
Functional Safety based on a System Reference Model 

Manfred Broy 
Institut für Informatik,  

Technische Universität München 
D-80290 München Germany 

broy@in.tum.de 

 

Abstract 
Ensuring functional system safety comprises four major 
tasks. First, all possible hazards and risks of incidents 
with respect to functional safety have to be identified. 
Second, the system requirements specification must be 
shown to be valid in the sense that it excludes all the 
hazards with sufficiently high probability. Third, it has to 
be shown that the requirements are implemented 
correctly. Fourth, it must be demonstrated that for the 
implementation all possible failures of subsystems that 
could lead to violations of the functional safety 
requirements systems are excluded with a sufficiently 
high probability. This way it has to be shown that the 
specification and its implementation lead to an acceptable 
risk in terms of probabilities of violations of safety 
requirements. For a proper engineering of functional 
safety we suggest the use of a rigorous modelling 
framework. It consists of: a system modelling theory that 
provides a number of modelling concepts that are 
carefully related and integrated; a system reference 
model; and a reference architecture structuring systems 
into three levels of abstractions represented by views, 
including a functional view, a logical subsystem view and 
a technical view. It is demonstrated how, in this 
framework, all kinds of safety issues are expressed, 
analysed and traced; and how, due to the formalization of 
the framework, safety problems are formally analysed, 
specified and verified. . 
Keywords:  Functional Safety, Hazards, System 
Modelling, Requirements, Specification, Design, 
Architecture. 

1 Introduction 
It is well accepted by now that software intensive systems 
- due to their functional power, their tight integration with 
human machine interaction, their safety critical 
functionality, and their additional complexity - bring in 
essential challenges to guaranteeing functional safety. 
Functional safety of systems addresses the general 
requirement that there is only a bounded, calculable, and 
acceptable risk that the usage of the system may result in 
harm for the health and life of people or other assets. 

We suggest a systematic concept to categorize 
incidents and a comprehensive modelling approach to 
support functional safety. 

                                                             
Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the Australian System Safety Conference 
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in Research and Practice in Information Technology (CRPIT), 
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1.1 System Development Steps and their 
Relation to Functional Safety 

The development of systems follows a simple and clear 
structure: 

• REQU: elicitation, analysis, and documentation of 
the requirements and their validation 

• SPEC: functional specification of the system, 
verification of the specification w.r.t. the 
requirements 

• ARCH: design of the architecture by decomposition 
into subsystems called components and their 
specification, verification of the architecture 

• IMPL: implementation of the components and 
verification according to their specification  

• VEIN: integration and system verification 
This structure is reflected in the tasks to guarantee 
functional safety properties as follows: 

• REQU: elicitation, analysis, and documentation of 
the safety requirements and their validation 

• SPEC: verification of safety requirements on the 
basis of the functional specification 

• ARCH: Failure-Modes-and-Effect Analysis (FMEA) 
on the basis of the architecture – identification of 
expected failures for components and their 
probability, analysis of the effects of failures, 
calculation of probabilities of failures and resulting 
violations of safety requirements 

• IMPL: implementation of the components according 
to their specification, validation and verification of 
probabilities as requested in the FMEA 

• VEIN: integration and system safety verification 
This shows how tightly issues of functional safety are 
embedded into general system engineering steps, in 
particular model-based engineering 

1.2 A Systematic Approach to Safety Issues 
In this section we classify hazards and incidents along the 
lines of [Gleirscher 11]. 

1.2.1 Hazards and Incidents 
A hazard characterizes a potential situation in the usage 
of a system that represents a degree of threat to life, 
health, property, or environment. A hazardous situation 
that has happened in the operation of a system is called an 
incident. A system is functionally safe if it is free of 
hazards and therefore there is no risk of incidents. 

There are two basic ways to define functional safety 
for systems: empirical and analytical approaches. In an 
empirical approach, we consider the statistics of systems 
under operation with respect to incidents; in an analytic 
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approach we analyse a system with the goal to calculate 
the risk of incidents. 

1.2.2 An Empirical View onto Functional 
Safety 

There is obviously a clear pragmatic concept of 
functional safety in connection with systems and their 
operation. If we observe the operation of systems over a 
certain period of time we realize if and how often 
incidents happen and this way get an empirical 
assessment of hazards, risk of incidents, and functional 
safety. 

In principle, in empirical approaches we do not need to 
identify hazards (possible situations that represent a 
degree of threat to life, health, property, or environment) 
in advance, but may identify, collect, and classify hazards 
as the result of empirical observations where hazards are 
identified via observed incidents. This is much more easy 
than to identify all hazards in advance, but cannot 
guarantee functional safety, but only monitor and 
evaluate functional safety during operation. 

1.2.3 Analysing and Guaranteeing Functional 
Safety 

When designing systems with the potential for hazards 
we have to exclude any unacceptable risk to come to the 
conclusion that there does not exist a safety problem with 
the system in operation. Clearly functional safety has the 
goal to avoid unacceptable risk and hazardous situations. 

A systematic approach in avoiding unacceptable risk 
always consists of the following steps for a system under 
development:  
1. Specification of the operational context (as part of 

domain modelling) 
2. Identification of hazards  
3. Specification of the system’s functional behaviour 

excluding hazards 
4. Analysis of possible defects and failures in the 

system and its subsystems leading to hazards 
5. Measures to reduce the unacceptable risk in the 

system and its subsystems 
If we follow such a systematic approach, we work with 
the following views: 
1. Context behaviour as specified 
2. System behaviour as specified 
3. System behaviour as realized with defects both of 

systematic or probabilistic nature 
4. Context assumptions and defects due to violations of 

the assumptions about the operational context 
We consider the following classification of hazards (and 
related potential incidents) and their relation to 
specifications: 

 
 Specification Realization 
Context  Hazard not identified 

and recognized in 
context specification 

Violation of 
specification of 
operational context 

System Hazard not excluded 
by system 
specification 

Violation of 
specification of 
system behaviour 

All together we get the following classifications of 
reasons for incidents due to hazards: 
Classification of 
incident 

Cause of hazard 

Hazard not 
identified in 
context 
specification 

Errors in the analysis of the set of 
hazards and potential incidents; 
hazards that were not recognized in 
the elicitation of safety 
requirements 

Hazard not 
excluded by 
system 
specification 

Errors in the specification, either of 
the system or of the operational 
context, since the composition of 
the ideal system behaviour and the 
ideal operational context behaviour 
still allow for hazards 

Violation of 
specification of 
system behaviour 

Hazards and risk of incidents due to 
systematic or probabilistic failures 
in the system and its subsystems 

Violation of 
specification of 
operational 
context 

Hazards and risk of incidents due to 
violations of the idealistic 
assumptions about the context 

A result of safety analysis should be probabilistically 
formulated bounds for the risk of hazards and incidents – 
bounds sufficient for the given safety requirements. If 
hazards and incidents happen during the operation of 
systems, we have to distinguish between: hazards and 
incidents, that are a result of remaining risks, just as 
analysed in the safety process; and hazards and risk of 
incidents, that have to be seen as a result of faults in the 
functional safety analysis. 

Modelling techniques can help to analyse, in a 
systematic manner, functional safety issues. However, as 
we will show, we need a careful modelling of the system, 
its possible defects, the operational context, the 
assumptions about the operational context, and possible 
violations of assumptions about the operational context. 
The better such an approach is, the more reliable the 
safety analysis is.  

What we demand and describe is along the lines of 
ISO 26262 which emphasizes: 
NOTE 2 There is a difference between  

to perform a function as required (stronger definition, 
use-oriented) and  

to perform a function as specified, so a failure can 
result from an incorrect specification. 
This citation taken from ISO 26262 underlines the fact 
that a safety analysis falls short if it only shows the risk of 
hazards due to violations of the behaviour in terms of a 
function as specified; in contrast, a safety analysis also 
has to guarantee the absence of hazards in the empirical 
general sense as defined above. Note that there have been 
a number of serious incidents, for instance in air traffic, 
where systems reacted as specified, but the specifications 
were not adequate for functional safety since they did not 
match with the expectations of the pilots. 
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2 Modelling and Structuring Systems 
In the following we introduce a short overview of system 
modelling techniques and architectural views. Fig. 1 
gives a schematic illustration of a system and its 
operational context. 

 
Figure 1: System and its Context 

We use basically two frameworks for structured views 
onto systems 
• modelling theory 
• structuring of systems into adequate levels of 

abstraction 
A key starting point is the fundamental concept of a 
system. The modelling and architectural framework has 
two parts:  
 
• a family of mathematical and logical system 

modelling concepts for systems, addressing the 
notion of interface, state and architecture with two 
models of behaviour:  
o logical model: a system described in terms of 

interface, architecture and state – we distinguish 
between the interface view (black box view) and 
a glass box view 

o probabilistic model: a system described in terms 
of probabilities for its behaviours – more 
precisely probability distributions on sets of 
possible behaviours.  

• a structured set of views – sometimes called 
comprehensive system architecture; it comprises the 
following views: 
o context  
o functional view (structured system interface 

behaviour):   
- hierarchy of system functions with modes of 

operation to capture their dependencies and 
their context 

- probability distribution on behaviours,  
o subsystem architecture view: hierarchical structure 

of subsystems (in terms of “logical components”), 
o technical and physical view: electronic hardware, 

software at design and runtime, mechanical and 
physical hardware, and their connections. 

The two modelling frameworks are related and described 
in the following. We start by briefly introducing the 
modelling theory; for details see [Broy 12]. 
 

2.1 The System Modelling Theory 
Our approach uses a specific notion of discrete system 
with the following characteristics and principles:  
• A discrete system has a well-defined boundary that 

determines its interface.  
• Everything outside the system boundary is called the 

system’s environment. Those parts of the environment 
that are relevant for the system’s operation are called 
the system’s operational context. 

• A system’s interface describes the means by which 
the system interacts with its context. The syntactic 
interface defines the set of actions that can be 
performed in interaction with a system over its 
boundary. In our case syntactic interfaces are defined 
by the set of input and output channels together with 
their types. The input channels define the input 
actions for a system while the output channels define 
the output actions for a system. 

• We distinguish between syntactic interface, also 
called static interface, which describes the set of input 
and output actions that can take place over the system 
boundary and interface behaviour (also called 
dynamical interface), which describes the system’s 
functionality; the interface behaviour is captured by 
the causal relationship between streams of actions 
captured in the input and output histories. We give a 
logical behaviour as well as a probabilistic behaviour 
for systems.  

• The interface behaviour of systems is described by: 
logical expressions, called interface assertions; by 
state machines; or it can be further decomposed into 
architectures.  

• A system has an internal structure. This structure is 
described by in a state view by its state space with 
state transitions and/or by its decomposition into 
subsystems forming its architecture in case the system 
can be decomposed correspondingly. The subsystems 
interact and also provide the interaction with the 
system’s context. The state machine and the 
architecture associated with a system are called its 
state view and its structural or architectural view 
respectively.  

• In a complementary view, the behaviours of systems 
can be described by sets of traces, which are sets of 
scenarios of input and output behaviour of systems. 
We distinguish between finite and infinite scenarios. 

• Moreover, systems operate in time. In our case we use 
discrete time, which seems, in particular, adequate for 
discrete systems. Subsystems operate concurrently 
within architectures. 

This gives a highly abstract and at the same time 
comprehensive model of systems. This model briefly is 
formalized in the following. 

2.1.1 Data Models – Data Types 
Data models define a set of data types and some basic 
functions for them. A (data) type T is a name for a data 
set. Let TYPE be the set of all data types. 
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2.1.2 Interface Behaviour 
Systems have syntactic interfaces that are described by 
their sets of input and output channels attributed by the 
type of messages that are communicated over them. 
Channels are used to connect systems to be able to 
transmit messages between them. A set of typed channels 
is a set of channels with a type given for each of its 
channels. 
Definition. Syntactic interface 
Let I be a set of typed input channels and O be a set of 
typed output channels. The pair (I, O) characterizes the 
syntactic interface of a system. The syntactic interface is 
denoted by (IO).   

 

 
 

Figure 2: Graphical Representation of a System F as a 
Data Flow Node  

Fig. 2 shows  the syntactic interface of a system F in a 
graphical representation by a data flow node with its 
syntactic interface consisting of the input channels x1, …, 
xn of types S1, …, Sn and the output channels y1, …, ym of 
types T1, …, Tm.  
Definition. Timed Streams 
Given a message set M of data elements of type T (M is 
also called the carrier set of type T), we represent a timed 
stream s of type T by a mapping  
 s: IN \ {0} → M* 
In a timed stream s a sequence s(t) of messages is given 
for each time interval t ∈ IN \ {0}. In each time interval an 
arbitrary, but finite number of messages may be 
communicated. By (M*)∞ we denote the set of timed 
infinite streams.   
A (timed) channel history for a set of typed channels C 
assigns to each channel c ∈ C a timed stream of messages 
communicated over that channel.  
Definition. Channel history 
Let C be a set of typed channels; a (total) channel history 
x is a mapping (let  IM be the universe of all messages)  

 x : C → (IN \{0} →  IM∗) 
such that x(c) is a timed stream of messages of the type of 
channel c ∈ C.     

€ 

 
C  denotes the set of all total channel 

histories for the channel set C.  

For each history z ∈      

€ 

 
C  and each time t ∈ IN the 

expression z↓t denotes the partial history (the initial 
communication behavior on the channels) of z until time 
t. z↓t yields a finite history for each of the channels in C 
represented by a mapping  
 C → ({1, …, t} → IM *)  
z↓0 denotes the history with empty sequences associated 
with each of its channels.  

The behavior of a system with syntactic interface 
(IO) is defined by a mapping that maps the input 

histories in  onto output histories in . This way we 
get a functional model of a system interface behavior.  
Definition. I/O-Behaviour  
A causal mapping F:  → ℘( )is called an I/O-
behaviour. By IF[IO] we denote the set of all (total and 
partial) I/O-behaviours with syntactic interface (IO) and 
by IF the set of all I/O-behaviours.   
Interface behaviours model system functionality. For 
systems we assume that their interface behaviour is total. 
Behaviours F may be deterministic (in this case, the set 
F(x) of output histories has at most one element for each 
input history x) or nondeterministic. 

2.1.3 State Machines by State Transition 
Functions 

State machines with input and output describe system 
implementations in terms of states and state transitions. A 
state machine is defined by a state space and a state 
transition function. 
Definition. State Machine with Syntactic Interface (IO)  
Given a state space Σ, a state machine (Δ, Λ) with input 
and output according to the syntactic interface (IO) 
consists of a set Λ ⊆ Σ of initial states as well as of a 
nondeterministic state transition function 
 Δ: (Σ × (I → IM*)) → ℘(Σ × (O → IM*))  
For each state σ ∈ Σ and each valuation a: I → IM* of the 
input channels in I by sequences of input messages every 
pair (σ', b) ∈ Δ(σ, a) defines a successor state σ' and a 
valuation b: O → IM* of the output channels consisting 
of the sequences produced by the state transition. (Δ, Λ) 
is a Mealy machine with possibly infinite state space. If in 
every transition the output b depends on the state σ only 
but never on the current input a, we speak of a Moore 
machine. 

2.1.4 Systems and their Functionality 
Systems interact with their contexts via the channels of 
their interfaces. We identify both systems by names. A 
system named k has an interface, consisting of a syntactic 
interface (IO) and interface behaviour  

 Fk:  → ℘( ) 
The behaviour may be a combination of a larger number 
of more elementary sub-function behaviours. Then we 
speak of a multifunctional system. 
 

 
 

Figure 3 Graphical Representation of a Function 
Interface with the set of input channels I and the set of 

output channels O 

Let SID be the set of system names. A system named k ∈ 
SID is called statically interpreted in a system model or 
in an architecture if only a syntactic interface (IkOk) is 

 x 1 : S 1 
x n : S n 

y 1 : T 1 
y m : T m 

F 
  

    

€ 

 
I     

€ 

 
O 
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I     
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given for k and dynamically interpreted if an interface 
behaviour Fk ∈ IF[IkOk] is specified for component k. 

 

2.1.5 Architectures 
In the following we assume that each system used in an 
architecture as a component has a unique identifier k. Let 
K be the set of identifiers for the components of an 
architecture. 
Definition. Set of Composable Interfaces 
A set of component names K with a finite set of 
interfaces (IkOk) for each identifier k ∈ K is called 
composable, if the following propositions hold:  
• the sets of input channels Ik, k ∈ K, are pairwise 

disjoint, 
• the sets of output channels Ok, k ∈ K, are pairwise 

disjoint, 
• the channels in {c ∈ Ik: k ∈ K } ∩ {c ∈ Ok: k ∈ K } 

have consistent channel types in {c ∈ Ik: k ∈ K } 
and {c ∈ Ok: k ∈ K }.  

If channel names and types are not consistent for a set of 
systems to be used as components we simply may rename 
the channels to make them consistent. 
Definition. Syntactic Architecture  
A syntactic architecture A = (K, ξ) with interface 
(IAOA) is given by a set K of component names with 
composable syntactic interfaces ξ(k) = (IkOk) for k ∈ K.  

IA = {c ∈ Ik: k ∈ K }\{c ∈ Ok: k ∈ K } denotes the set 
of input channels of the architecture, 
DA = {c ∈ Ok:  k ∈ K } denotes the set of generated 
channels of the architecture, 
OA = DA \ {c ∈ Ik: k ∈ K } denotes the set of output 
channels of the architecture,  
DA\OA denotes the set of internal channels of the 
architecture 
CA = {c ∈ Ik: k ∈ K } ∪ {c ∈ Ok: k ∈ K } denotes the 
set of all channels 
By (IADA) we denote the syntactic internal interface 
and by (IAOA) we denote the syntactic external 
interface of the architecture.   
A syntactic architecture forms a directed graph with its 
components as its nodes and its channels as directed arcs. 
The input channels in IA are ingoing arcs and the output 
channels in OA are outgoing arcs for that graph.  
Definition. Interpreted Architecture  
An interpreted architecture (K, ψ) for a syntactic 
architecture (K, ξ) associates an interface behavior ψ(k) 
∈ IF[IkOk] for the syntactic interface ξ(k) = (IkOk), 
with every component k ∈ K.   
An architecture can be specified by a syntactic 
architecture given by its set of subsystems and their 
communication channels and an interface specification 
for each of its components. 

2.1.6 Probabilistic Interface View 
We provide a probabilistic model for systems along the 
lines of [Neubeck 12]. Given a set of typed channels C 

we define a probability distribution for a set H ⊆     

€ 

 
C  by 

the function 
 µ: H → [0:1]  
Let ℳ[    

€ 

 
C ] denote the set of all probability distributions 

over sets H ⊆     

€ 

 
C . 

Given a behaviour 

 F:  → ℘( ) 

its probabilistic behaviour is defined by a function 

 DF:  → ℳ( ) 

where for every input history x ∈  by 
DF(x)  

we get a probability distribution for every input history x 
∈  
 µx: ℘(F(x)) → [0:1]  
We get a probability µx(Y) by the function µ for every 
measurable set Y ⊆ F(x) of output histories. This shows 
that µ defines a probability distribution µx for every input 
history x ∈  on its set F(x) of possible output histories. 

2.2 Overall Structuring of Systems into Levels 
of abstraction 

We choose a systematic structuring of systems and their 
contexts using the following categories.  

 

 
 

Figure 4 Levels of Abstraction Taken from [Broy et al. 
08]  

We structure the properties of systems into a number of 
views that are the result of viewpoints. We use three 
fundamental views: 

• usage: function and context 
• design: (logical ) subsystem structure 
• implementation: technical, physical, syntactical 

representation and realisation 
Each view uses modelling concepts taken from a basic set 
of modelling elements 

• interface and interface behaviour in terms of the 
interaction over the system boundaries 

• architecture and architectural behaviour in terms 
of structuring a system into a set of subsystems 
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and their connection by communication channels 
and its interaction between the components and 
over the system boundaries 

• state and state transition behaviour in terms of 
describing the state space of a system, its state 
transitions triggered by interaction. 

For behaviour we distinguish 
• logical behaviour in terms of the correct patterns 

of interaction 
• probabilistic behaviour in terms of the 

probability of certain patterns of interaction. 
These different aspects of behaviour apply to all three 
modelling concepts interface, state, and architecture. 

3 Key Challenges for Functional System 
Safety 

As we can see from the categorization of incidents, in 
hazard classification it is essential to analyse what can go 
wrong at the level of the specification and design, and 
what are the effects of failures of subsystems (as 
identified by FMEA). In particular, it is essential to make 
sure that, first of all, no potential hazards are overlooked 
in domain modelling and that the functional specification 
excludes all the hazards with sufficiently high probability. 
In particular, a very difficult task is to find out to what 
extent a particular system design may lead to failures in 
its operational context; this includes especially errors of 
humans operating the system. 

There are quite a number of incidents, in particular in 
avionics and perhaps less spectacular and less well 
analysed also in the operation of other systems such as 
cars, boats and trains that are due to wrong reactions by 
their users, such as pilots.  In these cases, the system 
functions were specified and implemented in such a way 
that users get confused and could not operate systems 
properly as expected in particular situations and as 
required by the identified user groups. 

3.1 System Boundaries and Hazards 
A hazard is due to certain critical events inside a system 
or in its operational context. Therefore we distinguish two 
categories of hazards for a system under safety analysis: 

• Intrinsic hazards are hazards that result in incidents 
inside a system; as an example take a battery together 
with its control unit, which is a system that might 
explode or catch fire  

• Extrinsic hazards are due to incidents that happen in 
the operational context of a system that are under the 
control of the system; for example, the explosion of a 
battery due to a fault in the control system is an 
extrinsic hazard from the perspective of the control 
system (where the battery is part of its operational 
context). 

In safety analysis we have to capture and analyse and 
exclude both intrinsic and extrinsic hazards. Extrinsic 
hazards are related to the interface behaviour and the 
functionality of systems. Intrinsic hazards become 
extrinsic if we change the scope and focus the system 
under analysis such that the critical events are no longer 
part of the system. An example is the shift of the focus 
from a battery together with its control unit to the control 

unit with the battery as part its operational context. The 
change of scope is typically a result of design and system 
decomposition. 

3.2  Domain Modelling 
One particular important issue to find out about hazards is 
a very precise understanding, analysis, and modelling of 
the system’s operational context. Typically incidents 
happen in the operational context. There are two 
difficulties that have to be mastered in domain modelling 
as basis and part of safety analysis. 

3.2.1 Identifying and Modelling Hazards 
First of all we have to understand what potential hazards 
are. So we have to carry out a careful analysis of the 
environment and operational context to find out about 
hazards. This is very much related to the task of 
requirements engineering.  

The similarities between hazard analysis and 
identification and requirement analysis and identification 
are obvious. It is a difficult issue to find out about all the 
actual requirements. Forgetting a requirement leads to a 
system that does not fulfil the user expectations in some 
respects. In analogy, overlooking a possible hazard leads 
to a safety analysis in which no measures are undertaken 
to ensure that this overlooked hazard is not happening or 
that the probability of it happening is low enough. There 
are quite a number of practical examples where such a 
problem has happened (example: Titanic).  

In both cases of requirements engineering and hazard 
analysis the completeness of a specification cannot be 
verified but has to be checked by validation. A careful 
validation of the result of the hazard analysis and 
identification is mandatory. [Gleirscher 11] discusses 
environment modelling for hazard analysis and for 
hazard-oriented derivation of scenarios for specification 
validation and system testing.  

3.2.2  Relating Domain Specific Levels of 
Abstraction 

A particular difficulty results from the different levels of 
abstraction for the formulation of safety requirements. 
Fig. 5 shows schematically four chunks of system 
properties from an example inspired by [Kondeva 12].  

 
  
  

TATL: Translation: Abstract/technical Level 
… 
doors_closed ⇔ latches_locked 
aircraft_inflight ⇔ landing_gear_without_weight 
… 
 

SRAL: Safety Requirements: Abstract Level 
… 
aircraft_inflight ⇒ doors_closed 
… 
 

SRTL: Safety Requirements: Technical Level 
… 
Landing_gear_without_weight ⇒ latches_locked 
 … 
 

TT: Technical Threads 
… 
vibrations ⇒ ¬latches_locked 
... 

 

Figure 5 Safety Requirements: From Abstract to 
Technical Level and Threats at Technical Level 

At the abstract level safety requirements are formulated in 
application domain oriented language addressing key 
concepts and notions of the application domain. At the 
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technical level the same safety requirement is expressed 
in technical terms. This “translation” is not as simple as 
the one in the illustration. As stated above, it is an 
inference, based on the architectural structure and the 
behaviour of the subsystems in the structure. There is no 
chance to produce this manually (see [Struss, Fraracci 
11], [Struss 11]). This has to be generated, and this is 
exactly what model-based prediction for the physical 
components has to deliver. We need a translation of the 
abstract safety requirements into the technical ones in 
terms of logical assertions that formalize this relationship. 
This relation is part of the domain model. We have to 
show 
 SRTL ∧ TATL ⇒ SRAL 
(see the example in Fig. 5). Then, on the technical level, 
additional technical threats have to be and can be 
identified that are hard or even impossible to find at the 
abstract level. In the example in Fig. 5 we get some 
inconsistency and thus a contradiction to safety 
requirements in SRTL if we assume that there may 
vibrations while the aircraft is in flight that they in term 
might unlock the latches. Such inconsistencies can be 
checked and found by SAT solvers. 

Of course, this change of levels of abstraction 
typically continues. At the technical level, there does not 
exist the signal “Landing_gear_without_weight”. There 
exists: “no signal at the pin connected to the weight 
sensor”. This technical view is essential in order to 
analyse the impact of a broken weight sensor, open wires 
and connectors between sensor and ECU, shorts of the 
wires, etc.  

3.3 Modelling Context, HMI and Safety 
Hazards can only be caused by a system in the interaction 
between the system and its operational context. 

3.3.1 Hazards as Result of the Interaction 
between Systems and their Operational 
Context 

Another issue is to understand how such hazards in the 
operational context are triggered by the system. This 
leads to the necessity to have a kind of a formalisation of 
the interaction between the operational context and the 
system.  

  

  Sensor  
 

analog-
digital 

converter 

logical 
input 

l
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Figure. 6 Schematic split of a function in hybrid pre- and 
post-processing  

More precisely we have to model the operational context 
including extrinsic hazards and incidents as they may 
appear in the operational context. Only if such modelling 
is done in a sufficiently formal way, we can start to get 
estimations of the bounds on the risk of incidents and 
hazards (see [Struss, Fraracci 11]). 

3.3.2 Hazards as Result of the Interaction 
between Systems and Their Users 

Clearly, such a modelling can be very difficult because 
the operational context, in particular, has to deal with the 
user interface and the way users operate a system. In 
principle, we have to look at issues such as: “what is the 
probability that a user presses a wrong button in a 
particular situation?” and to find out what is the 
psychological analysis that is needed to speak about those 
probabilities.  

This shows that in the analysis of functional safety the 
logical and the technical user interface have to be looked 
at and analysed very carefully.  

Second we have to deal with issues in approaches like 
use case analysis. One way to do this would be to identify 
intrinsic and extrinsic hazards and then to develop a 
number of anti-use-cases that describe scenarios of 
hazards happening and to analyse what are the 
possibilities to avoid these hazards. All this activity can 
be and must be done quite independently of the question 
of the necessary and additional FMEA to make sure that 
the system as specified with an operational context as 
modelled does the right thing. Today, in practice, 
functional safety analysis is often too much focused onto 
FMEA and vulnerability impact analysis with the danger 
to miss hazards that are not due to defects of subsystems.  

3.4 Functional Modularity and Extrinsic 
Hazards 

Note that strictly speaking, in terms of extrinsic hazards, 
it is not the system that is safety critical but its functions. 
In fact, in a safety analysis we have to identify the safety 
criticality of the functions. This goes hand in hand with 
modelling the operational context; we can see how the 
functions are connected to the operational context and 
which of the functions may cause hazards. In addition, we 
have to consider a number of failure assumptions for the 
functions that have to be related to FMEA and then find 
out which are the functions and the output provided by 
those functions as safety critical aspects. Then we can 
analyse which error deviations of functions we can 
tolerate and which error deviations we cannot tolerate and 
where we have to be sure that they can happen only with 
a certain sufficiently low probability.  

Today we typically deal with so-called multi-
functional systems. These are systems that introduce and 
offer a large number of different functions as pointed out 
in [Broy 10]. These functions have to be specified in a 
modular way, in spite of the fact that they are usually not 
logically independent. There are behavioural dependences 
between these functions. When mastering the 
specification of systems from a safety point of view, we 
have to deal with the different functions that are part of 
the functionalities.  

As shown in [Broy 10] it is possible to identify and 
specify dependences between functions. If there is a 
function F that depends on another function F’ and if the 
dependency of these functions may lead to hazards then 
the function F’ (which, considered in isolation, is not 
safety critical) has to be treated as a safety critical 
function, if the dependency may lead to extrinsic hazards. 
More precisely, using these dependencies we can 
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introduce a directed dependency graph with functions as 
nodes. Then we identify the functions that are safety 
critical. This way we to stick to a kind of propagation and 
inheritance of safety criticality levels such that a highly 
safety critical function F may pass on its safety level to 
functions F’ that show dependencies to F.  

3.5 Tracing and Safety# 
Finally, in standards for functional safety, tracing is 
required for safety critical functions. Unfortunately, what 
we see as a foundation of tracing in the scientific 
literature so far is not sufficient. Based on the proposed 
modelling framework, a very rigorous approach to tracing 
is possible by representing all the properties of systems 
within a formalised logical framework. This way we can 
introduce a completely formalised concept of tracing. 

In doing so we get a precise concept of what tracing is. 
In particular, we can study traces between general 
requirements, functional specification and architectural 
decomposition. Such an approach provides a firm 
framework for defining what traces are but at the same 
time it addresses the question of how dense traces are and 
how many traces we need. By the approach we see how 
difficult and complex tracing is. Here we need more 
research and also empirical studies.  

 

 
Figure 7 Tracing between Requirements, Functional 

Hierarchy, and Logical Subsystem Architecture 

Recently, we have performed a number of empirical 
studies about dependencies between functions in trucks to 
find out about how many dependencies we can expect 
between those functions. Similar numbers are not 
available for dependencies between requirements, 
functional specification, and architecture. 

4 Summary and Outlook 
We have introduced and sketched a rigorous framework 
of modelling that allows us to capture logical and 
probabilistic properties at different levels of abstraction. 
We believe that such a rigorous framework allows for 
modelling that can be used both for system specification, 
design and implementation, for verification including test 
case generation, for safety analysis as well as for 
diagnoses. 

Using a rigorous modelling approach we model the 
system as well as its operational context. We recommend 
to distinguish and to model intrinsic as well as extrinsic 
hazards. We, in particular, recommend validating the 

specification carefully to make sure that hazards are not 
implied by it. Doing so, we can apply all kinds of 
automatic analysis and verification techniques to deal 
with functional safety. In any case, the quality of 
functional safety analysis depends on the expressive 
power and the adequate application of the modelling 
techniques and methods.  
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Recently, we have performed a number of empirical studies about dependencies between functions in 
trucks to find out about how many dependencies we can expect between those functions. Similar 
numbers are not available for dependencies between requirements, functional specification, and 
architecture. 

4 Summary and Outlook 
We have introduced and sketched a rigorous framework of modelling that allows us to capture logical 
and probabilistic properties at different levels of abstraction. We believe that such a rigorous 
framework allows for modelling that can be used both for system specification, design and 
implementation, for verification including test case generation, for safety analysis as well as for 
diagnoses. 

Using a rigorous modelling approach we model the system as well as its operational context. We 
recommend to distinguish and to model intrinsic as well as extrinsic hazards. We, in particular, 
recommend validating the specification carefully to make sure that hazards are not implied by it. Doing 
so, we can apply all kinds of automatic analysis and verification techniques to deal with functional 
safety. In any case, the quality of functional safety analysis depends on the expressive power and the 
adequate application of the modelling techniques and methods. 
 
 
Acknowledgements 

It is a pleasure to acknowledge helpful and stimulating discussions with Mario Gleirscher, Antoaneta 
Kondeva, and Peter Struss. 

CRPIT Vol 145 (ASSC 2012)

Page 34


