
From Reflection to Interaction:
An Indirect Approach to the Philosophy of Computation

Hiroyuki Miyoshi
Department of Computer Science

Kyoto Sangyo University
Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan

hxm@cc.kyoto-su.ac.jp

Abstract
In this paper, we propose a metaphysical framework
inspired from computational reflection put forward by B. C.
Smith. We introduce phenomenals as an ontological
device and therapeutic understanding as an
epistemological one. To describe and understand them, we
introduce three forms for description, called
Hume-Bergson Forms, in which every phenomenals are
situated between pure description and pure duration. In
these forms, we explicitly treat transcendent entities and,
accordingly, they cannot be authorized by formal proofs
and must be metaphysical up to a point. Our strategy is to
prompt readers to understand descriptions of those devices
on the fact that this theory is applicable to understanding
the descriptions of the theory itself. Finally we remark
future directions of research in this framework..

Keywords: philosophy of computation, computational
reflection, phenomenal, therapeutic understanding,
Hume-Bergson form

1 What Is Computation?
As computers and networks are pervading in our daily life,
the word ‘computation’ has become popular not only in
natural science but also human and social sciences.
However, the use of the word is not necessarily the same in
these areas. What modern computers do is indeed far
beyond simple computation. It is not easy to clearly
distinguish computation from other phenomena. Therefore
it is significant to question afresh what computation is.
Then, how to approach the question? At least, to try to
answer it directly, it is necessary to describe computation.
But it is impossible in at least two senses, as follows.

For example, consider describing computation progressing
now in my computer with which I am writing this paper. I
may spill coffee on the keyboard and cosmic ray may
change a bit on memory. It is impossible to completely
describe all about computation for the same reason as the

Copyright © 2004, Australian Computer Society, Inc. This paper
appeared at the Computing and Philosophy Conference,
Canberra. Conferences in Research and Practice in Information
Technology, Vol. 37. J. Weckert and Y. Al-Saggaf, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

This paper has been revised based on the paper distributed
in the conference and the preliminary version in Japanese
with improvements for English-speaking readers.

frame problem. An individual which computes is also
indescribable. For example, because my computer needs
electricity, it is vague whether it includes electric
transformers and generators. This is the indescribability of
tokens of computation. On the other hand, consider more
abstract computational models. As an individual to
compute, a Turing Machine is described as a tuple of a set
of finite characters, a finite set of states including an initial
state and final states, and a set of rules to change the state,
rewrite the character on the head, and move the head left or
right; a computation done by a Turing Machine is
specified as a finite sequence of characters on the tape at
the beginning. But these are just descriptions and their
semantics must be given. If the semantics of a description
is to be provided by another description repeatedly, it
comes into an infinite regress. This is the indescribability
of type of computation.

Thus in this paper, instead of direct approaches, we
introduce a suite of metaphysical devices built on studies
in computer science. Roughly speaking, we introduce the
mode of phenomenals as an ontological device and
therapeutic understanding as an epistemological one and
find that they alternately depend on each other. We adopt
the strategy to prompt readers to understand descriptions
of those devices on the fact that this theory is applicable to
understanding the descriptions of the theory itself. In other
words, we dare to describe something transcendent and
instead loosen the premise that everyone can understand
the description. By exploring this route, we aim to
smoothly connect between natural, human, and social
sciences. Furthermore, it is desirable that the theory does
not contain factors specific to human beings. Once we
construct metaphysics on them, we have to confront the
hard question of what human beings are. The theory we
propose here is not restricted to particular entities and
scales.

2 Computational Reflection
As the first step to consider the design of such devices, we
pick up computational processes executing a program
where the behavior of the system which executes the
program can be also changed by the program itself. This
kind of computation seems to be very special but it has
been used for a long time. For example, in early days, the
technique of rewriting a running program was used to
reduce consumption of poor memory (of course, it is
dangerous). In operating systems, several interfaces have
been prepared for process to control the behavior of the
systems such as process scheduling or power-off. In

object-oriented programming systems like Smalltalk-80,
an object can change the behavior of the system it belongs
to by sending messages to the objects which control it but
which are also part of the system.

In the context of programming languages, however, B. C.
Smith first proposed a unified approach to such kind of
computation (Smith 1982, Smith 1984). He analyzed in
depth the design of programming languages and
self-reference occurring in their execution. From this
experience, he extracted the idea of (computational)
reflection. Furthermore, by designing a concrete
programming language, 3-Lisp, and writing an interpreter
of it, he showed that reflection is actually implementable
on computers. In this section, we summarize the Smith's
approach, on which we develop metaphysical
considerations in the following sections.

2.1 2-Lisp and 3-Lisp
Introduction of reflection by Smith is divided into two
steps. The first one is to ‘rationalize’ the Lisp
programming language, or redesign it into the language
2-Lisp. For this step, he introduced a model consisting of a
processor, a structural field and the external world,
which respects our simple image of execution of programs
(Figure 1). In this model, execution of a program is
regarded as processing of contents of the structural field by
the processor. While the structural field is an abstraction
of memory which stores programs and data of Lisp,
structures are elements of the structural field which are
abstractions of cell structures on memory implementing
both programs and data structures. Structures may refer to
other internal structures or external objects such as natural
numbers.

Though we don't need to enter into technical details of
2-Lisp for the purpose of this paper, the important
observation is that it is interaction between the processor
and the structural field that provides semantics of a
structure in the structural field. For example, a referential
structure is by itself nothing but a structure and to interact
with the processor engenders semantics of reference. In
real computers, a piece of binary data is just a state of a
part of memory. It points another piece of data when
interpreted as address data by the system and represents a
number when interpreted as integer data.

Then how does that interaction happen? The processor in
our model interacting with the structural field is also
implemented by a mechanism. Applying the model to the
processor, we can think of it as implemented by another

pair of a processor and a structural field (e.g. as an
interpreter). We can endlessly repeat such an application.
Consequently, this type of description of computation,
called the operational semantics, results in a sort of infinite
regress. We usually stop this process at a point where the
semantics becomes clear enough. But for our purpose to
answer the question stated above, we cannot be satisfied
with it.

Then we consider a metacircular interpreter which is an
interpreter of a language written in the language itself. (It
is executable if we already have another interpreter of the
language). In this case, if we know the semantics of one
language, we can regard the program of the metacircular
interpreter as the whole description of the system. Note
that the semantics of the language is not unique (for
example, the semantics collapsed to the void is also valid).
When we understand the semantics, we construct it by
guessing, checking and revising it with our present
knowledge and the fact that the interpreting language and
the implementation language are the same. It may be done
for an instant or take very long time. Applying the idea of
a metacircular interpreter to our model, we obtain a
metacircular processor which is an infinite tower of
processors and structural fields (Figure 2). Note that each
layer of the tower is independent and has no
communication with other layers except that one layer is
implemented by the upper layer. Therefore such an
infinite tower is not necessary to give semantics to the
language; ordinary methods for semantics are also
straightforwardly applicable. But to introduce
self-modification of behavior of a system as
communications between layers, the tower is essential.

As the second step of Smith's introduction of reflection, to
make such communications possible, we add to 2-Lisp a
mechanism to define reflective functions which is
executed in the upper layer and returns the result to the
present layer. This language is 3-Lisp, which enables us to
write a program to redefine even the semantics of language
constructs by extracting and installing data of the upper
layer about current execution at the present layer. In
general, this sort of mechanisms is called (computational)
reflection and the infinite tower in our model is also called
the reflective tower. In reflective systems, a
self-representation of a computational process is provided
to the process itself (e.g. in 3-Lisp, the self-representation
is a pair of the environment and the continuation of current
execution of the interpreter program at the upper layer).
For a computational process executing a program to refer

Figure 1: A Processor and a Structural Field

Figure 2: A Metacircular Processor

and modify its self-representation may causes changes of
the semantics of the program (causal connections). Thus,
we have a recipe to make a reflective system: a
metacircular interpreter + causal connection = reflection.

3 Toward the Philosophy of Computation
Reflective computation explained above makes several
points explicit which are not clear in the case of ordinary
computation. In this section, we show the philosophical
ideas which come from them.

3.1 Causal Transcendence and Institutional
Existence

A reflective computational process can control the process
itself. The boundary of such a process is complicated and
difficult to be determined because reflection breaks a nest
of processors. Rather, like a metacircular interpreter, it is
natural to think of a description of the process (e.g. a
program) itself as the boundary. However, considering
that the semantics of structures is provided by interaction
between a processor and a structural field, descriptions are
deficient to properly treat actual entities in computation.

Extending these thoughts from computation to phenomena,
we reach the following ideas. For one entity to effectively
exist, it requires another entity which recognizes or
understands its description, or its boundary. However, for
that entity to effectively exist again, the description of that
has also to be recognized by the third one. This infinite
regress shows that effective existence of entities always
needs something transcending descriptions. (We refer to
descriptions here in a broad sense; we might be able to
rephrase them as a sort of patterns). We call this situation
of entities causal transcendence. The indescribability of
types of computation mentioned at the beginning says that
for programs to be executed, they need causal
transcendence. Moreover, because descriptions are
retained in causal transcendence, we can think that
descriptions provide stable reality which enables us to
recognize entities. We call this situation of entities
institutional existence and for descriptions to give
identities to entities as above institutional cut. The
indescribability of tokens of computation says that
computers as subjects of computation are institutional
existences and their descriptions are contiguous to
something transcendent1.

3.2 Interactions and Their Descriptions
Though in our model for 2-Lisp, a processor and a
structural field are of different sorts and interaction
between them is asymmetric, the structural field is also to
be realized by some mechanisms like the processor. In
fact, memory chips as well as CPUs are semiconductor
devices. Thus, not to restrict a theory to particular entities

1 This conception is inspired from (Ichinose 2001) and
terms are also borrowed from it. However, it strongly
emphasizes the concept of personality, which is different
from our idea.

and scales as stated at the beginning, it is natural to
primarily think of the interaction as symmetric between
entities of the same kind. Conceptual symmetry is also fit
for computation by bidirectionally communicating
processes.

Furthermore, the boundary of entities is not primarily
given but established by description of interaction between
those entities, and the description is also provided by
another interaction. Therefore we have to simultaneously
consider both interaction between entities as described
individuals and individuality of entities through
descriptions generated by interaction.

3.3 Therapeutic Understanding
Though reflective system is that which can modify its own
behavior, the range of modification is restricted by
description in a particular form of causal connection so
that we can understand the whole system. If we extend the
range, we have to change the form itself. Then we have to
specify an extension of the form by descriptions in another
form. Here also an infinite regress occurs2.

To cope with this difficulty, we choose another approach
inspired from metacircular interpreters. That is, we
introduce a set of forms for description in which both
descriptions and something transcending descriptions
(called duration) appear symmetrically. Then the fact that
the forms are also applicable to the situation that we are to
understand descriptions in the forms, provides our
understanding of what descriptions and duration in the
forms are. This mode of understanding is named
therapeutic understanding. An example is your
understanding when you understand that the sentence
“You are reading this sentence” is true. This mode
provides so-called obvious understanding and the
obviousness itself is also understood in this mode3. This
resembles Descartes' understanding of cogito. But it is
different from the mode above in several points that we do
not require his method of hyperbolic doubt and this mode
does not need to be conscious of it and that we also

2 Recently Irifuji stated in (Irifuji 2001) that this relativity
reaches a kind of absoluteness. But because his approach
cannot be a direct one, a jump somewhere in the
regressions is implicitly required.
3 Once the metaphysical devices presented here are
understood therapeutically and get obvious, the
description of this paper will be thrown away.

Figure 3: A Phenomenal in Hume-Bergson Forms

positively consider endless processes of understanding.
Then obviousness has its own intensity and it can be lost.

4 Hume-Bergson Forms

4.1 Description, Duration, and Phenomenals
In this section, we propose a suite of conceptual devices
based on the previous sections. Firstly, we introduce a set
of graphically-presented forms, Hume-Bergson Forms
(HBF). Figure 3 is the first form (HBF-1) of them. The
upper triangle on the diagonal line is the region of
description and the lower one under the diagonal is the
region of duration. The left side of the rectangle denotes
the pure description, and the right side does the pure
duration. Any actual entity is denoted as a vertical line
between the pure description and the pure duration.
Entities include both object-like ones (e.g. computers) and
process-like ones (e.g. computations). It is important that
we give no primary distinction between them. Because the
word ‘entity’ strongly suggests the object-like property,
we call it a phenomenal instead. The fact that the vertical
line necessarily crosses the diagonal represents that any
description of an entity is supported by some duration.
That is, phenomenals are contributed by both description
and duration. Causal transcendence and institutional
cut are respectively right and left transitions of a
phenomenal in HBF-1.

Indeed, on the one hand, the Humean view of entities is
primarily interested in descriptions of causality. But to
recognize or understand them, we need ‘impression’
transcending them (Ichinose 2001). On the other hand, the
Bergsonian view stresses that the duration is more
primitive than descriptions. But it is recognized by
‘intuition’, which enables us to treat it by descriptions
(Bergson 1934). Each of them needs the counterpart. This
is the reason why we combine the names of Hume and
Bergson.

Note that the pure description only institutionally exists
and the pure duration does institutionally not exist. The
former cannot be effective because without duration, it

cannot concern any causal transcendence; the latter cannot
be treated because it does not have any institutional
description to be detected. In these senses, both of the left
and right ends in HBF-1 are nominal and any entity is
situated between them.

4.2 Representation of Interactions
In our model for 2-Lisp, interaction between a processor
and a structural field forms another processor as an
individual entity. It is, however, not easy to analyze
interaction as a phenomenal in HBF-1. To represent
interaction between several individual phenomenals, we
need to express their boundaries which are also to be
descriptions. Therefore we introduce the second form
(HBF-2) which is a cross section of HBF-1 at a vertical
line corresponding to the interaction (Figure 4). The
broken line in this form corresponds to the intersecting
point of the diagonal and the vertical line in HBF-1, the
area over which is the region of description and that under
which is the region of duration. Interaction in description
and duration is denoted respectively by a solid
double-headed arrow and dotted one. Accordingly, the
two transitions of interaction, i.e. causal transcendence and
institutional cut, can be represented as disappearance and
appearance of description (Figure 5). Then a phenomenal,
or an interaction, necessarily involves duration beyond
description, which is found to be concerned with
indescribability of tokens of computation.

However, it is important that these transitions in HBF are
not in the described flow of time because it should be
observed by other entities and hence time as such is
institutional in HBF.

4.3 Emergence of Descriptions
Interacting phenomenals A and B as illustrated in Figure 5
do not primarily exist but appear through interaction with a
third phenomenal C. (If necessary, we write AC and BC to
emphasize it). For example, it is a third that gives reaction
between two molecules its own description which is
necessary to be an effectively existing entity. In other
words, a third is indispensable for phenomenals such as

Figure 4: Interaction in Hume-Bergson Forms
(HBF-2)

Figure 5: Causal Transcendence and Institutional
Cut

Figure 6: Emergence of Descriptions by Interaction
(HBF-3)

two molecules and their reaction because that their
institutional existence depends on its description. (The
possibility that a third is the described phenomenal itself,
however, is not excluded here).

Moreover, a third is also in the same position as molecules
and their reaction. Existence of a third is possible when its
describing interaction is also described by a fourth.
Therefore it can be extended with more phenomenals D, E,
F…. It is easy to observe that the indescribability of types
of computation mentioned at the beginning is an instance
of this situation. Thus we introduce the third form
(HBF-3) to deal with this aspect (Figure 6). We also use
such literal expressions like (AC | BC) | C. A piece of
description A | B corresponds to a HBF-2, but as a matter
of convenience, we only extract boundaries, descriptions
of boundaries, descriptions of descriptions of boundaries...,
from it. A symbol represents the parallelism between
descriptions, that is, the relation that both sides of shift
in parallel when describing their causal transcendence and
institutional cut in HBF-2, as in Figure 5. At first glance,
this form seems to bring an infinite regress. But it happens
only when repeatedly describing interactions each of
which provides previous description. Unless starting and
continuing this exploration, it is not vicious. Therapeutic
understanding is a generic form of understanding to obtain
obviousness without describing a third4.

In HBF-3, as remarked above, a phenomenal with a name
can be connected, or unified, with one with another name
through duration or description. For example, in Figure 6,
B can be also C (Figure 7). For one (B) to recognize both
oneself and another (A) implies that the one plays the role
of a third (C). This mechanism of HBF-3 enables us to
describe such situations and also more complicated
self-references across levels. Of course, what we have
presented here is nothing but basic devices and they need
more improvement to answer practical purposes.

5 Concluding Remarks
In this paper, we propose a metaphysical theory to treat
computation properly. How “good” is this? Many of
philosophical arguments concerning computation, e.g.
those in Artificial Intelligence or Artificial Life, do not
reexamine the notion of computation itself, which often
causes to make problems difficult to solve. Our strategy is
that we set up a general framework and, by considering
problems therein, eliminate such difficulty of them.
However, because even the notion of computation is
disappeared, we have to reconstruct it if necessary. In this
sense, the theory may be too general. Hence, as the next

4 Irifuji's absoluteness as the ‘limit’ of relativity mentioned
in the footnote 2 becomes understandable when thought of
as therapeutic understanding.

step, it is necessary to apply the theory to various instances
and refine it for each case to show its flexibility and
availability. Such a theory is not directly verified but
justified by having many applications or inspiring us with
many ideas. Indeed, many works concerning the theory
are in progress or planned. Due to the limit of space, we
only give a brief list of subjects as follows and omit
references because most of them are still written in
Japanese and might be inconvenient for most readers.
Instead, for more information, please consult the website
of the author's project (http://philcomp.org/).

 Mathematics, physics, computation, and philosophy
of science

 Mathematics and computation of individuals
(formal ontology, formal concept analysis,
mereotopology, morphology, domain theory of
solid models, etc.)

 Physics and information (the weak holographic
principle for quantum gravity, objections to the
anthropic principle)

 Wittgenstein's foundation of mathematics,
mathematical obviousness as therapeutic
understanding

 Foundations of android epistemology and
computational philosophy of science

 Ethics and mind

 Psychiatry (depersonalization and delusion of
control in HBF)

 Consciousness studies (qualia as phenomenals)

 Structures of self and others, privateness and
publicness (Wittgenstein, Kripke,
communication theory)

 Foundations of ethics (including Nietzsche's
one)

 Mediation between bioethics and biology

 Philosophy of becoming

 Symmetric presentation of Deleuze's difference
and Derrida's differance of in HBF

 Spinoza's unity and multiplicity of substance as
the mode of phenomenals

 Nietzsche's eternal recurrence as therapeutic
understanding of therapeutic understanding

 Unification of clocked time and time of
becoming

 Comparison with Deleuze and Nishida

Acknowledgements
The author thanks those people who gave him valuable
comments to his talks and drafts on this subject and,
among others, the members and collaborators of the
“Philosophy of Computation” project. He also thanks the
staffs of the CAP in Australia 2003 Conference and an
anonymous referee for his/her helpful comments. This

Figure 7: Representation of Self-Reference

research was partially supported by the Japan Society for
the Promotion of Science, Grant-in-Aid for Scientific
Research (B), 2001-2, 13480115, Exploratory Research,
2002, 14658096, and Scientific Research (B), 2003,
15320007.

References
Bergson, H. (1934): La Pansée et le Mouvant.

Ichinose, M. (2001): Gen'in to Kekka no Meikyu (The
Labyrinth of Cause and Effect), Keiso Shobo (in
Japanese).

Irifuji, M. (2001): Soutaishugi no Kyokuhoku (The Ultima
Thule of Relativism), Shunjusha (in Japanese).

Smith, B. C. (1982): Reflection and Semantics in a
Procedural Language, Ph.D. thesis, MIT Laboratory for
Computer Science Report MIT-TR-272.

Smith, B. C. (1984): Reflection and Semantics in Lisp.
Conference Record of the Eleventh Annual ACM
Symposium on Principles of Programming Languages,
23-35, ACM Press.

