
Hardware Trojan Resistant Computation using Heterogeneous

COTS Processors

Mark Beaumont Bradley Hopkins Tristan Newby

Defence Science and Technology Organisation
Adelaide, Australia

Email: {mark.beaumont, bradley.hopkins, tristan.newby}@dsto.defence.gov.au

Abstract

Hardware Trojans pose a credible and increasing
threat to computer security, with the potential to
compromise the very electronics that ostensibly pro-
vide the security primitives underpinning various
computer architectures.

The discovery of stealthy Hardware Trojans within
Integrated Circuits by current state-of-the-art pre-
and post-manufacturing test and verification tech-
niques cannot be guaranteed. Therefore electronic
systems, especially those controlling safety or secu-
rity critical systems should be designed to operate
with integrity in the presence of any Hardware Tro-
jans, and regardless of any Trojan activity.

We present an architecture that fragments and
replicates computation over a pool of Commercial-
Off-The-Shelf processors with widely heterogeneous
architectures. Processors are loosely synchronised
through their use of a voted, architecture-independent
message box mechanism to access a common memory
space. A minimal Trusted Computing Base abstracts
the processors as a single computational entity that
can tolerate the effects of arbitrary Hardware Trojans
within individual processors. The architecture pro-
vides integrity, data confidentiality, and availability
for executing applications.

1 Introduction

Hardware Trojans are malicious modifications to In-
tegrated Circuits (ICs) that can compromise the se-
curity of a hardware platform or any software running
on it. They are persistent in nature and can operate
continuously or be triggered into one or more actions,
including modification of functionality, modification
of specification, leaking of sensitive information, or
Denial of Service (DoS) (Rajendran et al. 2010). The
severity of Hardware Trojan action can range from
minor through to catastrophic, such as the disabling
of a major financial system causing economic loss or
affecting a critical electro-mechanical system (Tsang
2009), leading to potential loss of human life.

Many different types of Hardware Trojans
have been demonstrated, (Lin, Burleson & Paar
2009)(Baumgarten et al. 2011)(Jin et al. 2009), in-
cluding malicious modifications to CPUs that have
enabled privilege elevation and password stealing at-
tacks (King et al. 2008). Whilst not a malicious

Copyright c©2013, Commonwealth of Australia. This paper
appeared at the Thirty-Sixth Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

Trojan, the Intel Pentium f00f bug (Collins 1998)
demonstrated how a small design flaw in an IC could
render a system vulnerable to a DoS attack.

The Hardware Trojan threat is increasing, es-
pecially amongst Commercial-Off-The-Shelf (COTS)
components, where much of the IC development
chain has been outsourced, relinquishing control over
many potential Hardware Trojan insertion vectors.
The past six years have seen increased research into
methods for detecting Hardware Trojans. The pri-
mary methods involve self-checking systems, side-
channel analysis and destructive reverse-engineering
(Chakraborty et al. 2009). Even with the most re-
cent advances in detection techniques, there are no
guarantees that an IC is free of Hardware Trojans
(Abramovici & Bradley 2009).

Economic and political rationale are driving in-
creased globalisation, pushing untrusted COTS com-
ponents into many electronic devices, including safety
critical systems and sensitive military equipment
(Young 2011). The cost of developing a Trojan-free
IC is immense, requiring trust in many areas in-
cluding design tools and teams, fabrication facilities,
supply chains and anti-tamper technology. This ap-
proach is currently both technologically and econom-
ically infeasible, especially in an Australian Military
context. To track technological advances, especially
in relation to the latest processor architectures, ac-
creditation of all components is not practicable, thus
the use of COTS elements cannot be avoided. In-
stead, we advocate coupling the latest COTS tech-
nology with some small, accreditable trusted logic to
form a Trojan-hardened system.

In previous work, the SAFER PATH architec-
ture (Beaumont et al. 2012), a Hardware Trojan-
resistant general computing platform, was proposed
as a trusted drop-in replacement for a potentially
compromised processor. The architecture combines
many similar, cycle-accurate processors with a small
Trusted Computing Base (TCB) to achieve replicated
and fragmented execution. The architecture provides
integrity and availability through majority voting of
execution and protects data confidentiality by limit-
ing any individual processor’s access to program code
and data. It relies on obtaining variations of the same
processor for protection against identical Trojans.

In this paper, we introduce a modified version
of the SAFER PATH architecture that abstracts a
single computational entity from the collective be-
haviour of a pool of COTS Processing Elements (PEs)
with widely heterogeneous architectures. Computa-
tion across multiple PEs is loosely synchronised via an
architecture-independent message box (mbox) mech-
anism, allowing voted execution of an application.
This execution is also fragmented in time across many
different sets of PEs, limiting access to sensitive infor-

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

97

mation for any individual PE. A software interpreter
is demonstrated that provides a software abstraction,
allowing a single, architecture-independent applica-
tion to be collectively executed and fragmented across
a pool of architecturally different processors.

The replication and fragmentation logic are part
of a minimal TCB, providing the root of trust for
the architecture. As such, effort must be put into
ensuring that this logic is free of Hardware Trojans.
Development and accreditation of the TCB logic is far
more economically feasible than pursuing a complete
trusted processor.

Trustworthiness is targeted at the expense of cost,
performance, power usage and size. This is a design
decision, but one that we believe needs to be made,
especially for critical systems.

Our focus is on Hardware Trojans present within
PEs, e.g. a CPU with local memory, and we aim to
provide a broad spectrum defence against the effects
of any Trojans present within these circuits. While
we assume that any given PE may be infected, the
likelihood of having identically functioning, or collab-
orative Hardware Trojans across many processors is
considered very low, decreasing as the number of dif-
ferent processors is increased.

External to our abstracted computational entity,
we provide no protection against Hardware Trojans in
other ICs such as system-wide memory, or Input/Out-
put (IO) circuitry. The architecture ensures that any
given software is executed correctly as determined by
the collective behaviour of multiple PEs. This archi-
tecture can be used as a trusted replacement process-
ing element, with other defences able to be incorpo-
rated to protect the system as a whole, e.g., Bloom et
al. (2009) protect against Trojans residing in memory
using a double guard on the memory bus.

The paper is organised as follows: Section 2 dis-
cusses related work, Section 3 details our proposed
solution and Section 4 describes our experimental im-
plementation and results. Section 5 discusses some
potential extensions while Section 6 summarises our
work.

2 Related Work

There are existing commercial and industrial systems
that provide availability, and protect functional in-
tegrity and data confidentiality. They often incorpo-
rate one or more of the following techniques: hetero-
geneous processors, redundant processing, software
dissimilarity, voting, and data fragmentation. Hard-
ware Trojan research has also incorporated some of
these mechanisms.

Recently, the SAFER PATH architecture was
developed incorporating fragmented execution and
replication as a defence mechanism. SAFER PATH
relies on obtaining variability between operationally
equivalent processors to combat Hardware Trojans.
Ensuring there is enough variability between proces-
sors to prevent the same Hardware Trojan appearing
is difficult, requiring sufficient orthogonality between
the design teams, design software, and fabrication fa-
cilities. It is also difficult to obtain this variability off-
the-shelf, meaning that processors would need to be
customised. Utilising a new type of processor would
require significant effort. The same Hardware Trojan
might also be more easily inserted into variants post-
manufacture, given that all processors must adhere to
the same operational interface.

In contrast, the architecture presented here uses
truly heterogeneous, unmodified COTS processors,
allowing new types of processors to be easily added.

Every processor in the architecture can be different,
increasing the barrier for any collaborative Hardware
Trojan insertion.

Yeh (1996) describes the use of triple modular re-
dundancy using heterogeneous PEs, majority voting
and N-version dissimilar software to achieve high lev-
els of reliability in the Boeing 777 primary flight com-
puter. A low-level communications bus is used for
synchronisation between varying processor channels.
The system is only used to process simple inputs and
outputs, and only outputs are voted on. Saxena and
McClusty (1998) use redundant simultaneous multi-
threading to achieve fault detection and recovery at a
software level. In more recent work, Reis et al. 2005
employ compiler-based transforms that duplicate in-
structions and insert checkpoints for fault detection.
These systems provide protection against transient
faults, as opposed to Hardware Trojans which may
not manifest as a fault, but rather a subtle change
to a processor’s behaviour, or the leaking of sensitive
information.

McIntyre et al. (2010) propose a software fault-
tolerant technique, the Trojan Aware Distributed
Scheduling (TADS) system. TADS operates on a
multi-core compute platform potentially containing
one or more Hardware Trojans. A scheduler is used
to execute functionally equivalent subtask variants
on different cores within the processor. Results are
evaluated for equivalence and any disparity is used
as an indicator of Hardware Trojan presence. This
process is repeated and the scheduler is able to pro-
gressively establish trust in the circuitry of each core.
Software variants provide course-grained protection
and require program diversity through recompilation.
This architecture protects against simple Hardware
Trojans, but is vulnerable to more sophisticated Tro-
jans (e.g., King et al. 2008) that may be replicated
across processing cores.

Other research has proposed Data Guards (Bloom
et al. 2009) (Waksman & Sethumadhavan 2011) and
reconfigurable logic (Baumgarten et al. 2010) to
counter the presence of Hardware Trojans within ICs.
These solutions are focused on protecting against spe-
cific Hardware Trojan triggers or actions. We make
no such assumptions about the type of triggers that
may exist or the actions that may result, and pre-
sume Hardware Trojans may be active within all our
processors.

3 Architecture

Modern computing systems typically entrust one or
more COTS Processing Elements (PEs) to reliably ex-
ecute programs. Our assumption is that any of these
individual PEs may be infected by one or more Hard-
ware Trojans, consequently compromising security by
modifying the behaviour of the program or leaking
data.

Our architecture uses a pool of many architec-
turally different PEs together with a small Trusted
Computing Base (TCB), to collectively execute a
given application. The architecture enables the exter-
nal behaviours of simultaneously executing PEs to be
supervised, making no assumptions about the inter-
nal operation of individual PEs. All PEs run indepen-
dently of each other, executing their own code from
a locally attached memory. Low-level computation
is not replicated, instead, some of the external be-
haviours of the PEs are replicated and arbitrated by
the TCB to coordinate a collective behaviour across
the pool of PEs.

CRPIT Volume 135 - Computer Science 2013

98

Figure 1: A set of PEs collectively execute a given application.

To support this behavioural replication across dif-
ferent architectures, a Hardware Abstraction Layer
(HAL) provides independent access to a common
memory and IO space. The HAL unifies accesses us-
ing a message box (mbox) associated with each PE.
Mboxes provide a register-style interface to access the
common resources. The architecture is shown in Fig-
ure 1.

Software applications are independently compiled
for each PE architecture, and all accesses to the
common memory and IO space are made through
architecture-specific mbox routines. The compiled
applications execute concurrently across a set of PEs,
but execute different machine code and have different
mbox access timing. To obtain collective behaviour
from a subset requires the mbox accesses to be strictly
ordered. At any instance in time, execution is loosely
synchronised across a set of PEs, enforced by the TCB
which arbitrates access to the common memory space
using a simple voting mechanism.

The TCB also facilitates time-domain fragmenta-
tion of program behaviour across multiple indepen-
dent sets of PEs from the pool, protecting against
side-channel data leakage attacks (Lin, Burleson &
Paar 2009) (Lin, Kasper, Paar & Burleson 2009). Ap-
plication synchronisation between sets is maintained
by storing selected elements of program state in the
common memory.

3.1 Processing Elements

Our architecture supports the use of almost any type
of COTS processing element, e.g., ARM, MIPS, x86,
SPARC, to form a large resource pool. This architec-
tural diversity minimises the probability of colluding
or replicated Hardware Trojans existing within differ-
ent PEs.

Independently infected PEs alone cannot compro-

mise the integrity of the computation; an adversary
would need to influence multiple designs, fabrication
facilities, or supply chains to bypass this diversity.
New types of PEs can always be incorporated into
the architecture to maintain this diversity and track
technological developments.

3.2 Message Boxes

Heterogeneous PEs have different bus interfaces, tim-
ing characteristics and byte orderings, making it dif-
ficult to combine their behaviours, especially at a low
level. The mboxes ensure each architecture can ac-
cess the common memory and IO space, facilitating
synchronisation and voting. The mboxes form a trust
boundary between a PE and the TCB. A simple inter-
face enables easy system integration, promotes simple
TCB design and allows the architecture to scale to a
large number of PEs.

Figure 2: mbox register interface.

Access to common memory and IO is abstracted
through a transaction style approach using registers
for address, data, control and status as shown in Fig-
ure 2. When a PE wishes to read or write to the com-
mon memory, it writes the address (together with the
data for a write) and then signals through the con-
trol register for the operation to be performed. The
TCB decodes the address and forwards the request
to the appropriate memory or IO resource. Once the

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

99

operation is complete (and data returned for a read)
a status register bit is set.

Individual PEs could potentially communicate
with an mbox using any available communication in-
terface, for example a memory bus, GPIO port, or
USB or PCIe interface. However, the implementa-
tion must consider potential Hardware Trojan inter-
ference. Strict separation between mbox communica-
tion channels must be maintained, and, where mboxes
are not part of the TCB, they also require diversity
in their design and manufacture to counter replicated
or colluding Hardware Trojans.

3.3 Loosely Synchronised Execution

The TCB interfaces with the mboxes and combines
the multiple access requests into a single collective
request to the common memory and IO space. Read
accesses result in the same data being returned to all
PEs. Figure 3 shows a set of PEs writing data to
a common memory address; specifically shown is the
asynchronous nature of the requests from the different
PEs.

The same, single application is independently com-
piled for and subsequently run on each PE. Although
compilation is generally from the same source code,
there may be significant differences in the respective
machine code representations. Loose synchronisa-
tion between the executing programs is maintained
by ensuring each PE attempts the same mbox ac-
cesses in the same order. This strict ordering is en-
forced during the software development for the ar-
chitecture, with consideration given to different ar-
chitectures, programming languages, and compilers.
The TCB generally blocks on these access requests
until all PEs have updated their respective mboxes.
The TCB then votes on the requests and performs
the actual memory access to the common memory
space. This synchronises execution of the application
on all mbox operations and ensures voting occurs on

the same accesses.
Voted output guards against Hardware Trojans

attempting to modify program behaviour. It also
prevents leakage of confidential data through logical
channels, either common memory or IO. While we im-
plement a majority voting mechanism in our concept
demonstrators (Section 4), different access aggrega-
tion policies may be used. Individual PE accesses
may be weighted or even ignored by the TCB when
generating the voted output. Such voting schemes
can help protect against potential DoS attacks. The
voting algorithm can be adaptive and designed with
potential risk profiles for different PE architectures
taken into account. Changes to the TCB need to bal-
ance performance and complexity.

3.4 Fragmentation

Even when the direct outputs of a collective program
are protected, Hardware Trojans may still be able to
leak data through side-channels. To combat this, the
execution of the collective program, i.e. its behaviour,
is fragmented in time across many different sets of
PEs. A given set runs a fragment of the collective
program before execution of that program is switched
to another set of PEs. Fragmentation of program ex-
ecution is achieved by transferring the currently ex-
ecuting program context from one set of PEs to a
different set of PEs.

In contrast to the SAFER PATH architecture, an
individual PE’s program code itself is not fragmented.
Instead, all PEs in the architecture run continuously,
however only a subset have access to the common
memory and IO space at any given time. The TCB
assembles these subsets of PEs and enables or disables
their access to the common memory.

Application instances, on any particular PE, are
informed when they become connected to the com-
mon memory space. Application support for frag-
mentation involves the unique instances running on

Figure 3: The TCB arbitrates a write access to common memory.

CRPIT Volume 135 - Computer Science 2013

100

the currently active set of PEs saving collective pro-
gram context to the common memory. The TCB can
then switch its mbox interfacing to a new set of PEs.
The application instances running on the new set of
PEs load the saved context from the common mem-
ory and continue the collective execution. Saving and
loading of this program context is implicit if all nec-
essary program variables are permanently stored and
accessed through the TCB protected common mem-
ory. A context switch can either be initiated from the
software application, or mandated at periodic inter-
vals by the TCB.

This form of context switching restricts an indi-
vidual PE’s access to sensitive data, limiting what in-
formation a potentially infected PE may leak. It also
restricts any Hardware Trojans from understanding
the broader scope of executing applications, making
it difficult to interpret what data is currently being
processed by a PE, and thereby increasing the com-
plexity requirements of such Trojans. For example,
execution may be fragmented to restrict individual
PE access to an encryption key or sensitive report.

3.5 Trusted Computing Base

The TCB contains minimal logic to enforce the collec-
tive behaviour. A benefit of our architecture is that
the TCB is a small, generic design that can be used
with many different PEs, providing a more tractable
and flexible solution than developing a custom trusted
processor. While the TCB provides integrity, avail-
ability and confidentiality, the outputs are not neces-
sarily correct; rather they reflect collective behaviour.
As the number of PEs is increased, the outputs be-
come probabilistically correct and more resistant to
Hardware Trojans.

The design consists primarily of voting and switch-
ing logic plus additional ancillary circuits for the pur-
pose of enforcing time-windows on mbox accesses.
The simplicity and small size of the TCB relative to
an individual PE assists both accreditation and sub-
sequent design and fabrication free of Hardware Tro-
jans. The TCB may include the mboxes or just an
interface to the mboxes. This decision is dependent
on obtaining variant mboxes that do not need to be
trusted.

The TCB must also prevent misuse of the architec-
ture. Rogue PEs may delay or insert additional mbox
accesses in an attempt to degrade service. The hetero-
geneous processing nature of the architecture requires
the TCB to aggregate accesses that are asynchronous.
The TCB can use a time-window to ensure timely ac-
cess synchronisation. If PEs violate this timing they
can be blacklisted and removed from the set, or in
the worst case, the TCB can reset all processors. A
larger pool of PEs reduces the influence of this issue.

In our proposed architecture, the TCB arbitrates
access to common memory and IO devices. Other
peripherals could also be supported, such as system
timers and interrupts, to enhance software applica-
tion support, and enable more complete systems to be
protected by the architecture. The trade-off for this
convenience is the size and complexity of the TCB.

4 Experimentation and Results

The architecture was prototyped within a Xilinx Vir-
tex 6 FPGA. A pool of embedded soft-core proces-
sors, an mbox for each processor, the TCB logic, and
the common memory were all implemented within
the FPGA. Three different processor architectures

were used: leon3 (Aeroflex Gaisler AB 2010), a 32-
bit SPARCv8 processor; mblite (Kranenburg & van
Leuken 2010), a 32-bit MIPS based processor; and
zpu (Zylin Consulting 2008), a tiny, 32-bit stack based
processor.

Each type of processor was configured with enough
local memory (leon3 : 16kB, mblite: 16kB/16kB, zpu:
32kB) for the example programs to run natively.

The mboxes associated with each processor were
connected using a GPIO port native to each architec-
ture. Each mbox consisted of a 32-bit address port, a
32-bit data-in port, a 32-bit data-out port and a con-
trol/status port. The mapping of memory and IO pe-
ripherals in this address space is application-specific.

Developing an application for the architecture re-
quires identifying important information or compu-
tational actions to protect. Important computations
need to be replicated and voted upon. Likewise, sen-
sitive information must be fragmented across differ-
ent sets of processors. For a custom application this
normally entails voting on all accesses to the system
inputs and outputs and supporting the fragmentation
of the application across multiple subsets of proces-
sors. To achieve this, each natively executing proces-
sor in the currently executing set must perform the
same common memory accesses in the same order.

Two example programs were developed. The first
is a software interpreter where the interpreted pro-
gram is stored and accessed through the TCB pro-
tected common memory. The output of the inter-
preted program occurs through a serial port, which is
also mapped into the TCB protected common mem-
ory space. The second example program is a VNC
client, where the network IO, keyboard and mouse
inputs, and framebuffer outputs are mapped into the
common IO space and protected by the TCB.

4.1 Software Interpreter

A consequence of using many different processor ar-
chitectures is that programs need to be compiled
for each architecture. To alleviate this requirement,
we employed a software interpreter. Though the in-
terpreter itself runs natively on each processor and,
hence, needs to be compiled for each different archi-
tecture, once this has been done, many different pro-
grams can be run on top of this interpreter without
needing to be rewritten or recompiled for the under-
lying architectures. A secondary benefit of the inter-
preter is that it also allows computation to be voted
upon and fragmented, in addition to just the system
IO. The fragmentation is trivially achieved because
the interpreted program and interpreted state is en-
tirely stored and accessed through the TCB protected
common memory.

We utilised a pool of 12 processors divided into
four sets, with each set containing one mblite, one
leon3, and one zpu processor, each running at 25MHz.
Input and output to the architecture is provided by
an asynchronous serial port that is mapped into the
common IO space. Synchronisation and fragmenta-
tion are supported by a 16kB TCB protected common
memory.

The ubasic (Dunkels 2007) BASIC interpreter was
ported to the each native processor architecture. The
native code for each interpreter is stored in and exe-
cuted from the local memory attached to each proces-
sor, i.e., 12 separate instances running in our exper-
imental set up. Collectively, the processors interpret
a single, architecture-independent BASIC program.
The BASIC program to be interpreted (e.g., List-
ing 2), is stored in the common memory space. The
ubasic implementation was modified so that calls to

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

101

Figure 4: Operation of the software interpreter.

memory accesses associated with the BASIC program
were replaced with accesses through the mboxes.

Simple asynchronous serial output was also pro-
vided through the common memory space. The BA-
SIC program was able to write out this serial port
using the print keyword. An instructive example of
accessing the serial port via an mbox is given in List-
ing 1. When the print keyword is interpreted, the
outbytem function is called for each character to be
printed. The mbox read and mbox write calls en-
sure that reads from the serial port status register,
and writes to the data (output) register are synchro-
nised and voted on across the currently active set of
heterogeneous processors.

void outbytem (char c) {
do {
} while ((mbox read (STATUS REG) &

BIT SET(SERIAL XMIT)) == 0) ;
mbox write (SERIAL REG, c) ;

}

Listing 1: Mbox access to a collectively controlled
serial port.

In the demonstrator, all processors concurrently
execute the ubasic interpreter, however, only a se-
lected set of processors are connected to the common
memory and thus interpret the instructions of the
BASIC program at any one time. The ubasic soft-
ware running on processors that are not connected
remains in a waiting state until their connection to
the common memory is restored. A read of a status
bit through the processor’s mbox indicates whether
the common memory is connected. Once connected,
the interpreters exit their waiting state and continue
interpreting the BASIC program.

Enabling fragmentation of the BASIC program re-
quired further modification of ubasic to allow the ex-
ecution context of the interpreter to be passed from
the current subset to the next subset of processors. To
support saving and loading of this execution context,
some of the interpreter’s state, including the program
counter (a pointer into the BASIC program), stack
pointers and global variables, is stored in and accessed
through the common memory. A new keyword, con-
text, was added to the ubasic instruction set that al-

lows software to initiate fragmentation to a different
set of processors. This is achieved via a write to an
mbox control register bit. As with all mbox accesses,
this write is voted on before being performed by the
TCB, ensuring the context switch is a collective re-
quest.

The operation of the software interpreter is shown
in Figure 4. A subset of processors connected to the
common memory space accesses and interprets the
BASIC program. The keyword context initiates a
context switch to a new subset of processors and fi-
nally the new processors continue interpretation of
the BASIC program. In this example, the program
counter stored in the common memory is utilised to
pick-up execution where the previous processors fin-
ished.

4.1.1 Performance

An example program (Listing 2) calculates prime
numbers in a simple manner, performing an execu-
tion switch (line number 70) after printing the value
of each successive prime.

5 print ”Prime No . Gen”
10 a = 1
15 print ”2”
20 a = a + 2
25 i = 2
30 t = (a % i)
35 i f t = 0 then goto 60
40 b = a / i
45 i f i > b then goto 65
50 i = i + 1
55 goto 30
60 i f i < a then goto 20
65 print a
70 context

75 goto 20

Listing 2: BASIC prime number generator.

The performance of the ubasic interpreter on our
architecture was analysed, using the BASIC program
in Listing 2. The blocking nature of the mbox calls
means a side-effect of loose synchronisation is to re-
duce the performance of the architecture to that of
the slowest processor, the zpu processor in our exper-
iments. This is not a problem if all processors used in

CRPIT Volume 135 - Computer Science 2013

102

the architecture have sufficient performance. Access-
ing the common memory also incurs a performance
cost as a result of the overheads involved with mbox
indirection.

Different types of interpreted programs will require
different numbers of mbox calls. Highly algorithmic
programs would spend more time executing native
calculations and would see less of a performance hit
compared with memory access intensive programs.

The benchmark was to find all the prime num-
bers less than 5000 and was run on three architectural
variants: a single zpu processor; a set containing all
three different processors without any context switch-
ing, and the full architecture of four sets of all three
processors. The results are shown in Figure 5.

Figure 5: Performance benchmarking of the software
interpreter.

The overhead of the mbox accesses increases run
time for the example program from 732 seconds to
1436 seconds, this equates to a performance decrease
of around 49%. However, even this kind of perfor-
mance decrease would be acceptable in many safety
or security critical applications. The addition of
fragmentation through context switches adds no dis-
cernible run-time to the application. This is due to
the context switch requiring no explicit state saving
or restoring to occur.

Also of interest is the total number of read and
write accesses through the mbox interface for the
benchmark; this information is shown in Table 1.

Lines of Interpreted Code 264697
Number of mbox Read Accesses 42678143
Number of mbox Write Accesses 10278655
Avg. mbox Read Accesses per line 161.23
Avg. mbox Write Accesses per line 38.83

Table 1: Analysis of mbox accesses.

The zpu implemented in our experiment is a very
poor performing processor. With the zpu executing
natively at 25MHz, the average mbox access takes ap-
proximately 330 clock cycles. A typical mbox read()
call as shown in Listing 3 expands to over 70 instruc-
tions on the zpu, which are executed at between four
and five clock cycles per instruction.

The mbox read() call comprises four fixed
mbox register writes (three to mbox ctrl, one
to mbox addr), one fixed mbox register read
(mbox datai), and potentially multiple reads from
the mbox status register (mbox sts). In our exper-
imental architecture once the address (mbox addr)
and control (mbox ctrl) registers have been written

it takes 3 clock cycles for the TCB to return the data,
hence for the slowest performing zpu processor it will
only need to read the status register (mbox sts) once.

unsigned long mbox read (unsigned long addr)
{

unsigned long returnValue ;

∗mbox addr = addr ;
∗mbox ctr l = 0x0 ;
∗mbox ctr l = MBOXREAD | MBOXENABLE;

while ((∗mbox sts & MBOXRDY) != MBOXRDY) ;

returnValue = ∗mbox datai ;
∗mbox ctr l = 0x0 ;

return (returnValue) ;
}

Listing 3: mbox read() call.

Increasing the amount of data and state stored
in common memory, and hence the required num-
ber of mbox accesses, facilitates easy fragmentation
and better restricts an individual processor’s access
to program code and data. Decreasing what is stored
in the common memory improves native performance,
at the expense of more complex software support for
fragmentation and lower data confidentiality.

No effort was placed into optimising the ubasic in-
terpreter code to reduce the number of mbox calls, or
increase the general efficiency of the program. Oppor-
tunity exists to perform multiple computations with
global variables without having to read and write
them back to the common memory, thereby reduc-
ing the number of mbox calls, and increasing perfor-
mance.

4.1.2 Trojan Resistance

The example program fragmented the generation of
prime numbers, with the TCB randomly selecting a
new subset of processors to calculate every new prime
number. On average, each processor only had access
to one in every four prime numbers. This approach
demonstrates that as the number of processors is in-
creased, and with the use of judicious context switch-
ing, this architecture is capable of successfully parti-
tioning sensitive information across different proces-
sors.

We developed several other BASIC programs to
run on our architecture. These included a pi esti-
mation program and a simple “access” type program
that asked for a password and granted or denied ac-
cess based on whether a hash of the supplied pass-
word matched a stored hash value. Context switches
occurred after each character was read from the key-
board and the generated hash updated. Again, in a
simplistic manner this demonstrates how individual
processors, and hence any associated Hardware Tro-
jans might be prevented from having access to sensi-
tive data in its entirety.

Using the common memory to store shared pro-
gram code and data enables execution state to be
switched between different sets of processors. The
protection against data leakage then depends on the
frequency and granularity of fragmentation. Perfor-
mance is affected by the amount of data accessed
through the common memory and there is a trade-off
between security and efficiency. This trade-off is able
to be managed by the software developer. The mbox
architecture features can be used to protect only the
most important data structures, thereby minimising
the performance hit, or they can be broadly used as
is the case for the software interpreter.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

103

The replication of execution prevents any minor-
ity set of processors from modifying the behaviour of
the program (either outputs or execution of the BA-
SIC program) or from leaking data through a logi-
cal system interface. A unanimous voting mechanism
was implemented in the TCB for our experiments.
Whenever any one of the three processors in the cur-
rently active subset was reset, or attempted an in-
correct (unordered) mbox access, the system halted.
For protection against DoS attacks, and functional
and behavioural modification, different voting mech-
anisms would need to be prototyped.

4.1.3 TCB Analysis

The TCB for this architecture consists of a multi-
plexer/demultiplexer and voting arrangement oper-
ating on the mbox interfaces. The architecture of the
TCB exhibits similar properties to that of SAFER
PATH. Table 4.1.3 compares synthesised resource us-
age within the Xilinx Virtex 6 FPGA for a mini-
mal processor core (Leon3) against the TCB for one
(b = 1) and four (b = 4) subsets (or banks) respec-
tively. Each subset contains 3 different processors.

LUT6s Registers
Single Leon3 core 2516 1221
TCB, 3 PEs (b=1) 125 334
TCB, 12 PEs (b=4) 557 1158
TCB2, 3 PEs (b=1) 213 71
TCB2, 12 PEs (b=4) 708 76
1 Results obtained using Xilinx ISE Re-
lease 14.2

2 SAFER PATH TCB

Table 2: TCB size analysis.

The TCB logic remains smaller than a single pro-
cessor up to a threshold number of processors. The
TCB is made up of simple, replicated circuitry that
can more easily be checked for correctness than for ex-
ample a CPU Arithmetic Logic Unit (ALU). As the
number of processors increases, the TCB scales lin-
early due to the increasing size of multiplexers and de-
multiplexers. In contrast to SAFER PATH, the cur-
rent design implementation registers external memory
and message box inputs and outputs thus resulting in
a high register count. With further optimisation, reg-
ister usage could be reduced with minimal impacts on
design performance.

The mboxes have not been optimised for perfor-
mance, however they could be tailored either for spe-
cific applications or processor architectures. Mboxes
with deep data registers and increased voted block
size could also be considered.

4.2 VNC Client

The software interpreter shows how the architecture
can be used, and even abstracted from a software
point of view. This second experiment was performed
to demonstrate how a larger, more complex applica-
tion could be ported to the architecture. The ratio-
nale behind choosing a VNC Client is to provide a
simple thin-client, where Hardware Trojans residing
within the processing elements could not compromise
the session.

A VNC client was implemented on a version of
the architecture that included only three processors.
To support this, a serial port, PS2 keyboard, PS2
mouse, and framebuffer memory were mapped into

the common memory and IO space, with access su-
pervised by the TCB. The VNC client communicates
with a server through the serial interface, reads in
keyboard and mouse events through the PS2 inter-
faces, and writes to a display via a double-buffered
800x600 framebuffer memory. The mbox connected
peripheral hardware is shown in Figure 6.

Figure 6: VNC client architecture.

The fbvnc (Weidner 2000) VNC client was mod-
ified and ported to each of our three implemented
architectures (leon3, mblite and zpu). Minor
architecture-specific code differences are required and
the generated machine code is vastly different for each
processor, but the ordering of mbox accesses to the
common memory space is maintained. For example,
as the program executes on each architecture, each
processor reads from the keyboard, mouse or serial
ports, and writes to the display or serial ports in the
same order.

The VNC client communicates over a 1Mbps se-
rial link, proxied via a network connection to a VNC
server. Using hextile encoding, acceptable perfor-
mance is obtained running the processors at 100MHz.

In arranging our architecture in this manner, we
are able to ensure that each VNC client is provided
with identical inputs, and that those inputs generate
identical outputs. The synchronised execution and
voting provides protection from malicious modifica-
tion via the untrusted processors. However, in this
instance, sensitive information that is being processed
by the VNC client may be able to be leaked by an in-
fected processor. The VNC communications protocol
is modular, so fragmentation could be added to im-
prove data confidentiality. Access to keyboard and
mouse inputs, and data destined for the framebuffer
would then be limited to small windows for each pro-
cessor, helping to mitigate the damage of any data
leakage.

The VNC client shows a how a more complex ap-
plication can be implemented. Here the architecture
is usefully applied to protect the inputs and outputs
of a system from Hardware Trojan interference.

4.3 Summary

The two demonstrators show how applications can be
protected against the threats of Hardware Trojans.

The software interpreter maintains all the protec-
tion properties of the earlier SAFER PATH architec-
ture; a single program code, in this instance a BA-
SIC program, can have its execution replicated and
fragmented over many different processors. Sufficient

CRPIT Volume 135 - Computer Science 2013

104

performance remains in the architecture for success-
ful application within a security critical system, while
the TCB remains simple enough for accreditation.

Interpreting a program is inherently slower than
native execution; this is true for all platforms. How-
ever, interpretation brings us the benefits of program-
ming language abstraction and allows us to write a
program once and run it anywhere. This is espe-
cially true for this architecture where the overheads of
writing a custom application are high. The utility of
a generic interpreter was demonstrated when newly
written BASIC programs were able to immediately
take advantage of our architecture’s replication and
fragmentation properties, with minimal to no work
required of the programmer.

Although the use of the ubasic interpreter has
merit for our experimentation, a different interpreter,
for example a Java Virtual Machine (JVM), that has a
more efficient byte code representation and better ex-
ecution efficiency may provide improved performance.
This improved performance comes at the cost of a
larger initial effort to port the code to multiple archi-
tectures and to add support for fragmentation. The
complexity of the TCB also increases if support is
required for real-time features, e.g., timers and inter-
rupts. However, a JVM would also provide the op-
portunity to access the large existing Java byte-code
application base.

Increasing the barrier for successful Hardware Tro-
jan operation forces Hardware Trojans to become
more complex, usually translating into a larger im-
plementation footprint. This makes them more easily
detected through current Hardware Trojan detection
mechanisms.

5 Further work

Our experimentation ran native applications on bare
metal processors. The architecture works equally
as well for more complex processors running multi-
threaded operating systems. This holds as long as
strict ordering is maintained through a dedicated
mbox interface for any specific application that is to
be protected on the architecture. Hence protected ap-
plications can run along-side less trustworthy applica-
tions on the same processor. The multi-threading na-
ture of the underlying operating system also ensures a
processor can still be usefully occupied while blocking
on mbox accesses of the protected application. Fur-
ther, whilst our experimentation was focused around
FPGA development, the architecture is not limited
to FPGA instantiation. Discrete processors could be
combined, either at a macro level or together on a
PCB like substrate to form a Hardware Trojan resis-
tant computing platform.

Improving application design, mbox design and
link speed, or enabling concurrent use of all avail-
able PEs could improve performance. Mboxes could
be extended to distribute interrupts via register style
interfaces, with consideration given to the impact on
synchronised execution.

Algorithms for tuning fragmentation to achieve
optimal data confidentiality properties should be in-
vestigated. These may be instrumented through the
software build process or by source to source trans-
forms enabled through formal methods.

6 Conclusion

The architecture presented allows computation to be
replicated and fragmented across a pool of widely het-
erogeneous processors. Unlike SAFER PATH, there

is no longer a requirement to obtain variants in man-
ufacturing or design. Our updated architecture can
be implemented using entirely COTS processors.

A minimal TCB, amenable to accreditation, votes
on loosely synchronised, but replicated behaviour.
This collective behaviour is probabilistically correct,
providing integrity and availability in the presence of
active Hardware Trojans. Further, fragmenting this
behaviour limits individual processor access to data
and defends against data leakage attacks.

A prototype implementation within an FPGA and
two software applications were developed to demon-
strate the utility of the architecture. The first was
a software interpreter executing arbitrary programs,
with an acceptable performance decrease for intended
security critical applications. Extending the software
interpreter from BASIC to a more sophisticated plat-
form, such as a JVM would dramatically increase the
utility of the system. The second application was de-
signed to protect a VNC session executing on a thin
client with untrusted COTS processors.

These applications demonstrate the use of the ar-
chitecture as a replacement for an embedded or desk-
top processor, especially in circumstances where sys-
tem operation needs to be guaranteed, or where sen-
sitive data is being processed.

References

Abramovici, M. & Bradley, P. (2009), Integrated
Circuit Security: New Threats and Solutions, in
‘Workshop on Cyber Security and Information In-
telligence Research’, CSIIRW’09, ACM, New York,
NY, USA, pp. 55:1–55:3.

Aeroflex Gaisler AB (2010), ‘Leon3 Multiprocessing
CPU Core Product Sheet’. http://www.gaisler.com
/doc/leon3 product sheet.pdf.

Baumgarten, A., Steffen, M., Clausman, M. & Zam-
breno, J. (2011), ‘A case study in hardware tro-
jan design and implementation’, Int. J. Inf. Secur.
10, 1–14.

Baumgarten, A., Tyagi, A. & Zambreno, J. (2010),
‘Preventing IC Piracy Using Reconfigurable Logic
Barriers’, IEEE Des. Test. Comput. 27(1), 66–75.

Beaumont, M., Hopkins, B. & Newby, T. (2012),
SAFER PATH: Security Architecture using Frag-
mented Execution and Replication for Protection
Against Trojaned Hardware, in ‘Design Automa-
tion and Test in Europe (DATE)’, pp. 1000 –1005.

Bloom, G., Narahari, B., Simha, R. & Zambreno, J.
(2009), ‘Providing secure execution environments
with a last line of defense against Trojan circuit
attacks’, Computers & Security 28(7), 660 – 669.

Chakraborty, R., Narasimhan, S. & Bhunia, S.
(2009), Hardware trojan: Threats and emerging so-
lutions, in ‘IEEE High Level Design Validation and
Test Workshop’, pp. 166 –171.

Collins, R. R. (1998), ‘The Pentium F00F Bug’. ac-
cessed at http://www.rcollins.org/ddj/May98/F00
FBug.html, 19 October 2012.

Dunkels, A. (2007), ‘uBASIC - A really tiny BASIC
interpreter’. accessed at http://www.sics.se/˜adam
/ubasic, 24 November 2011.

Jin, Y., Kupp, N. & Makris, Y. (2009), Experi-
ences in hardware trojan design and implementa-
tion, in ‘Hardware-Oriented Security and Trust,

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

105

2009. HOST ’09. IEEE International Workshop on’,
pp. 50 –57.

King, S. T., Tucek, J., Cozzie, A., Grier, C., Jiang,
W. & Zhou, Y. (2008), Designing and implement-
ing malicious hardware, in ‘Proceedings of the
1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats’, USENIX Association, Berke-
ley, CA, USA, pp. 5:1–5:8.

Kranenburg, T. & van Leuken, R. (2010), Mb-lite: A
robust, light-weight soft-core implementation of the
microblaze architecture, in ‘Design, Automation
Test in Europe Conference Exhibition (DATE),
2010’, pp. 997 –1000.

Lin, L., Burleson, W. & Paar, C. (2009), MOLES:
Malicious Off-Chip Leakage Enabled by Side-
Channels, in ‘Proceedings of the 2009 International
Conference on Computer-Aided Design’, ICCAD
’09, ACM, New York, NY, USA, pp. 117–122.

Lin, L., Kasper, M., Paar, C. & Burleson, W. (2009),
Trojan Side-Channels: Lightweight Hardware Tro-
jans through Side-Channel Engineering, in ‘In
Cryptographic Hardware and Embedded Systems
- CHES 2009, volume 5747 of LNCS’, Springer,
pp. 382–395.

McIntyre, D., Wolff, F., Papachristou, C. & Bhunia,
S. (2010), Trustworthy Computing in a Multi-Core
System Using Distributed Scheduling, in ‘On-Line
Testing Symposium (IOLTS), 2010 IEEE 16th In-
ternational’, pp. 211 –213.

Rajendran, J., Gavas, E., Jimenez, J., Padman, V. &
Karri, R. (2010), Towards a comprehensive and sys-
tematic classification of hardware trojans, in ‘Cir-
cuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on’, pp. 1871 –
1874.

Reis, G., Chang, J., Vachharajani, N., Rangan, R. &
August, D. (2005), SWIFT: Software Implemented
Fault Tolerance, in ‘Code Generation and Opti-
mization, 2005. CGO 2005. International Sympo-
sium on’, pp. 243 – 254.

Saxena, N. & McCluskey, E. (1998), Dependable
Adaptive Computing Systems- The ROAR Project,
in ‘Systems, Man, and Cybernetics, 1998. 1998
IEEE International Conference on’, Vol. 3, pp. 2172
–2177 vol.3.

Tsang, R. (2009), Cyberthreats, Vulnerabilities
and Attacks on SCADA Networks. University
of California, Goldman School of Public Pol-
icy, working paper, accessed 19 December 2011,
http://gspp.berkeley.edu/iths/Tsang SCADA%20
Attacks.pdf.

Waksman, A. & Sethumadhavan, S. (2011), Silencing
Hardware Backdoors, in ‘Proceedings of the 32nd
IEEE Symposium on Security and Privacy, May
2011’.

Weidner, K. (2000), ‘fbvnc - a framebuffer-based VNC
client’. accessed at http://pocketworkstation.org/
fbvnc.html, 15 December 2011.

Yeh, Y. (1996), Triple-Triple Redundant 777 Primary
Flight Computer, in ‘Aerospace Applications Con-
ference, 1996. Proceedings., 1996 IEEE’, Vol. 1,
pp. 293 –307 vol.1.

Young, D. (2011), ‘COTS technologies ready for UAV
deployment’, Military Embedded Systems 7, 12.

Zylin Consulting (2008), ‘Zylin CPU’. http://openso
urce.zylin.com/zpu.htm.

CRPIT Volume 135 - Computer Science 2013

106

