
Functional Safety based on a System Reference Model

Manfred Broy
Institut für Informatik,

Technische Universität München
D-80290 München Germany

broy@in.tum.de

Abstract
Ensuring functional system safety comprises four major
tasks. First, all possible hazards and risks of incidents
with respect to functional safety have to be identified.
Second, the system requirements specification must be
shown to be valid in the sense that it excludes all the
hazards with sufficiently high probability. Third, it has to
be shown that the requirements are implemented
correctly. Fourth, it must be demonstrated that for the
implementation all possible failures of subsystems that
could lead to violations of the functional safety
requirements systems are excluded with a sufficiently
high probability. This way it has to be shown that the
specification and its implementation lead to an acceptable
risk in terms of probabilities of violations of safety
requirements. For a proper engineering of functional
safety we suggest the use of a rigorous modelling
framework. It consists of: a system modelling theory that
provides a number of modelling concepts that are
carefully related and integrated; a system reference
model; and a reference architecture structuring systems
into three levels of abstractions represented by views,
including a functional view, a logical subsystem view and
a technical view. It is demonstrated how, in this
framework, all kinds of safety issues are expressed,
analysed and traced; and how, due to the formalization of
the framework, safety problems are formally analysed,
specified and verified. .
Keywords: Functional Safety, Hazards, System
Modelling, Requirements, Specification, Design,
Architecture.

1 Introduction
It is well accepted by now that software intensive systems
- due to their functional power, their tight integration with
human machine interaction, their safety critical
functionality, and their additional complexity - bring in
essential challenges to guaranteeing functional safety.
Functional safety of systems addresses the general
requirement that there is only a bounded, calculable, and
acceptable risk that the usage of the system may result in
harm for the health and life of people or other assets.

We suggest a systematic concept to categorize
incidents and a comprehensive modelling approach to
support functional safety.

Copyright © 2012, Australian Computer Society, Inc. This
paper appeared at the Australian System Safety Conference
(ASSC 2012), held in Brisbane 23-25 May, 2012. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 145, Ed. Tony Cant. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

1.1 System Development Steps and their
Relation to Functional Safety

The development of systems follows a simple and clear
structure:

• REQU: elicitation, analysis, and documentation of
the requirements and their validation

• SPEC: functional specification of the system,
verification of the specification w.r.t. the
requirements

• ARCH: design of the architecture by decomposition
into subsystems called components and their
specification, verification of the architecture

• IMPL: implementation of the components and
verification according to their specification

• VEIN: integration and system verification
This structure is reflected in the tasks to guarantee
functional safety properties as follows:

• REQU: elicitation, analysis, and documentation of
the safety requirements and their validation

• SPEC: verification of safety requirements on the
basis of the functional specification

• ARCH: Failure-Modes-and-Effect Analysis (FMEA)
on the basis of the architecture – identification of
expected failures for components and their
probability, analysis of the effects of failures,
calculation of probabilities of failures and resulting
violations of safety requirements

• IMPL: implementation of the components according
to their specification, validation and verification of
probabilities as requested in the FMEA

• VEIN: integration and system safety verification
This shows how tightly issues of functional safety are
embedded into general system engineering steps, in
particular model-based engineering

1.2 A Systematic Approach to Safety Issues
In this section we classify hazards and incidents along the
lines of [Gleirscher 11].

1.2.1 Hazards and Incidents
A hazard characterizes a potential situation in the usage
of a system that represents a degree of threat to life,
health, property, or environment. A hazardous situation
that has happened in the operation of a system is called an
incident. A system is functionally safe if it is free of
hazards and therefore there is no risk of incidents.

There are two basic ways to define functional safety
for systems: empirical and analytical approaches. In an
empirical approach, we consider the statistics of systems
under operation with respect to incidents; in an analytic

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 27

approach we analyse a system with the goal to calculate
the risk of incidents.

1.2.2 An Empirical View onto Functional
Safety

There is obviously a clear pragmatic concept of
functional safety in connection with systems and their
operation. If we observe the operation of systems over a
certain period of time we realize if and how often
incidents happen and this way get an empirical
assessment of hazards, risk of incidents, and functional
safety.

In principle, in empirical approaches we do not need to
identify hazards (possible situations that represent a
degree of threat to life, health, property, or environment)
in advance, but may identify, collect, and classify hazards
as the result of empirical observations where hazards are
identified via observed incidents. This is much more easy
than to identify all hazards in advance, but cannot
guarantee functional safety, but only monitor and
evaluate functional safety during operation.

1.2.3 Analysing and Guaranteeing Functional
Safety

When designing systems with the potential for hazards
we have to exclude any unacceptable risk to come to the
conclusion that there does not exist a safety problem with
the system in operation. Clearly functional safety has the
goal to avoid unacceptable risk and hazardous situations.

A systematic approach in avoiding unacceptable risk
always consists of the following steps for a system under
development:
1. Specification of the operational context (as part of

domain modelling)
2. Identification of hazards
3. Specification of the system’s functional behaviour

excluding hazards
4. Analysis of possible defects and failures in the

system and its subsystems leading to hazards
5. Measures to reduce the unacceptable risk in the

system and its subsystems
If we follow such a systematic approach, we work with
the following views:
1. Context behaviour as specified
2. System behaviour as specified
3. System behaviour as realized with defects both of

systematic or probabilistic nature
4. Context assumptions and defects due to violations of

the assumptions about the operational context
We consider the following classification of hazards (and
related potential incidents) and their relation to
specifications:

 Specification Realization
Context Hazard not identified

and recognized in
context specification

Violation of
specification of
operational context

System Hazard not excluded
by system
specification

Violation of
specification of
system behaviour

All together we get the following classifications of
reasons for incidents due to hazards:
Classification of
incident

Cause of hazard

Hazard not
identified in
context
specification

Errors in the analysis of the set of
hazards and potential incidents;
hazards that were not recognized in
the elicitation of safety
requirements

Hazard not
excluded by
system
specification

Errors in the specification, either of
the system or of the operational
context, since the composition of
the ideal system behaviour and the
ideal operational context behaviour
still allow for hazards

Violation of
specification of
system behaviour

Hazards and risk of incidents due to
systematic or probabilistic failures
in the system and its subsystems

Violation of
specification of
operational
context

Hazards and risk of incidents due to
violations of the idealistic
assumptions about the context

A result of safety analysis should be probabilistically
formulated bounds for the risk of hazards and incidents –
bounds sufficient for the given safety requirements. If
hazards and incidents happen during the operation of
systems, we have to distinguish between: hazards and
incidents, that are a result of remaining risks, just as
analysed in the safety process; and hazards and risk of
incidents, that have to be seen as a result of faults in the
functional safety analysis.

Modelling techniques can help to analyse, in a
systematic manner, functional safety issues. However, as
we will show, we need a careful modelling of the system,
its possible defects, the operational context, the
assumptions about the operational context, and possible
violations of assumptions about the operational context.
The better such an approach is, the more reliable the
safety analysis is.

What we demand and describe is along the lines of
ISO 26262 which emphasizes:
NOTE 2 There is a difference between

to perform a function as required (stronger definition,
use-oriented) and

to perform a function as specified, so a failure can
result from an incorrect specification.
This citation taken from ISO 26262 underlines the fact
that a safety analysis falls short if it only shows the risk of
hazards due to violations of the behaviour in terms of a
function as specified; in contrast, a safety analysis also
has to guarantee the absence of hazards in the empirical
general sense as defined above. Note that there have been
a number of serious incidents, for instance in air traffic,
where systems reacted as specified, but the specifications
were not adequate for functional safety since they did not
match with the expectations of the pilots.

CRPIT Vol 145 (ASSC 2012)

Page 28

2 Modelling and Structuring Systems
In the following we introduce a short overview of system
modelling techniques and architectural views. Fig. 1
gives a schematic illustration of a system and its
operational context.

Figure 1: System and its Context

We use basically two frameworks for structured views
onto systems
• modelling theory
• structuring of systems into adequate levels of

abstraction
A key starting point is the fundamental concept of a
system. The modelling and architectural framework has
two parts:

• a family of mathematical and logical system

modelling concepts for systems, addressing the
notion of interface, state and architecture with two
models of behaviour:
o logical model: a system described in terms of

interface, architecture and state – we distinguish
between the interface view (black box view) and
a glass box view

o probabilistic model: a system described in terms
of probabilities for its behaviours – more
precisely probability distributions on sets of
possible behaviours.

• a structured set of views – sometimes called
comprehensive system architecture; it comprises the
following views:
o context
o functional view (structured system interface

behaviour):
- hierarchy of system functions with modes of

operation to capture their dependencies and
their context

- probability distribution on behaviours,
o subsystem architecture view: hierarchical structure

of subsystems (in terms of “logical components”),
o technical and physical view: electronic hardware,

software at design and runtime, mechanical and
physical hardware, and their connections.

The two modelling frameworks are related and described
in the following. We start by briefly introducing the
modelling theory; for details see [Broy 12].

2.1 The System Modelling Theory
Our approach uses a specific notion of discrete system
with the following characteristics and principles:
• A discrete system has a well-defined boundary that

determines its interface.
• Everything outside the system boundary is called the

system’s environment. Those parts of the environment
that are relevant for the system’s operation are called
the system’s operational context.

• A system’s interface describes the means by which
the system interacts with its context. The syntactic
interface defines the set of actions that can be
performed in interaction with a system over its
boundary. In our case syntactic interfaces are defined
by the set of input and output channels together with
their types. The input channels define the input
actions for a system while the output channels define
the output actions for a system.

• We distinguish between syntactic interface, also
called static interface, which describes the set of input
and output actions that can take place over the system
boundary and interface behaviour (also called
dynamical interface), which describes the system’s
functionality; the interface behaviour is captured by
the causal relationship between streams of actions
captured in the input and output histories. We give a
logical behaviour as well as a probabilistic behaviour
for systems.

• The interface behaviour of systems is described by:
logical expressions, called interface assertions; by
state machines; or it can be further decomposed into
architectures.

• A system has an internal structure. This structure is
described by in a state view by its state space with
state transitions and/or by its decomposition into
subsystems forming its architecture in case the system
can be decomposed correspondingly. The subsystems
interact and also provide the interaction with the
system’s context. The state machine and the
architecture associated with a system are called its
state view and its structural or architectural view
respectively.

• In a complementary view, the behaviours of systems
can be described by sets of traces, which are sets of
scenarios of input and output behaviour of systems.
We distinguish between finite and infinite scenarios.

• Moreover, systems operate in time. In our case we use
discrete time, which seems, in particular, adequate for
discrete systems. Subsystems operate concurrently
within architectures.

This gives a highly abstract and at the same time
comprehensive model of systems. This model briefly is
formalized in the following.

2.1.1 Data Models – Data Types
Data models define a set of data types and some basic
functions for them. A (data) type T is a name for a data
set. Let TYPE be the set of all data types.

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 29

2.1.2 Interface Behaviour
Systems have syntactic interfaces that are described by
their sets of input and output channels attributed by the
type of messages that are communicated over them.
Channels are used to connect systems to be able to
transmit messages between them. A set of typed channels
is a set of channels with a type given for each of its
channels.
Definition. Syntactic interface
Let I be a set of typed input channels and O be a set of
typed output channels. The pair (I, O) characterizes the
syntactic interface of a system. The syntactic interface is
denoted by (IO).

Figure 2: Graphical Representation of a System F as a
Data Flow Node

Fig. 2 shows the syntactic interface of a system F in a
graphical representation by a data flow node with its
syntactic interface consisting of the input channels x1, …,
xn of types S1, …, Sn and the output channels y1, …, ym of
types T1, …, Tm.
Definition. Timed Streams
Given a message set M of data elements of type T (M is
also called the carrier set of type T), we represent a timed
stream s of type T by a mapping
 s: IN \ {0} → M*
In a timed stream s a sequence s(t) of messages is given
for each time interval t ∈ IN \ {0}. In each time interval an
arbitrary, but finite number of messages may be
communicated. By (M*)∞ we denote the set of timed
infinite streams.
A (timed) channel history for a set of typed channels C
assigns to each channel c ∈ C a timed stream of messages
communicated over that channel.
Definition. Channel history
Let C be a set of typed channels; a (total) channel history
x is a mapping (let IM be the universe of all messages)

 x : C → (IN \{0} → IM∗)
such that x(c) is a timed stream of messages of the type of
channel c ∈ C.

€

C denotes the set of all total channel

histories for the channel set C.

For each history z ∈

€

C and each time t ∈ IN the

expression z↓t denotes the partial history (the initial
communication behavior on the channels) of z until time
t. z↓t yields a finite history for each of the channels in C
represented by a mapping
 C → ({1, …, t} → IM *)
z↓0 denotes the history with empty sequences associated
with each of its channels.

The behavior of a system with syntactic interface
(IO) is defined by a mapping that maps the input

histories in onto output histories in . This way we
get a functional model of a system interface behavior.
Definition. I/O-Behaviour
A causal mapping F: → ℘()is called an I/O-
behaviour. By IF[IO] we denote the set of all (total and
partial) I/O-behaviours with syntactic interface (IO) and
by IF the set of all I/O-behaviours.
Interface behaviours model system functionality. For
systems we assume that their interface behaviour is total.
Behaviours F may be deterministic (in this case, the set
F(x) of output histories has at most one element for each
input history x) or nondeterministic.

2.1.3 State Machines by State Transition
Functions

State machines with input and output describe system
implementations in terms of states and state transitions. A
state machine is defined by a state space and a state
transition function.
Definition. State Machine with Syntactic Interface (IO)
Given a state space Σ, a state machine (Δ, Λ) with input
and output according to the syntactic interface (IO)
consists of a set Λ ⊆ Σ of initial states as well as of a
nondeterministic state transition function
 Δ: (Σ × (I → IM*)) → ℘(Σ × (O → IM*))
For each state σ ∈ Σ and each valuation a: I → IM* of the
input channels in I by sequences of input messages every
pair (σ', b) ∈ Δ(σ, a) defines a successor state σ' and a
valuation b: O → IM* of the output channels consisting
of the sequences produced by the state transition. (Δ, Λ)
is a Mealy machine with possibly infinite state space. If in
every transition the output b depends on the state σ only
but never on the current input a, we speak of a Moore
machine.

2.1.4 Systems and their Functionality
Systems interact with their contexts via the channels of
their interfaces. We identify both systems by names. A
system named k has an interface, consisting of a syntactic
interface (IO) and interface behaviour

 Fk: → ℘()
The behaviour may be a combination of a larger number
of more elementary sub-function behaviours. Then we
speak of a multifunctional system.

Figure 3 Graphical Representation of a Function
Interface with the set of input channels I and the set of

output channels O

Let SID be the set of system names. A system named k ∈
SID is called statically interpreted in a system model or
in an architecture if only a syntactic interface (IkOk) is

 x 1 : S 1
x n : S n

y 1 : T 1
y m : T m

F

€

I

€

O

€

I

€

O

€

I

€

O

CRPIT Vol 145 (ASSC 2012)

Page 30

given for k and dynamically interpreted if an interface
behaviour Fk ∈ IF[IkOk] is specified for component k.

2.1.5 Architectures
In the following we assume that each system used in an
architecture as a component has a unique identifier k. Let
K be the set of identifiers for the components of an
architecture.
Definition. Set of Composable Interfaces
A set of component names K with a finite set of
interfaces (IkOk) for each identifier k ∈ K is called
composable, if the following propositions hold:
• the sets of input channels Ik, k ∈ K, are pairwise

disjoint,
• the sets of output channels Ok, k ∈ K, are pairwise

disjoint,
• the channels in {c ∈ Ik: k ∈ K } ∩ {c ∈ Ok: k ∈ K }

have consistent channel types in {c ∈ Ik: k ∈ K }
and {c ∈ Ok: k ∈ K }.

If channel names and types are not consistent for a set of
systems to be used as components we simply may rename
the channels to make them consistent.
Definition. Syntactic Architecture
A syntactic architecture A = (K, ξ) with interface
(IAOA) is given by a set K of component names with
composable syntactic interfaces ξ(k) = (IkOk) for k ∈ K.

IA = {c ∈ Ik: k ∈ K }\{c ∈ Ok: k ∈ K } denotes the set
of input channels of the architecture,
DA = {c ∈ Ok: k ∈ K } denotes the set of generated
channels of the architecture,
OA = DA \ {c ∈ Ik: k ∈ K } denotes the set of output
channels of the architecture,
DA\OA denotes the set of internal channels of the
architecture
CA = {c ∈ Ik: k ∈ K } ∪ {c ∈ Ok: k ∈ K } denotes the
set of all channels
By (IADA) we denote the syntactic internal interface
and by (IAOA) we denote the syntactic external
interface of the architecture.
A syntactic architecture forms a directed graph with its
components as its nodes and its channels as directed arcs.
The input channels in IA are ingoing arcs and the output
channels in OA are outgoing arcs for that graph.
Definition. Interpreted Architecture
An interpreted architecture (K, ψ) for a syntactic
architecture (K, ξ) associates an interface behavior ψ(k)
∈ IF[IkOk] for the syntactic interface ξ(k) = (IkOk),
with every component k ∈ K.
An architecture can be specified by a syntactic
architecture given by its set of subsystems and their
communication channels and an interface specification
for each of its components.

2.1.6 Probabilistic Interface View
We provide a probabilistic model for systems along the
lines of [Neubeck 12]. Given a set of typed channels C

we define a probability distribution for a set H ⊆

€

C by

the function
 µ: H → [0:1]
Let ℳ[

€

C] denote the set of all probability distributions

over sets H ⊆

€

C .

Given a behaviour

 F: → ℘()

its probabilistic behaviour is defined by a function

 DF: → ℳ()

where for every input history x ∈ by
DF(x)

we get a probability distribution for every input history x
∈
 µx: ℘(F(x)) → [0:1]
We get a probability µx(Y) by the function µ for every
measurable set Y ⊆ F(x) of output histories. This shows
that µ defines a probability distribution µx for every input
history x ∈ on its set F(x) of possible output histories.

2.2 Overall Structuring of Systems into Levels
of abstraction

We choose a systematic structuring of systems and their
contexts using the following categories.

Figure 4 Levels of Abstraction Taken from [Broy et al.
08]

We structure the properties of systems into a number of
views that are the result of viewpoints. We use three
fundamental views:

• usage: function and context
• design: (logical) subsystem structure
• implementation: technical, physical, syntactical

representation and realisation
Each view uses modelling concepts taken from a basic set
of modelling elements

• interface and interface behaviour in terms of the
interaction over the system boundaries

• architecture and architectural behaviour in terms
of structuring a system into a set of subsystems

€

I

€

O

€

I

€

O

€

I

€

I

€

I

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 31

and their connection by communication channels
and its interaction between the components and
over the system boundaries

• state and state transition behaviour in terms of
describing the state space of a system, its state
transitions triggered by interaction.

For behaviour we distinguish
• logical behaviour in terms of the correct patterns

of interaction
• probabilistic behaviour in terms of the

probability of certain patterns of interaction.
These different aspects of behaviour apply to all three
modelling concepts interface, state, and architecture.

3 Key Challenges for Functional System
Safety

As we can see from the categorization of incidents, in
hazard classification it is essential to analyse what can go
wrong at the level of the specification and design, and
what are the effects of failures of subsystems (as
identified by FMEA). In particular, it is essential to make
sure that, first of all, no potential hazards are overlooked
in domain modelling and that the functional specification
excludes all the hazards with sufficiently high probability.
In particular, a very difficult task is to find out to what
extent a particular system design may lead to failures in
its operational context; this includes especially errors of
humans operating the system.

There are quite a number of incidents, in particular in
avionics and perhaps less spectacular and less well
analysed also in the operation of other systems such as
cars, boats and trains that are due to wrong reactions by
their users, such as pilots. In these cases, the system
functions were specified and implemented in such a way
that users get confused and could not operate systems
properly as expected in particular situations and as
required by the identified user groups.

3.1 System Boundaries and Hazards
A hazard is due to certain critical events inside a system
or in its operational context. Therefore we distinguish two
categories of hazards for a system under safety analysis:

• Intrinsic hazards are hazards that result in incidents
inside a system; as an example take a battery together
with its control unit, which is a system that might
explode or catch fire

• Extrinsic hazards are due to incidents that happen in
the operational context of a system that are under the
control of the system; for example, the explosion of a
battery due to a fault in the control system is an
extrinsic hazard from the perspective of the control
system (where the battery is part of its operational
context).

In safety analysis we have to capture and analyse and
exclude both intrinsic and extrinsic hazards. Extrinsic
hazards are related to the interface behaviour and the
functionality of systems. Intrinsic hazards become
extrinsic if we change the scope and focus the system
under analysis such that the critical events are no longer
part of the system. An example is the shift of the focus
from a battery together with its control unit to the control

unit with the battery as part its operational context. The
change of scope is typically a result of design and system
decomposition.

3.2 Domain Modelling
One particular important issue to find out about hazards is
a very precise understanding, analysis, and modelling of
the system’s operational context. Typically incidents
happen in the operational context. There are two
difficulties that have to be mastered in domain modelling
as basis and part of safety analysis.

3.2.1 Identifying and Modelling Hazards
First of all we have to understand what potential hazards
are. So we have to carry out a careful analysis of the
environment and operational context to find out about
hazards. This is very much related to the task of
requirements engineering.

The similarities between hazard analysis and
identification and requirement analysis and identification
are obvious. It is a difficult issue to find out about all the
actual requirements. Forgetting a requirement leads to a
system that does not fulfil the user expectations in some
respects. In analogy, overlooking a possible hazard leads
to a safety analysis in which no measures are undertaken
to ensure that this overlooked hazard is not happening or
that the probability of it happening is low enough. There
are quite a number of practical examples where such a
problem has happened (example: Titanic).

In both cases of requirements engineering and hazard
analysis the completeness of a specification cannot be
verified but has to be checked by validation. A careful
validation of the result of the hazard analysis and
identification is mandatory. [Gleirscher 11] discusses
environment modelling for hazard analysis and for
hazard-oriented derivation of scenarios for specification
validation and system testing.

3.2.2 Relating Domain Specific Levels of
Abstraction

A particular difficulty results from the different levels of
abstraction for the formulation of safety requirements.
Fig. 5 shows schematically four chunks of system
properties from an example inspired by [Kondeva 12].

TATL: Translation: Abstract/technical Level
…
doors_closed ⇔ latches_locked
aircraft_inflight ⇔ landing_gear_without_weight
…

SRAL: Safety Requirements: Abstract Level
…
aircraft_inflight ⇒ doors_closed
…

SRTL: Safety Requirements: Technical Level
…
Landing_gear_without_weight ⇒ latches_locked
 …

TT: Technical Threads
…
vibrations ⇒ ¬latches_locked
...

Figure 5 Safety Requirements: From Abstract to
Technical Level and Threats at Technical Level

At the abstract level safety requirements are formulated in
application domain oriented language addressing key
concepts and notions of the application domain. At the

CRPIT Vol 145 (ASSC 2012)

Page 32

technical level the same safety requirement is expressed
in technical terms. This “translation” is not as simple as
the one in the illustration. As stated above, it is an
inference, based on the architectural structure and the
behaviour of the subsystems in the structure. There is no
chance to produce this manually (see [Struss, Fraracci
11], [Struss 11]). This has to be generated, and this is
exactly what model-based prediction for the physical
components has to deliver. We need a translation of the
abstract safety requirements into the technical ones in
terms of logical assertions that formalize this relationship.
This relation is part of the domain model. We have to
show
 SRTL ∧ TATL ⇒ SRAL
(see the example in Fig. 5). Then, on the technical level,
additional technical threats have to be and can be
identified that are hard or even impossible to find at the
abstract level. In the example in Fig. 5 we get some
inconsistency and thus a contradiction to safety
requirements in SRTL if we assume that there may
vibrations while the aircraft is in flight that they in term
might unlock the latches. Such inconsistencies can be
checked and found by SAT solvers.

Of course, this change of levels of abstraction
typically continues. At the technical level, there does not
exist the signal “Landing_gear_without_weight”. There
exists: “no signal at the pin connected to the weight
sensor”. This technical view is essential in order to
analyse the impact of a broken weight sensor, open wires
and connectors between sensor and ECU, shorts of the
wires, etc.

3.3 Modelling Context, HMI and Safety
Hazards can only be caused by a system in the interaction
between the system and its operational context.

3.3.1 Hazards as Result of the Interaction
between Systems and their Operational
Context

Another issue is to understand how such hazards in the
operational context are triggered by the system. This
leads to the necessity to have a kind of a formalisation of
the interaction between the operational context and the
system.

 Sensor

analog-
digital

converter

logical
input

l
function logics

Actuator

digital-
analog

converter

Modes

Modes

logical
output

Figure. 6 Schematic split of a function in hybrid pre- and
post-processing

More precisely we have to model the operational context
including extrinsic hazards and incidents as they may
appear in the operational context. Only if such modelling
is done in a sufficiently formal way, we can start to get
estimations of the bounds on the risk of incidents and
hazards (see [Struss, Fraracci 11]).

3.3.2 Hazards as Result of the Interaction
between Systems and Their Users

Clearly, such a modelling can be very difficult because
the operational context, in particular, has to deal with the
user interface and the way users operate a system. In
principle, we have to look at issues such as: “what is the
probability that a user presses a wrong button in a
particular situation?” and to find out what is the
psychological analysis that is needed to speak about those
probabilities.

This shows that in the analysis of functional safety the
logical and the technical user interface have to be looked
at and analysed very carefully.

Second we have to deal with issues in approaches like
use case analysis. One way to do this would be to identify
intrinsic and extrinsic hazards and then to develop a
number of anti-use-cases that describe scenarios of
hazards happening and to analyse what are the
possibilities to avoid these hazards. All this activity can
be and must be done quite independently of the question
of the necessary and additional FMEA to make sure that
the system as specified with an operational context as
modelled does the right thing. Today, in practice,
functional safety analysis is often too much focused onto
FMEA and vulnerability impact analysis with the danger
to miss hazards that are not due to defects of subsystems.

3.4 Functional Modularity and Extrinsic
Hazards

Note that strictly speaking, in terms of extrinsic hazards,
it is not the system that is safety critical but its functions.
In fact, in a safety analysis we have to identify the safety
criticality of the functions. This goes hand in hand with
modelling the operational context; we can see how the
functions are connected to the operational context and
which of the functions may cause hazards. In addition, we
have to consider a number of failure assumptions for the
functions that have to be related to FMEA and then find
out which are the functions and the output provided by
those functions as safety critical aspects. Then we can
analyse which error deviations of functions we can
tolerate and which error deviations we cannot tolerate and
where we have to be sure that they can happen only with
a certain sufficiently low probability.

Today we typically deal with so-called multi-
functional systems. These are systems that introduce and
offer a large number of different functions as pointed out
in [Broy 10]. These functions have to be specified in a
modular way, in spite of the fact that they are usually not
logically independent. There are behavioural dependences
between these functions. When mastering the
specification of systems from a safety point of view, we
have to deal with the different functions that are part of
the functionalities.

As shown in [Broy 10] it is possible to identify and
specify dependences between functions. If there is a
function F that depends on another function F’ and if the
dependency of these functions may lead to hazards then
the function F’ (which, considered in isolation, is not
safety critical) has to be treated as a safety critical
function, if the dependency may lead to extrinsic hazards.
More precisely, using these dependencies we can

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 33

introduce a directed dependency graph with functions as
nodes. Then we identify the functions that are safety
critical. This way we to stick to a kind of propagation and
inheritance of safety criticality levels such that a highly
safety critical function F may pass on its safety level to
functions F’ that show dependencies to F.

3.5 Tracing and Safety#
Finally, in standards for functional safety, tracing is
required for safety critical functions. Unfortunately, what
we see as a foundation of tracing in the scientific
literature so far is not sufficient. Based on the proposed
modelling framework, a very rigorous approach to tracing
is possible by representing all the properties of systems
within a formalised logical framework. This way we can
introduce a completely formalised concept of tracing.

In doing so we get a precise concept of what tracing is.
In particular, we can study traces between general
requirements, functional specification and architectural
decomposition. Such an approach provides a firm
framework for defining what traces are but at the same
time it addresses the question of how dense traces are and
how many traces we need. By the approach we see how
difficult and complex tracing is. Here we need more
research and also empirical studies.

Figure 7 Tracing between Requirements, Functional

Hierarchy, and Logical Subsystem Architecture

Recently, we have performed a number of empirical
studies about dependencies between functions in trucks to
find out about how many dependencies we can expect
between those functions. Similar numbers are not
available for dependencies between requirements,
functional specification, and architecture.

4 Summary and Outlook
We have introduced and sketched a rigorous framework
of modelling that allows us to capture logical and
probabilistic properties at different levels of abstraction.
We believe that such a rigorous framework allows for
modelling that can be used both for system specification,
design and implementation, for verification including test
case generation, for safety analysis as well as for
diagnoses.

Using a rigorous modelling approach we model the
system as well as its operational context. We recommend
to distinguish and to model intrinsic as well as extrinsic
hazards. We, in particular, recommend validating the

specification carefully to make sure that hazards are not
implied by it. Doing so, we can apply all kinds of
automatic analysis and verification techniques to deal
with functional safety. In any case, the quality of
functional safety analysis depends on the expressive
power and the adequate application of the modelling
techniques and methods.

Acknowledgements
It is a pleasure to acknowledge helpful and stimulating
discussions with Mario Gleirscher, Antoaneta Kondeva,
and Peter Struss.

5 References
M. Broy: The ‚Grand Challenge’ in Informatics:

Engineering Software-Intensive Systems. IEEE
Computer, Oktober 2006, 72–80

M. Broy, I. Krüger, M. Meisinger: A Formal Model of
Services. TOSEM - ACM Trans. Softw. Eng.
Methodol. 16:1 Feb. 2007

M. Broy: Model-driven architecture-centric engineering
of (embedded) software intensive systems: modelling
theories and architectural milestones. Innovations Syst.
Softw. Eng. 3:1, 2007, 75-102

M. Broy: Multifunctional Software Systems: Structured
Modeling and Specification of Functional
Requirements. Science of Computer Programming 75
(2010), S. 1193–1214

M. Broy: Software and System Modeling: Structured
Multi-view Modeling, Specification, Design and
Implementation. In: Conquering Complexity, edited by
Mike Hinchey and Lorcan Coyle, Springer Verlag,
January 2012, S. 309-372

M. Broy, M. Feilkas, J. Grünbauer, A. Gruler, A.
Harhurin, J. Hartmann, B. Penzenstadler, B. Schätz, D.
Wild: Umfassendes Architekturmodell für das
Engineering eingebetteter Software-intensiver Systeme.
Technische Universität München, Institut für
Informatik 2008, TUM-I0816 (Technical Report)

M. Gleirscher: Hazard-based Selection of Test Cases. In:
Proc. 6th ICSE Workshop on Automation of Software
Test (AST'11), May 2011

M. Gleirscher: Behavioural Safety of Software-controlled
Physical Systems. Ph.d. Thesis forthcoming 2012

A. Kondeva: Safety-based Requirements Engineering:
Systematic refinement and specification of safety
requirements in the avionic domain. Ph. D. Thesis
forthcoming 2012

P. R. Neubeck: A Probabilitistic Theory of Interactive
Systems. Ph. D. Thesis forthcoming 2012

P. Struss, A. Fraracci: FMEA of a Braking System - A
Kingdom for a Qualitative Valve Model. In: 25th
International Workshop on Qualitative Reasoning,
Barcelona, Spain, 2011

P. Struss: Automated Failure-modes-and-effects Analysis
of Embedded Software (Extended Abstract). In: 2nd
International Workshop on Software Health
Management, SHM-2011/4th IEEE International
Conference on Space Mission Challenges for
Information Technology (SMC-IT), Palo Alto, 2011

System Safety Based on SysRefMod - 14 - 30.04.2012

Manfred Broy SysSafetyBasedSysModV0.6.doc

Fig. 7 Tracing between Requirements, Functional Hierarchy, and Logical Subsystem Architecture

Recently, we have performed a number of empirical studies about dependencies between functions in
trucks to find out about how many dependencies we can expect between those functions. Similar
numbers are not available for dependencies between requirements, functional specification, and
architecture.

4 Summary and Outlook
We have introduced and sketched a rigorous framework of modelling that allows us to capture logical
and probabilistic properties at different levels of abstraction. We believe that such a rigorous
framework allows for modelling that can be used both for system specification, design and
implementation, for verification including test case generation, for safety analysis as well as for
diagnoses.

Using a rigorous modelling approach we model the system as well as its operational context. We
recommend to distinguish and to model intrinsic as well as extrinsic hazards. We, in particular,
recommend validating the specification carefully to make sure that hazards are not implied by it. Doing
so, we can apply all kinds of automatic analysis and verification techniques to deal with functional
safety. In any case, the quality of functional safety analysis depends on the expressive power and the
adequate application of the modelling techniques and methods.

Acknowledgements

It is a pleasure to acknowledge helpful and stimulating discussions with Mario Gleirscher, Antoaneta
Kondeva, and Peter Struss.

CRPIT Vol 145 (ASSC 2012)

Page 34

