moreover, our
approach assigns a weight for each property value
making the similarity computation more signification
for activities.

Furthermore, Huang et al. (2010), Rosa et al.
(2010), La Rosa et al. (2011), Smirnov et al. (2011) do
not address any privacy-preserving mechanism. In-
deed, sensitive information may freely be inferred by
malicious activities that fragments are linked to.

Khalaf & Leymann (2012) and Khalaf & Leymann
(2006) handle business process partitioning in order
to assign some given functionalities to outside part-
ners. The partitioning is made in such a way to main-
tain the behavior of the original process. Neverthe-
less, the partitioning is mainly performed manually.
Indeed, the partitioning task follows fixing the corre-
sponding activities for each partner.

The work presented by Ivanovic et al. (2010), pro-
poses a fragment identification approach for outsourc-
ing portions of a business process, while dealing with
predefined privacy policies. The latter are used to re-
strict access to certain information to third parties.
The decomposition, while it ensures the privacy of
sensitive information, focuses only on the information
routed between activities. The generated fragments
do not involve semantics features to enable reusing
them later.

7 Conclusion

We have presented a novel approach in order to
provide useful, privacy-aware and reusable fragments.
This is ensured by the proposed process decomposi-
tion mechanism that (i) performs according to the
designer needs (requirement-driven), and (ii) takes
into account privacy constraints avoiding sensitive
information inferences. Furthermore, fragments are
reusable and may easily be integrated into new pro-
cesses as they depict a connected structure. The in-
tegration is enabled as fragments have gluing points
consisting of dangling control flows.

Further improvements can be added on similarity
computation. This can be achieved using ontologies.
Our future work is directed towards this axis.

References

Abrial, J. R. (1996), The B-Book: Assigning Pro-
grams to Meanings, Cambridge University Press.

Eberle, H., Unger, T. & Leymann, F. (2009), Process
fragments, in ‘On the Move to Meaningful Internet
Systems: OTM 2009’, Vol. 5870 of Lecture Notes
in Computer Science, Springer, pp. 398–405.

Fox, C. (1992), ‘Lexical analysis and stoplists’, In-
formation Retrieval: Data Structures & Algorithms
pp. 102–130.

Ganter, B. & Wille, R. (1999), Formal concept anal-
ysis - mathematical foundations, Springer.

Huang, Z., Huai, J., Liu, X. & Zhu, J. (2010), Busi-
ness process decomposition based on service rele-
vance mining, in ‘Web Intelligence’, pp. 573–580.

Ivanovic, D., Carro, M. & Hermenegildo, M. V.
(2010), Automatic fragment identification in work-
flows based on sharing analysis, in ‘ICSOC’,
Vol. 6470 of Lecture Notes in Computer Science,
pp. 350–364.

Khalaf, R. & Leymann, F. (2006), Role-based de-
composition of business processes using bpel, in
‘ICWS’, pp. 770–780.

Khalaf, R. & Leymann, F. (2012), ‘Coordination for
fragmented loops and scopes in a distributed busi-
ness process’, Information Systems pp. 593–610.

Khalaf, R. Y. (2008), Supporting business process
fragmentation while maintaining operational se-
mantics: a BPEL perspective, PhD thesis, Institute
of Architecture of Application Systems, University
of Stuttgart.

La Rosa, M., Wohed, P., Mendling, J., ter Hofst-
ede, A. H., Reijers, H. A. & van der Aalst, W. M.
(2011), ‘Managing process model complexity via
abstract syntax modifications’, Industrial Infor-
matics, IEEE Transactions on 7(4), 614–629.

Mancioppi, M., Danylevych, O., Karastoyanova, D. &
Leymann, F. (2011), Towards classification criteria
for process fragmentation techniques, in ‘Business
Process Management Workshops’, pp. 1–12.

Markovic, I. & Pereira, A. (2008), Towards a for-
mal framework for reuse in business process model-
ing, in ‘Business Process Management Workshops’,
Springer, pp. 484–495.

Nuutila, E. & Soisalon-Soininen, E. (1994), ‘On
finding the strongly connected components in a
directed graph’, Information Processing Letters
49(1), 9–14.

Ouyang, C., Dumas, M., Ter Hofstede, A. & Van
Der Aalst, W. (2007), ‘Pattern-based translation of
bpmn process models to bpel web services’, Inter-
national Journal of Web Services Research (JWSR)
5(1), 42–62.

Porter, M. F. (1997), An algorithm for suffix strip-
ping, in K. Sparck Jones & P. Willett, eds, ‘Read-
ings in information retrieval’, Morgan Kaufmann
Publishers Inc., pp. 313–316.

Rosa, M. L., Dumas, M., Uba, R. & Dijkman, R. M.
(2010), Merging business process models., in ‘OTM
Conferences (1)’, pp. 96–113.

Salton, G. & Buckley, C. (1988), ‘Term-weighting ap-
proaches in automatic text retrieval’, Information
processing & management 24(5), 513–523.

Salton, G., Wong, A. & Yang, C. (1975), ‘A vector
space model for automatic indexing’, Communica-
tions of the ACM 18(11), 613–620.

Schumm, D., Karastoyanova, D., Kopp, O., Ley-
mann, F., Sonntag, M. & Strauch, S. (2011), ‘Pro-
cess fragment libraries for easier and faster devel-
opment of process-based applications’, Journal of
Systems Integration 2(1), 39–55.

Schumm, D., Leymann, F., Ma, Z., Scheibler, T.
& Strauch, S. (2010), ‘Integrating compliance into
business processes: Process fragments as reusable
compliance controls’, Proceedings of the Multikon-
ferenz Wirtschaftsinformatik (MKWI10) .

Smirnov, S., Reijers, H. A. & Weske, M. (2011), A
semantic approach for business process model ab-
straction, in ‘CAiSE’, pp. 497–511.

Sweeney, L. (2002), ‘k-anonymity: A model for pro-
tecting privacy’, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
10(5), 557–570.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

97



Ter Hofstede, A., van der Aalst, W. & Weske, M.
(2003), ‘Business process management: A survey’,
Business Process Management 2678, 1019–1019.

Zemni, M. A., Hadj-Alouane, N. B. & Yeddes, M.
(2012a), An approach for producing privacy-aware
reusable business process fragments, in ‘ICWS’,
pp. 659–661.

Zemni, M. A., Hadj-Alouane, N. B. & Yeddes,
M. (2012b), A semantics-based privacy-aware ap-
proach for fragmenting business processes, in
‘MVDA’.

CRPIT Volume 147 - Computer Science 2014

98




